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 SIGNAL AND IMAGE RESTORATION USING SHOCK FILTERS
 AND ANISOTROPIC DIFFUSION*

 LUIS ALVAREZt AND LUIS MAZORRAt

 Abstract. The authors define a new class of filters for noise elimination and edge enhancement

 by using shock filters and anisotropic diffusion. Some nonlinear partial differential equations used as

 models for these filters are studied. The authors develop recursive and unconditional stable schemes
 which drastically reduce the computational effort of the algorithms. A new fast recursive approach
 to linear Gaussian filters is also shown by using the heat equation.

 Key words. anisotropic diffusion, image restoration, shock filters, deconvolution, edge enhance-
 ment
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 1. Introduction. This paper deals with signal and image restoration; by this we

 mean noise elimination, edge enhancement, and deconvolution. We present different
 models according to the signal dimension (one- or two-dimensional signals).

 In the case of one-dimensional signals we introduce as a model the following

 hyperbolic partial differential equation.

 (1) Ut ? F(G*u,,, G*u,)u, = 0 in R x R+,

 where G,(.) is a family of smoothing kernels which depends on a parameter a (for
 instance, a family of Gaussians), F(. , .) is a function which satisfies:

 (2) F(p, q)pq > 0 for any p, q c R;

 a simple choice for F is

 (3) F(p, q) = sign(p)sign(q),

 where sign(s) = 1 if s > 0, sign(s) = -1 if s < 0, and sign(0) = 0.
 Roughly speaking, if u(x, 0) is the initial signal, (1) develops shocks in the position

 of the zero crossing of G*uxx, and in this way it produces an enhancement of the edges.
 We discretize (1) by using a recursive scheme which is unconditionally stable,

 dissipative only in the interior of the homogeneous regions of the signals (meaning
 that discontinuities situated in the zero crossing of G*Uxx are not smeared), and
 nonoscillatory.

 We define the smoothing kernel G,(.) as an approximation of the Gaussian filter
 by using a fast recursive discretization of the heat equation (Ut - uXX = 0).

 In the case of two-dimensional signals (i.e., images) we introduce as a model the
 following partial differential equation:

 (4) Ut = C0(u)-F(G*u', G*u)un in R2 x R+,

 where q = r1(x) is the direction of Vu(x), F(., .) verifies (2), Ga(, .) is a family of
 two-dimensional smoothing kernels, C > 0 is any positive constant, and ?(u) is any
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 591

 directional smoothing operator; for instance, a simple choice for 12(u) is

 ?2(u) = ut,

 where ( = ((x) is the direction perpendicular to the gradient Vu(x).

 Roughly speaking, this parabolic-hyperbolic equation diffuses the initial image
 u(x, y, 0) in the parallel directions of the edges (noise elimination) and develops a shock
 in the perpendicular direction of the edge (edge enhancement and deconvolution).

 We discretize (4) by using a recursive scheme which is unconditionally stable.

 Due to the unconditional stability, our schemes produce interesting results with

 few iterations. On the other hand, the recursive implementation of the models dras-

 tically reduces the computational effort of each iteration. Therefore, our schemes
 produce stable, efficient, and very fast algorithms.

 We remark that we have no boundary conditions in our models. In the practical
 cases we need to impose an artificial boundary condition. In this paper, we impose, in

 a natural way, that if 9u/&9v = 0 in the boundary (here v represents the perpendicular
 direction to the boundary), it means that we minimize the boundary influence.

 The organization of the paper is as follows: In ?2 we develop the model (1) and
 we present some related models. In ?3 we develop the model (4) for images (or two-
 dimensional signals) and we present some related models. Finally, in ?4 we present
 some numerical experiences.

 2. One-dimensional signal.

 Related models. Rudin in [14] first applied the concepts and techniques developed
 in the numerical solution of nonlinear hyperbolic equations to image enhancement.

 There, the first experimental shock filter, based on a modification of the nonlinear
 Burgers equation was used. In a more recent paper [10], Osher and Rudin introduced
 an important improvement by using as a model the following hyperbolic equation:

 ut + F(uxx)luxl = 0 in R x R+,

 where F(. ) is a function such that F(s)s > 0. In order to discretize this equation
 they used an explicit monotone scheme which preserves the total variation and the
 size and location of local extrema. Therefore, this scheme cannot remove some kinds

 of noise, for example, "salt and pepper" noise. This model develops shocks in the

 position of the zero crossing of uxx. Then if we have a noisy signal, it produces a lot
 of spurious shocks due to the influence of noise (see Fig. 1).

 Our model. In a natural way (following the classic theory of Marr [8]) we introduce

 in the above equation a smoothing kernel G,(.,) in order to avoid the spurious shocks.
 We propose as a model the -equation:

 Ut + F(GuxxGux)ux = O in IR x IR+.

 Since G*ux = (G,)*u, this equation is better posed because it becomes a first-
 order differential equation. Now the shocks are developed in the position of the zero

 crossing of G*uxx
 To discretize (1), we first present a quick summary of numerical results concerning

 the linear hyperbolic equation.

