

Abstract—Efficient video streaming in a mobile ad hoc

network (MANET) is a challenging problem due to the dynamic
nature of the network that leads to high bit error rates,
unpredictable delay, jitter, throughput and packet delivery ratios
and frequent short, intermittent and long-term link failures.
Despite the MANET research community’s efforts, there are still
open problems. For example, protocols and mechanisms that
hide these issues to the video streaming applications users are
still in early stages. However, these applications must tolerate
transparently the dynamic behavior of the network and be able
to progress in presence of disconnections. In practice, this is the
exception rather the rule. In this paper, we present a multilayer
cooperative solution to detect disconnections and reconnections
between a video streaming server and a client and we propose
corrective actions at the application level. With our transparent
approach to the user, the video streaming sessions can tolerate
frequent long and short disconnections and use more efficiently
the shared wireless bandwidth.

I. INTRODUCTION
Achieving multimedia communications over MANET pose

many challenges [1] and profitable business [2]. Video
streaming is a very useful technique for devices with low
storage capacity such as mobile phones and Personal Digital
Assistants (PDA) that use cellular [3], WiFi [4] or WiMax [5]
wireless communication technologies. Among others, the
following situations degrade the video streaming performance
on MANET: i) interruption in packet delivery when a link
breaks (e.g. sender, receiver or intermediate node goes out of
coverage or their batteries go down), ii) efficient alternative
path discovering without degrading jitter [6], iii) high error
rates due to the multipath fading, iv) limited bandwidth
combined with variable network latency [7]. The efficient
election of the transport or application level protocol for video
streaming and the efficient control of intermittent wireless
channel disruption are also very important issues.

Usually User Datagram Protocol (UDP) is used to transmit
live streaming video [8]. Over UDP, the couple Real-time
Transport Protocol (RTP) and Real-time Transport Control
Protocol (RTCP) is used for real time streaming video [9].
The server continuously sends frames and the client usually

Research partially supported by the Spanish CICYT (MEC) and European
Regional Development Fund (FEDER) under Contract TSI2005-07764-C02-
01 and The Canaries Regional Education, Cultural and Sports Ministry and
FEDER under Contract PI042004/164.

does not pause the streaming. A path break implies the server
continues with the frame transmission but the client will not
receive any frame (data is lost and the bandwidth and battery
are not used efficiently).

The persistent version of HiperText Transfer Protocol
(HTTP) can support streaming for Video on Demand (VoD) so
a client sends a request and gets a response, and then sends
additional requests and gets additional responses without
Transmission Control Protocol (TCP) connection release.
Real Time Streaming Protocol (RTSP) can use any of the
above protocols for transmitting video data and TCP client
commands to control the user session on the server.

Although TCP reliability mechanism will retransmit the
missing data, the TCP socket will become invalid to the server
or the client if an abort occurs and with high probability the
user session will end abruptly. Aborts primarily occur when
data goes unacknowledged for a period of time that exceeds
the limits on retransmission defined by TCP. Other causes for
an abort include a request by the application, too many
unacknowledged TCP keepalive probes, receipt of a TCP reset
packet and some types of network failures reported by the IP
layer. We do not consider the improved versions of TCP
explained in [10] because of they require: modifications to
existing TCP (e.g TCP-F and split-TCP), more bandwidth and
power consumption during a path failure (TCP-ELFN),
dependency on a particular routing protocol to improve its
performance (TCP-Bus), addition of layers to the TCP/IP
protocol stack (ATCP). We do not also consider the protocols
overviewed in [11] due to their performance is not well
enough [12].

