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Abstract 

Metabolic labelling experiments performed with cultured pituitary lactotrophes revealed the presence of a glycosyl-phosphatidyl- 
inositol (GPtdIns) structurally related to GPtdIns lipids isolated from other cell types as demonstrated by: (i) metabolic incorporation of 
[3H]galactose, [3H]glucosamine and [3H]inositol into the polar inositolphosphoglycan moiety (InsPG) and [3H]myristate and [3H]- 
palmitate into the diacylglycerol (DAG) backbone of GPtdIns; (ii) sensitivity of the [3H]labelled GPtdIns to nitrous acid deamination 
and; (iii) sensitivity of GPtdIns to phosphatidylinositol (PtdIns)-specific phospholipase C (PLC) hydrolysis. In cultured pituitary cells 
labelled to isotopic steady state with 10ttCi/ml of [3H]glucosamine, treatment with hypothalamic TRH (10 -6 M) induced a rapid and 
transient hydrolysis (ca. 50%) of the labelled GPtdIns. Moreover, as demonstrated in [3H]inositol labelled cells, treatment with 
thyrotropin releasing hormone (TRH) elicited the cleavage of [3H]GPtdIns in a similar manner, and this effect was followed by the 
phosphoinositide (PtdIns, PtdInsP and PtdInsP 2) hydrolysis 30 s later. These results suggest that the phosphodiesterase cleavage of 
GPtdIns could be an early event implicated in TRH action in pituitary lactotrophes. 
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It is generally accepted that a result of thyrotropin re- 
leasing hormone (TRH) receptor occupancy in pituitary 
lactotrophes involves the signal transduction pathway 
which entails phospholipase-C (PtdIns-PLC) activated 
hydrolysis of  phosphatidylinositol-4,5-bisphosphate (Ptd- 
InsP2) followed by inositol-l,4,5-trisphosphate (InsP3) 
stimulated burst in intracellular Ca 2+ and second messen- 
ger DAG mediated protein kinase C (PKC) activation (for 
a review, see Ref. [1]). Recent evidence demonstrates that 
ligand-activated PtdlnsP 2 hydrolysis is not the only 
source of  second messenger DAG species in mammalian 
cells [2,3]. Moreover activation of membrane receptors 
for hormones or growth factors can activate additional 
phospholipases that promote the phosphodiesterase cleav- 
age not  only from phosphatidylcholine (PtdCho) or phos- 
phatidylethanolamine (PtdEt), the major structural build- 
ing blocks of  the lipid bilayer [2,3] but also from minor 
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membrane constituents such as glycosyl-phosphatidyl- 
inositol (GPtdlns) lipids (reviewed in Ref. [4]). 

The initial identification of  GPtdlns molecules as 
membrane anchors for covalently attached proteins [5] 
was followed by the demonstration that, upon interaction 
with its receptor, insulin stimulated the hydrolysis of  
GPtdlns and the generation of  DAG, and a polar head 
group of the lipid, an inositol-phosphoglycan (InsPG) 
containing inositol, glucosamine, galactose, galacto- 
samine and several phosphates [6-9]. 

Moreover, these initial reports suggesting a role for 
GPtdlns lipids as mediators of insulin action were later 
supported by the demonstration that the polar InsPG was 
endowed with widespread intracellular effects that in- 
clude activation of  protein kinases and phosphatases 
[10,11] and insulin mimetic effects on glucose transport 
and intermediary metabolism [12-14]. Thereafter, new 
observations demonstrating agonist-stimulated cleavage 
of  GPtdIns lipids by other growth factors that activate 
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receptors with tyrosine kinase activity [15,16] or hor- 
mones like ACTH, TSH and LH/hCG previously shown 
to activate cellular responses as a consequence of a gua- 
nine nucleotide (G) protein mediated stimulation of  
adenylyl cyclase [17-19],  have stimulated new insight 
into the field of  signal transduction, and support the no- 
tion that more than a single transduction mechanism is 
involved in receptor-activated cellular responses [2-4]. 
Although the recent cloning of  the TRH receptor revealed 
that it is composed of  a single polypeptide chain with 
seven transmembrane segments characteristic of the su- 
perfamily of G protein-coupled receptors [20,21], recent 
evidence demonstrates that TRH can also activate alter- 
native signalling pathways in pituitary cells that include 
tyrosine phosphorylat ion of  MAP kinase, and activation 
of phospholipase A z [22-24].  The relative roles of these 
different signalling mechanisms in TRH receptor activa- 
tion are difficult to asses [1-3] and are a strong rationale 
for the studies presented here. 