 Implicit schemes for hyperbolic equations. We consider the well-known linear hy-
 perbolic equation:
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 FIG. 1. In the left part, we show -the solution of (1) (o 0) for the initial signal uo (x) cos x.

 We notice as discontinuities are developed in the location of the zero crossing of uxx. In the right
 part, we show the evolution of a noisy step function (a~ = 0), and we notice the occurrence of spurious

 shocks due to noise influence.

 where c E R is a constant. Equation (5) is a pure transport equation, i.e., the solution
 u(x, t) of (5) for an initial datum f (x) is u(x, t) = f (x - ct), where the direction of
 the travelling wave depends on the sign of c. In order to get an unconditional stable
 algorithm, we discretize (5) by using an implicit scheme. Let h> 0 and kw> 0 be the
 spatial and temporal increments, and O u(ih, kn). Assume that c > 0, and we use
 the following discretization:

 un+l n un Ui + n+1

 _ _ _ _ _ _ - ui71 0 .

 Let A - ck/h. Then we have

 (1 + A)uin+l -AUn+ 1 = ui, for any i E E and n E R.

 Notice that uin+1 can be calculated with few operations (only two multiplications
 and one addition for each i ). In the frequency domain the signal uO can be written
 as the function Un(w) = Z. ene-iwnh. (See [6] for more details.) By standard tech-
 niques (see, for instance, [16]) and following the above discretization of (5), Un+l(W)
 can be computed as Un+l(w) = Un(w)mA(w), where m>(w) is defined by

 1

 mA(w) = e + A - Aeiwh

 Since ImA(w)I < 1 for any A > 0 and w c R, the scheme is stable for any value of k,
 h > 0, and we have:

 mA (w) = , ?.-,=1/(+A) +00 A, m
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 593

 Using this equality we can explicitly compute the coefficients of the linear filter

 associated with the recursive scheme obtained by the implicit algorithm defined above.

 To compute ul'+l is equivalent to the convolution of u' with the signal hi(A) defined
 by

 AWli/(I + A)1'1+1 if i -- O,
 hi(A) =

 { 0 if isO.

 We notice that mA (w) is the Fourier transform of the signal hi (A). This scheme is
 dissipative (i.e., the discretization introduces an artificial diffusion; see [16] for more
 details). In fact, when A tends to +oo, un+1 tends to the average of the signal u0 for
 j c (-oo,i).

 If c < 0, we use the following discretization:

 un+'1n1u+
 1 -n, + ci+1 - =_
 k h

 and by using the same arguments as in the case c > 0 we show that Un+l can be
 interpreted as the convolution of Un with the filter defined by:

 0 if i -<0,

 hi (A) =
 A <i/(I + A)'+' if i 0 ,

 where A = ck/h.
 Next, we show a fast algorithm in order to approach the Gaussian filters.
 Gaussian filters approximation. We focus our attention on the one-dimensional

 case. In fact, the approximation of two-dimensional Gaussian filters is obtained by
 using the one-dimensional approximation in two perpendicular directions. It means
 that we can compute the two-dimensional convolution of a Gaussian function with a
 picture by the combination of the one-dimensional convolution of the picture in the
 direction of the x-axis and the y-axis. Let Ga(x) be the Gaussian filter

 e_ X2 /20a2

 Ga (x) = e

 It is well known that the convolution of a function f(x) with a Gaussian filter is
 equivalent to solving the heat equation ut - uxx = 0, for the initial datum u(x, 0) =
 f(x), i.e., let t = a2/2, then u(x,t) = G*f(x). Therefore, an approximation of the
 solution of the heat equation is an approximation of Gaussian filters. We are going to
 discretize this equation by using the most simple unconditionally stable scheme. Let
 h > O and k > 0 be the spatial and temporal increments, and u0 u(ih, kn). We use
 the following discretization:

 n+1 - ,' n+1 + n+1 -2n+l
 k i+1 i_1 =O.
 k h2

 Let A = k/h2. Then we have

 (1 + 2A)un+l'_Xun+l - Aun+f1u = ut, for any i Ei and n E N.
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 594 LUIS ALVAREZ AND LUIS MAZORRA

 By using the same arguments as in the case of the linear hyperbolic equation, we
 can interpret the signal uf+l as the convolution of the signal u' with a filter defined
 by the transference function

 (6) m>, (w) = 1 + 2A-2A cos(wh)

 As ImA(w)l < 1 for any A > 0 and w e R, the scheme is stable for any value of
 k > 0 and h > 0. Next, we show some interesting results about (6).

 LEMMA 1. Let h, k, t > 0,1 = k/h, and mA (w) be defined by (6); then we have

 (7) M'X (w) ~~~~V/A (7) m> (w) = -(1 _- /veiwh) (1 - ve-iwh)'

 +00

 (8) mx(w) = (1 + 4A)-1/2 E Vlmleiwhm
 m=-oo

 +7r/h ~~~~~n-1

 (9) mA(w) dw= hAn(1 -2)2 E ( r )( J-7r/h (hll)V2 (1V2)n

 where v = I+2A 1+4A
 2A/

 Proof. Equations (7) and (8) follow by a straight calculus. Equation (9) follows
 by using complex integration in the unit circle (we take z = eiwlt).