Cross-layer techniques have been applied to solve the above
challenges, for example in [13] it is proposed the adaptation of
the retry limit parameter at the 802.11 Medium Access Control
(MAC) level to avoid triggering the TCP congestion control
mechanism during short-term link failures (it is not
appropriated for long-term disruptions). We consider a
multilayer cooperative solution: a particular efficient network
routing algorithm, any of the above transport protocols, a
mechanism to support short and long-term disruptions for
TCP based connections, and an application level software that
implements the corrective actions when appropriate to
robustly tolerate short and long-term disruptions. In order to
consider any kind of video streaming client and server we
implement a client agent and a proxy server. In this way we

Corrective Actions at the Application Level for
Streaming Video in WiFi Ad Hoc Networks

E. M. Macías, A. Suárez, and J. Martín
Grupo de Arquitectura y Concurrencia, Departamento de Ingeniería Telemática

Universidad de Las Palmas de G. C.
Campus Universitario de Tafira, 35017 Las Palmas de G. C. (Spain)

T. Sobh (ed.), Innovations and Advanced Techniques in Computer and Information Sciences and Engineering, 525–530.
© 2007 Springer.

525

tested the good performance of our multi-protocol and multi-
client and server solution for WiFi [14] ad hoc networks.

The rest of the paper is organized as follows: section 2 is
devoted to discuss the related work. Section 3 reviews the
software architecture. Section 4 presents the corrective
actions. In section 5 we describe some experimental results.
Finally, concluding remarks are summarized in section 6.

II. RELATED WORK
The distributed and self-organizing nature of a MANET

stems from having a routing protocol installed in each wireless
node. The major routing protocols for MANET are classified
into on-demand or reactive and proactive routing algorithms.
The former initiate route discovery only after a path breaks
incurring a high cost to establish a new route whereas the
latter initiate route discovery early and before the path breaks
at the cost of higher routing load.

Proactive protocols show more benefits to send video over
ad hoc wireless networks than reactive protocols [15]. Due to
the reactive behavior, the delay, jitter, throughput and packet
delivery ratio for the communication flow may vary a lot in
quantity. We use a proactive protocol named Optimized Link
State Routing Protocol (OLSR) [16] that consists of: i) a
neighbor sensing mechanism that detects changes in its
neighborhood injecting and receiving HELLO messages
periodically, ii) an efficient flooding of control traffic, i.e.
OLSR packets injected into the network for the quick
reconfiguration of path breaks. All nodes receive the messages
and there are not duplicated messages thanks to the use of
multipoint relays. This is an important property that favors its
use in a wireless network which is by nature prone to mobility
of nodes and collisions due to the hidden terminal problem,
iii) diffusion of topological information necessary to obtain
optimal routes in terms of the number of hops. This
information is valid for a period of time so expired
information is removed. All the traffic in OLSR is UDP and it
is transmitted by broadcast or multicast on port 698.
 Ref. [17] proposes a hybrid mechanism that consists of an
early warning to a reactive protocol in order to initiate route
discovery only when a path is likely to break. With this
approach, the authors try to reduce the time to detect the
disconnection and find a new path, and also reduce the routing
load. The signal strength is used as the preemptive trigger.
However, as the authors recognize, this physical parameter is
not optimal because the value reported differs among 802.11
cards vendors [18]. Therefore, the signal strength values read
from a 802.11 card should not be assumed to be particularly
accurate [19].
 Ref. [20] presents an architecture for detecting and
diagnosing faults in IEEE 802.11 infrastructure wireless
networks. One of its contributions is enabling bootstrapping
and fault diagnosis of disconnected clients to report
information to network administrators and support personnel.
This work does not provide any support for disconnected
clients during on-going video streaming sessions. On the
contrary, we provide corrective actions at the application level
as well as detection of disconnected clients.

References [15], [17] and [20] are concerned about
providing a route between the client and the server in terms of
the quick reconfiguration of paths but they are not concerned
in providing solutions in the scope of video streaming sessions
when a path can not be established.

Multimedia data replication at several servers in a MANET
is proposed in [21]. The client establishes a connection to the
nearest server once a data block has been received or it is
renewed to the same server if it is still the nearest one. To our
knowledge, this approach will not perform well with standard
streaming protocols because a new connection for VoD
implies starting the streaming from its beginning.