We investigated whether the phosphodiesterase cleav- 
age of these purported second messenger precursor 
GPtdlns lipid could be implicated in TRH action on pitui- 
tary lactotrophs. Enriched cultures of  pituitary lactotro- 
phes, obtained from female Sprague-Dawley  rats weigh- 
ing 180-200 g (Lettica, Barcelona), were used in all ex- 
periments. Upon arrival, animals were bilaterally ovariec- 
tomized, implanted with diethylestilbestrol-fi l led sylastic 
canulae, a treatment known to dramatically increase the 
number of pituitary lactotrophs [25,26], and kept in indi- 
vidual cages in an environment of  controlled temperature, 
humidity and light-dark cycle. Animals  were killed by 
decapitation 20 days later, and the adenohypophysis  care- 
fully separated from the neurointermediate lobe, cut into 
small pieces (1 x 1 mm) and enzymatical ly dispersed into 
single cells in 25 mM HEPES buffer (pH 7.4), containing 
0.4% (w/v) collagenase (Worthington Biochemical Co., 
162 U/rag), 10/zg/ml DNase (Gibco, 2100 U/mg) and 1% 
bovine serum albumin [22,27,28]. Cells were collected by 
centrifugation (250 x g for 5 min), washed five times 
with 25 mM HEPES buffer supplemented with 0.1% 
BSA, allowed to sediment at unit gravity, and inoculated 
( -10  ~' viable cells/dish) into Falcon (35 x 10 mm) tissue 
culture dishes containing 1 ml of  Ham's  F-10 medium 
supplemented with antibiotics (100 U/ml penicillin and 
100/~g/ml streptomycin sulphate), 15% horse serum and 
2.5% foetal calf  serum. After 2 days in culture, the cells 
were washed and cultured for an additional 2 days in the 
same medium under serum-free conditions [27-29] and 
used thereafter to investigate the presence of GPtdlns 
molecules in pituitary lactotrophes (Fig. 1). 

Results show that pituitary lactotrophes incorporated 
[3H]pahnitate or [3H]myristate into the DAG backbone 
and [3Hlglucosamine, [3H]galactose and [:~Hlinositol into 
the polar head group of  a GPtdIns lipid in a time- 
dependent  manner. Isotopic steady state was observed 
after 24 h labelling with [3H]fatty acids or 48 h in the 

presence of [3H]saccharides (Fig. 1). In contrast, no sig- 
nificant incorporation of  [3H]mannose into the glycosyl-  
phosphatidylinositol  fraction could be observed. The iso- 
topic integrity of  the metabolic label was also investigated 
in acid hydrolysates of [3H]PtdlnsG labelled with differ- 
ent [3H]saccharides. Samples of  [3H]saccharide-labelled 
GPtdlns, were incubated (110°C for 24 h) with 1 ml of  
4 N HC1 in vacuum-sealed test tubes [6,7,18]. The reac- 
tion products were redissolved in 50/.tl of  water, supple- 
mented with the appropriate acid-treated saccharide stan- 
dards and separated by TLC using a mobile  phase of  
pyridine/ethylacetate/glacial acetic acid/water (5:5:1:3, by 
vol.). The radioactivity was recovered (92-98%) in frac- 
tions that co-migrated with the same retardation factor as 
the precursor molecules [3H]inositol (RF 0.26), [3H]- 
glucosamine, (R F 0.50) and [3H]galactose (R F 0.88), treat- 
ed in a similar manner (results not shown). 

Although the detailed structure of GPtdlns is not 
known, chemical and enzymatic modifications have sug- 
gested that hormone-sensit ive GPtdlns lipids consist of  a 
core structure of phosphatidyl-inositol  glycosidical ly link- 
ed to a non-acetylated glucosamine, which is itself cou- 
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Fig. 1. Metabolic labelling of the glycosyl-phosphatidylinositol. Tripli- 
cate or quadruplicate cultures of cells (-106 viable cells/dish) were 
metabolically labelled for different time periods (5-72 h) with 5/zCi/ml 
fatty acids: [3H]palmitate (O), [3H]myristate (i--1) or 10,uCi/ml of the 
labelled monosaccharides [3H]glucosamine (V), [3H]galactose (O), 
[3H]mannose (A) and [3H]inositol (111). After the time periods indi- 
cated, media were aspirated and phospholipids extracted, and separated 
by sequential thin layer chromatography (TLC) on activated silica gel 
G plates (Merck, Darmstadt, Germany) in the system chloroform/ace- 
tone/methanol/glacial acetic acid/water (79:35.5:15.5:15.5:8 by vol.). 
In this acid mobile phase, PtlnsP 2 remains in the origin and other phos- 
pholipids migrated with retardation factors (RF) of 0.12, 0.25 and 0.31 
for PtdlnsP, GPtdlns and Ptdlns, respectively. The GPtdlns fraction was 
eluted from the plates with 2 ml methanol at 37°C, and rechroma- 
tographed in a basic mobile phase of chloroform/methanol/ammonia/ 
water (65.2:65.2:5:2 by vol.) to separate PtdlnsP (R F 0.15) from GPt- 
dlns and Ptdlns that migrated with retardation factors of 0.32 and 0.65, 
respectively. Values represent the mean _+ SE of quadruplicate cultures. 
Similar results were obtained in three different experiments. 
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Table 1 