The factors causing the low communication quality of
current WiFi ad hoc networks and its derived implications for
application development is the main concern of [18]. For
example, the authors state that applications must tolerate
frequent disconnections and the programmers must define
when a link is considered to fail but they do not provide a
practical solution. We have programmed a proactive
mechanism that detects when a link between the client and the
server is not available (there is not an alternative route
according to the routing protocol) and we do the corrective
actions at the application level described in section 4.
 Ref. [22] presents a proactive adaptation to the UDP-based
streaming video sent by a fixed server to a mobile client
connected to one 802.11b infrastructure wireless network. The
adaptation consists of increasing the buffer size on the client
to store more frames just before entering the low quality area
(termed trouble spot) in the hope that the mobile client will
exit the trouble spot before the buffer runs out. In this paper
we consider not only UDP-based streaming video but also
TCP-based. On the other hand, we consider both the client
and the server mobiles. In this scenario, path breaks take place
frequently and quickly so the proactive adaptation proposed in
[22] could not be viable.

III. THE SOFTWARE ARCHITECTURE
Fig.1.a. shows our target MANET consisting of any number

of hops. The server node (S) communicates with the client
node (C) via zero or more intermediate nodes (I).

The shaded parts in Fig. 1.b to d are the new software
elements we introduce (in the protocol stack) to avoid
modifying the client application, the server application and the
streaming protocols:

• olsrd (OLSR daemon) [23] is an implementation of
OLSR. OLSR routes efficiently the packets into the
network according to the number of hops between the
sender and the client. Due to the time-varying
characteristics of the wireless links, olsrd can be
configured to calculate the optimal routes defined as
the number of attempts by a node on average to

MACÍAS ET AL.526

a)

S CI

olsrd

PHY-radio
MAC-802.11

IP
UDP TCP

d)

plug-in

plug-inolsrd

streaming server / proxy server
streaming protocol

PHY-radio
MAC-802.11

IP

UDP TCP

b)

TCPControl
plug-inolsrd

client / client agent
streaming protocol

PHY-radio
MAC-802.11

IP

UDP TCP

c)

TCPControl

Fig. 1. A two hop MANET. Topology (a), Software architecture:

server node (b), client node (c), intermediate node (d).
successfully transmit a packet to a destination, instead of
the number of hops. This is a useful behavior since it is
important to consider the quality of the link when choosing
a path.
• The proxy running on the server and client machines

are called proxy server and client agent respectively.
Since both the client and the server are mobile, the
proxy server is installed on the wireless node that
serves the stream (S), and the client agent on the client
node. The proxies are also in charge of detecting if
there is, or is not, a path between the server and client
to do corrective actions. These corrective actions
depend on the type of video streaming being served
(VoD or live video) and the type of streaming protocol
used to transport the data (RTSP, HTTP or RTP) as we
will show in section 4.

• OLSR lets use its optimized flooding mechanism to
send information, routing related or not, from the
application level using a plug-in. We just use this
property to inject user defined packets (OLSR packets
type 200) to control the client's and server’s availability
and to announce the UDP services. The plug-in on the
server, client and intermediate nodes conveys to olsrd
the information to be sent into OLSR packets type 200
to the MANET. The plug-in on the server and client
nodes also communicates to the proxies the OLSR
packets type 200 captured by olsrd from the network.

Whenever the communication between the client and the
server is possible (via zero or more intermediate nodes), the
proxy server receives periodically OLSR packets type 200
from the client agent and viceversa. If the proxy server does
not receive at least one of this kind of packet for a while (1
second by default although configurable), this is indicative
that the client is disconnected. Similarly, if the client agent

does not receive a packet OLSR type 200 from the proxy
server (after 1 second by default, also configurable), it
becomes aware of the disconnection. The reconnection is
detected by the proxy server and the client agent when they
receive at least one packet OLSR type 200 from the other
one during an interval of 1 second. Appropriate actions are
done on both peers when the disconnection or the
reconnection are detected. The optimal value for the
timeout is difficult to choose: a high value could lead a high
delay to detect the disconnection whereas a low value could
trigger false alarms, i.e. no packet is received because of
network congestion but the proxy server or the client agent
wrongly detects a disconnection. The value of 1 second in
our experiments gave good results.

• TCPControl [24] is the mechanism for transparently
detecting TCP connection failures and to create a
new TCP connection that avoids the streaming
session release.

IV. CORRECTIVE ACTIONS
Table 1 summarizes the actions that the proxies do when

they detect disconnections and reconnections (in brackets it is
shown the process that does the action), and the benefits of
these actions. Irrespective of the streaming protocol, the client
agent starts a warning message box on the user's screen when
a disconnection or a reconnection is detected and the proxy
server ends the session when the disconnection exceeds a
period of time. For the streaming protocols built on top of
TCP (RTSP and HTTP), the TCP connection between the
proxy server and the client agent is closed when a
disconnection happens and a new one is created after the
reconnection using our TCPControl mechanism. Using RTSP
compliant commands such as pause and play, the proxy server
pauses or resumes the server. For HTTP or RTP, the server is
not paused during the disconnection period but the frames are
not forwarded from the proxy server to the client agent to save
bandwidth.

V. EXPERIMENTAL RESULTS
We tested the behavior and performance of our software

architecture using the topology showed in Fig. 1.a. We are
concerned in presenting results that show the benefits of using
our corrective actions and the TCP connections management
between the proxy server and the client agent. For doing that,
we did several experiments that consisted of forcing client’s
disconnections and reconnections, and evaluating the behavior
for RTSP, HTTP and RTP/UDP based streams using or not
our proxies based solution. We measured the data volume and
the TCP disconnections during a disconnection and show how
this is solved with our approach.

TABLE I

CORRECTIVE ACTIONS DURING DISCONNECTIONS AND RECONNECTIONS

Action vs.
Protocol

RTSP HTTP RTP

Disconnection Pause the server
(PS), warning the

Freeze frames
forwarding from

Freeze frames
forwarding from

CORRECTIVE ACTIONS FOR STREAMING VIDEO IN WIFI AD HOC NETWORKS 527

user (CA), close
TCP connection
 (PS,CA)

PS to CA, close
TCP connection
(PS,CA), warning
the user (CA)

PS to CA,
warning the
user (CA)

Reconnection Create TCP
connection
(PS,CA), resume
the server (PS),
warning the user
(CA)

Create TCP
connection
(PS,CA), resume
frames forwarding
(PS), warning the
user (CA)

Resume frames
forwarding
(PS), warning
the user (CA)

Total
disconnection

End session (PS) End session (PS) End session
(PS)

Lost frames Yes (live video),
No (VoD)

Yes Yes

Abrupt
ending

No No --

Batt. saving Yes No* No*
BW saving Yes Yes Yes
PS: Proxy Server CA: Client Agent Batt.: Battery BW: Bandwidth
* The server is still sending frames but PS does not inject them into the
MANET

The plug-ins and the proxies were programmed using C and
C++ languages respectively for Windows operating system.
The server was installed on a Pentium IV at 2.8 GHz with 512
MB and 802.11b compliant. The intermediate node was a
Centrino at 1.6 GHz, 512 MB and 802.11b/g. The client node
was a Celeron 1.4 GHz, 1024 MB and with a 802.11b/g
wireless interface. All the nodes were located in the same
room and we added mobility to the network by allowing the
client node to be within radio range of the server node via the
intermediate node and we also moved the client and the server
to make each other out of coverage to test the corrective
actions made by proxies and the TCP connections
management. We used VLC media player [25], a free cross-
platform media player that supports a large number of
multimedia formats and it is available for several operating
systems, it needs little CPU power and it can be used as a
streaming server to stream unicast or multicast in IPv4 or
IPv6. We used VLC for serving the video in unicast in IPv4.