Modification of glycosyl-phosphatidylinositol isolated from pituitary 
lactotrophes 

Radioactivity Labelled Product 
recovered (%) precursor recovered 

Nitrous acid 97% [3H]Palmitate [3H]Ptdlns 
Ptdlns-PLC 95% [3H]Myristate [3H]DAG 

Samples (3000-5000 cpm) of [3H]fatty acid-labelled GPtdlns, were 
incubated for 12 h at 37°C in 0.2 ml of 0.33 M sodium nitrite in 25 mM 
sodium acetate (pH 3.5) or the same volume of 20 mM sodium borate 
buffer (pH 7.5) supplemented with l unit of phosphatidylinositol- 
specific phospholipase C (PLC) purified from Bacillus thuringiensis (a 
generous gift of Dr. S. Udenfriend, Roche Institute of Molecular Biol- 
ogy, Nutley, NJ). The lipids were extracted and separated by the se- 
quential TLC procedure described. Results are presented on a percent 
basis and were corrected for non-specific conversion from control incu- 
bations conducted at pH 3.5 in the absence of sodium nitrite, or at pH 
7.4 in the absence of Ptdlns-PLC from Bacillus cereus. Similar results 
were obtained in three other experiments. 

pled to additional monosaccharides [6-8]. The GPtdIns 
isolated from pituitary cells meets the basic structural 
features of GPtdIns lipids isolated from other cell types 
(Table 1), as demonstrated by (i) the glucosamine C-1 is 
linked to the lipid moiety through a glycosidic bond as 
demonstrated by [3H]PtdIns generation after nitrous acid 
deamination of [3H]fatty acid-labelled GPtdIns [6,18]; 
and (ii) treatment with PtdIns-specific phospholipase C 
(PLC) of [3H]palmitate-labelled GPtdIns generates [3H]- 
diacylglycerol [5,6]. 

The possible involvement of GPtdIns lipids in TRH 
mediated cellular responses was also investigated (Fig. 2). 
Results show that TRH (10-6M) stimulated the rapid 
cleavage of GPtdIns in cells labelled with [3H]galactose 
or [3H]inositol. Moreover the hydrolysis of [3H]inositol 
labelled GPtdIns was followed 30 s later by the subse- 
quent hydrolysis of [3H]phosphoinositides (PtdIns, Ptd- 
InsP and PtdInsP2). These findings suggest that the early 
and rapid cleavage of GPtdIns and the subsequent gen- 
eration of an InsPG and DAG could be involved in TRH 
action, and support recent evidence showing that the 
classical PtdInsP 2 hydrolysing phospholipase C (PtInsPz- 
PLC) pathway is not the only mechanisms that operates 
after TRH stimulation of pituitary lactotrophes [22-24]. 
The consequence of TRH-mediated hydrolysis of GPtdIns 
is difficult to assess, and whether the activation and/or 
crosstalk of these two different signalling systems are 
physiologically relevant for TRH action in pituitary lac- 
totrophes remains unknown. Nevertheless, since DAG 
species generated in response to GPtdIns hydrolysis can 
activate a subset of PKC family members that have little 
or no requirement for calcium ions [30] and the bioeffec- 
tor InsPG moiety is endowed with regulatory properties 
on protein kinases and phosphatases [10,12,15], it is 
tempting to speculate that TRH-stimulated hydrolysis of 
GPtdIns could be an early event implicated in the activa- 
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Fig. 2. Effects of TRH on glycosyl-phosphatidylinositol and phosphoi- 
nositide turnover. Cultured cells (~106 viable cells/dish) were labelled 
to isotopic steady state with 25ktCi/ml of [3H]glucosamine (top) or 
[3H]inositol (bottom). Before experiments, media were aspirated and 
cells allowed to equilibrate for 30 min at 37°C in fresh medium. Treat- 
ment with 10 -6 M TRH (0) or 50ktl of vehicle (O) was added at de- 
creasing times to triplicate or quadruplicate cultures and experiments 
terminated by adding 1 ml of ice-cold methanol to each culture. The 
lipids were extracted and GPtdlns separated by sequential TLC and 
quantitated by liquid scintillation counting. In cells labelled with 
[3H]inositol (bottom) the radioactivity associated with GPtdlns (0) 
was separated from Ptdlns (11) and PtdlnsP + PtdlnsP 2 (V) as described 
in Fig. 1. In vehicle-treated cells, GPtdlns (O), Ptdlns (lq) or PtdlnsP + 
PtdlnsP 2 (V) remained unchanged. Similar results were obtained in 
three different experiments. 

tion of PtdIns-PLC and the subsequent activation of other 
calcium dependent PKC family members. This possibility 
seems reasonable, but definitive evidence for a role of 
GPtdIns hydrolysis in TRH action awaits the demonstra- 
tion that second messenger DAG species or InsPG moiety 
generated in response to TRH receptor activation could 
mimic some effects of TRH on pituitary lactotrophes. 
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