A. RTSP
Fig. 2.a presents the number of packets per second injected

by the server during a VoD RTSP streaming session at a rate
of 2 Mbps (green curve) and the OLSR traffic transmitted by
the client node including our packets type 200 (red curve).
The green curve only shows the multimedia traffic using RTP
protocol, i.e. RTSP commands using the TCP connection are
not shown in this curve but in Fig. 2.b. We forced a
disconnection period of 8 s (about the 8th second until the 16th
second). During this time interval, Ethereal tool did not
capture OLSR traffic (the red curve falls to 0) since the client
is out of coverage. However, Ethereal captured RTP traffic
transmitted by the server since the server is not aware of the
disconnection period (no proxies were used for this test). As a

Fig. 2. Behavior during a disconnection and after the reconnection for a

RTSP session without corrective actions: RTP traffic from the server (green
curve) and OLSR traffic (red curve) from the client (a). TCP traffic between
the client and the server (green curve) and OLSR traffic (red curve) from the

client (b).
result, about 2 MB are transmitted and lost using RTP
protocol since we do not use a proxy server to pause the
server.

Fig. 2.b presents the number of packets per second injected
by the server and the client using the TCP connection (green
curve). As you can see, the TCP connection is lost during the
disconnection period (again red curve shows the OLSR traffic
injected by the client that falls to 0 during the disconnection
period) and it is not recovered after the client’s reconnection.
As a result, any attempt of the client to use this TCP
connection to control the streaming will fail or even the
streaming session will end abruptly.

To correct this inefficient usage of the server and the
available wireless bandwidth, and to avoid the lost of the TCP
connection, we repeated the experiment using the proxies and
we forced a higher disconnection period of 35 s (Fig. 3.a).
During this period, the server is paused by the proxy server
and no frames are transmitted avoiding that the server injects a
total of 8.75 MB. As it is shown if Fig. 3.a, the proxy server
lasts about 1.5 s to detect and react properly to the
disconnection and about 2 s to detect and react to the
reconnection. Both values are a bit higher to the theoretical
value of 1 second we fix to warn the proxy about a

8s

a)

b)

MACÍAS ET AL.528

a)

b)

Fig. 3. Improved behavior using proxies during a disconnection and after the
reconnection for a RTSP session: RTP traffic from the server (green curve)
and OLSR traffic (red curve) from the client (a). TCP traffic between the

client and the server (b).

disconnection or reconnection because it is included the time
the proxy server needs to do a corrective action, e.g. sending a
RTSP compliant pause or play command to the server. Since
we use a proactive protocol to detect them, the detection time
is even lower that the one we would obtain using reactive
protocols such as Ad hoc On-demand Distance Vector Routing
(AODV) or Dynamic Source Routing (DSR) [10].

Fig. 3.b shows the behavior of the TCPControl mechanism
for the RTSP session. Initially, the port used for the TCP
connection between the client agent and the proxy server is
1273 (blue curve). About the second 17, the TCP connection
is lost but using TCPControl a new TCP connection over port
1280 is created (violet curve) and the streaming session is
resumed and not abruptly ended after the reconnection.

B. HTTP
Fig. 4.a presents the number of packets per second injected

by the server during a streaming session over HTTP (green
curve) and the OLSR traffic transmitted by the client (red
curve). During the disconnection period, i.e. the red curve
falls to 0, the HTTP based stream is not captured since the
TCP connection is lost. After the reconnection, the TCP
connection is not recovered so the streaming is stopped and
any attempt of the reconnected client to receive the stream will
fail. However, using proxies (Fig. 4.b), the TCP connection is
reestablished once the client is reconnected (blue curve in Fig.
4.b) using our TCPControl software.

C. RTP
Fig. 5.a presents the number of packets per second injected

a)

b)
Fig. 4. HTTP based streaming: Behavior during a disconnection and after a
reconnection without corrective actions (a). Improved behavior with proxies

(b).
by the server during a streaming session over RTP/UDP
(green curve) at a rate of 2 Mbps and the OLSR traffic
transmitted by the client (red curve). We forced a
disconnection period of 9s (about the 11th second to the 20th
second). During this time interval, Ethereal did capture
RTP/UDP traffic transmitted by the server since the server is
not aware of the disconnection period. As a result, a data
volume of 2.25 MB is transmitted using inefficiently the
wireless bandwidth. We repeated the experiment using
proxies. Fig. 5.b shows the RTP/UDP stream captured by
Ethereal (green curve) and transmitted by the server, and the
OLSR traffic sent by the client (red curve) both in terms of
number of packets injected per second. This time, the proxy
server lasts about 1.5s to detect and react properly to the
disconnection and the reconnection. During the disconnection
period, no RTP/UDP based stream is forwarded by the proxy
server to the proxy client and as a result, bandwidth is saved.

D. Percentage of recovered TCP connections
For video streaming based on RTSP and HTTP we forced

25 disconnections between the client and the server and we
studied the percentage of TCP connections recovered. This
value was 92% (23 successful reconnections). For the two
TCP connections lost and not recovered by our TCPControl
mechanism, the server’s resources allocated for these

5s 15s 35s 25s

0

1.5s 2s

5s 15s 35s 25s
0

10s 15s 20s
0

10

500

100000

CORRECTIVE ACTIONS FOR STREAMING VIDEO IN WIFI AD HOC NETWORKS 529

b)

Fig. 5. RTP based streaming: Behavior during a disconnection and after a
reconnection without corrective actions (a). Improved behavior with proxies

(b).
streaming sessions were silently released.

VI. CONCLUSION
This paper discussed about the challenges that a video
streaming session faced in a MANET. We proposed some
corrective actions at the application layer for different
streaming media protocols. This support is done by proxies
that detect path breaks and reconnections thanks to the
feedback provided by the proactive OLSR protocol.
Experimental results showed the convenience of using our
software architecture for a better use of the bandwidth and to
avoid losing of frames under certain conditions. We are
thinking to improve the corrective actions, e.g. store frames
during disconnections for HTTP and RTP based streams and
give early directions to the user to a better coverage area.

REFERENCES
[1] M.D. Kwong, S. Cherkaoui, and R. Lefebvre, “Multiple description and

multi-path routing for robust voice transmission over ad-hoc networks”,
in 2006 IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, pp. 262-267.

[2] Y. Tashiro, Y. Yashima, and H. Fuju, “NTT’s technologies for next-
generation video services”, ACM Computers in Entertainment, vol. 4
(1), January 2006.

[3] P. Fröjdh, U. Horn, M. Kampmann, A. Nohlgren, and M. Westerlund,
“Adaptive streaming within the 3GPPP packet-switched streaming
service”, IEEE Network, vol. 20 (2), pp. 34–40, March-April 2006.

[4] N. Cranley, and M. Davis, “Study of behaviour of video streaming over
IEEE 802.11b WLAN networks”, in 2006 IEEE International
Conference on Wireless and Mobile Computing, Networking and
Communications, pp. 349–355.

[5] O.I. Hillestad, A. Perkins, V. Genc, S. Murphy, and J. Murphy,
“Delivery of on-demand video services in rural areas via IEEE 802.16
broadband wireless access networks”, in 2006 Proceedings of the
Second ACM International Workshop on Wireless Multimedia
Networking and Performance Modeling, pp. 43-51.

[6] H. Fujisawa, H. Minami, M. Yamamoto, Y. Izumi, and Y. Fujita, “Route
selection using retransmission packets for video streaming on ad hoc
networks”, in 2006 IEEE Radio and Wireless Symposium, pp. 607–610.

[7] J. Ding, C. Lin, and K. Huang, “ARS: an adaptive reception scheme for
handheld devices supporting mobile video streaming services”, in 2006
IEEE International Conference on Consumer Electronics, Digest of
Technical Papers, pp. 141–142.

[8] G. Cunningham, S. Murphy, L. Murphy, and P. Perry, “Seamless
handover of streamed video over UDP between wireless LANs”, in 2005
Consumer Communications and Networking Conference, pp. 284–289.

[9] J. Li, and L. Li, “Research of transmission and control of real-time
MPEG-4 video streaming for multi-channel over wireless QoS
mechanism”, in 2006 1st International Multi-Symposiums on Computer
and Computational Sciences, vol. 2, pp. 257-261.

[10] C. Siva Ram Murthy, and B. S. Manoj, Ad Hoc Wireless Networks.
Architectures and Protocols. Prentice Hall, PTR, 2004.

[11] G. Yang, L. Chen, T. Sun, M. Gerla, and M.Y. Sanadidi, “Real-time
streaming over wireless links: a comparative study”, in 2005
Proceedings of 10th IEEE Symposium on Computers and
Communications, pp. 249–254.

[12] M. Li, C. Lee, E. Agu, M. Claypool, and R. Kinicki, “Performance
enhancement of TFRC in wireless ad hoc networks”, in 2004
Proceedings of the 10th International Conference on Distributed
Multimedia Systems.

[13] S. Lohier, Y. Ghamri-Doudane, and G. Pujolle, “MAC-layer adaptation
to improve TCP flow performance in 802.11 wireless networks”, in 2006
IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications, pp. 427–433.

[14] IEEE 802.11, The Working Group Setting the Standards for Wireless
LANs [Online]. Available: http://grouper.ieee.org/groups/802/11/

[15] J. Karlsson, H. Li, and J. Eriksson, “Real-time video over wireless ad-
hoc networks”, in 2005 14th International Conference on Computer
Communications and Networks, San Diego, California.

[16] T.H. Clausen, and P. Jacquet. (2003, October). Optimized Link State
Routing Protocol, RFC3626, Internet Engineering Task Force (IETF)
[Online]. Available: http://ietf.org/rfc/rfc3626.txt

[17] T. Goff, N.B. Abu-Ghazaleh, D.S. Phatak, and R. Kahvecioglu,
“Preemptive routing in ad hoc networks”, in 2001 ACM SIGMOBILE,
pp. 43-52.

[18] G. Gaertner, and V. Cahill, “Understanding link quality in 802.11
mobile ad hoc networks”, IEEE Internet Computing, pp. 55-60, January-
February 2004.

[19] J. Bardwell. (2004). You Believe You Understand What You Think I
Said. The Truth About 802.11 Signal and Noise Metrics [Online].
Available:
http://www.connect802.com/download/techpubs/2004/you_believe_D10
0201.pdf

[20] A. Adya, P. Bahl, R. Chandra, and L. Qiu, “Architecture and techniques
for diagnosing faults in IEEE 802.11 infrastructure networks”, in 2004
10th Annual International Conference on Mobile Computing and
Networking, pp. 30-44.

[21] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari, “Server
replication techniques for display of continuous media in mobile ad hoc
networks”, Computer Science Department, University of Southern
California, Los Angeles, CA, Tech. Rep. 2005.

[22] V. Sunderam, J. Pascoe, and G. Tonev, “Reconciling the characteristics
of wired and wireless networks: the Janus approach”, in 2002 4th Annual
International Workshop on Active Middleware Services.

[23] O L S R . O R G [Online]. Available: http://www.olsr.org/
[24] E. Macías, A. Suárez, J. Martín, and V. Sunderam, “Using OLSR for

streaming video in 802.11 ad hoc networks to save bandwidth”, Special
Issue of IAENG, in press.

[25] VideoLAN - Free Software and Open Source Video Streaming Solution
for Every OS! [Online]. Available: http://www.videolan.org/

10s 15s 20s 25s
0

25

50

a)

1.5s 1.5s

MACÍAS ET AL.530

View publication statsView publication stats

https://www.researchgate.net/publication/215504899