 Notice that following (7), mA (w) is the combination of a causal filter and an
 anticausal filter. Therefore, we can decompose the calculus of Un+l in the following
 steps.

 (i) Un+1/3 un + Un+1/3 for any i E X,

 (ii) un+2/3 un+1/3 + Un+2/3 for any i E X, (ii) ~ ~ ~ ~~~ii+1

 (iii) uinj1 = (V/A\)un+2/3 for any i E ]T.

 Indeed, (i) corresponds to the convolution of the signal Un with the filter defined by the
 transference function mil(w) = 1/(1 - veiwh), (ii) corresponds to the convolution of
 the signal computed in the step (i), Un+l/3, with the filter defined by the transference
 function m2(W) = 1/(1-ve-iwh); finally, (iii) corresponds to multiplying the signal
 computed in step (ii), U4n+2/3, by (v/A). The combination of these three steps is
 equivalent to the convolution with mA (w). Notice that the calculus of un+l needs
 only three multiplications and two additions for each i E ]T. Moreover, in many
 applications we can avoid step (iii) because it is only a normalization process.

 Notice that by (8) we can interpret un+l as the convolution of un with the filter
 hi(A) defined by:

 hi(A) = (1 + 4A)-1/2V1Ii for any i E II;
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 595

 since M tends to 1 when A tends- to infinity, the effective support of this filter goes

 to infinity; however, notice that the number of operations in order to calculate Uf+
 remains fixed independently of A.

 The transference function of the filter associated to the nth iteration of the im-
 plicit discretization defined above is mvn(w). Therefore, Un can be obtained as the

 convolution of the original signal uo with this filter. Equality (9) gives a formula to
 compute the energy of such a filter.

 In terms of frequencies, we can interpret the solution of the heat equation u(x, t)

 as the convolution of the initial datum f(x) with a Gaussian filter, which has the
 transference function m(w) = e-tw2; when we discretize the signal f(x) and the
 Gaussian filter G,(x) by using a spatial increment h, the filter m(w) becomes a 2ir/h
 periodic function defined by:

 +00

 m(w, h) = E e-t(w+27rm/h)2 for any t > 0
 m=-oo

 (see [61 for more details). On the other hand, u0 is an approximation of u(ih, nk)
 and it can be interpreted as the convolution of the initial signal ui with the filter
 defined by the transference function m (w). Therefore, mvn(w) is an approximation
 of m(w, h). From a theoretical point of view, A must be taken small so that u0 will
 be near the continuous solution u. Therefore, if t is taken "big" many iterations

 are needed for approaching u(ih, t) and then the computational effort grows quickly.

 Thus from a practical point of view we need to take A big in order to reduce the

 computational effort. On the other hand, if h is small enough and t big enough the

 support of the function m(w) = e-tW2 is nearly included in [-2ir/h, 2ir/h] and then

 m(w, h) _ m(w) is in [-2ir/h, 2ir/h]. Notice that mA(w) and mvn(w) are nonnegative
 even though 27r/h periodic functions decrease in [0, ir/h] and mA(O) = mvn(O) = 1.
 Moreover, mvn(w) decreases faster than mA(w) and in this way better approaches the
 function m(w). The theoretical relation between A, n, and t is given by

 (10) h2An = t.

 But as we show in the numerical experiments (see Fig. 2), in this case mn (w) converges
 slowly to m(w) as n tends to infinity. In order to accelerate this convergence we use
 a different criterion for choosing A and n. We take A and n so that m(w) and mvn(w)
 will have the same energy:

 7r/h 2n7r/h212
 (11) F(A, n)= M a(w) dw= m(w) dwJ (/2t)

 -7r/h _7r/h

 Notice that F(A, n) is a decreasing continuous function with respect to A which
 satisfies:

 F(O, n) = 2ir/h and lim F(A, n) = 0 if A - +oo.

 Therefore, if 2ir/h > (ir/2t)1/2 we have that for any n E N there exist a unique
 A > 0 such that F(A, n) = (ir/2t) /2. Moreover, we can make this relation explicit by
 using (9). For instance, for fixing ideas we take n = 1; then we have the relation

 (2ir/h)(I + 2A)(1 + 4A)-3/2 - (7r/2t)1/2.
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 ____-'/~~~ ~ ~~~~~~~~~~~ \tX,

 __ ~ ~~~ /t

 FIG. 2. Gaussian approximation. We present an approximation of the Gaussian filter

 m(w) = e-3w by using iterations of m;>\(w) (the solid line corresponds to m(w) and the dashed line

 corresponds to the iterations of m,\(w)). In the left part we use the classical approach given by (10).
 In the right part we use the energy conservation criterion (11).

 As we show in the numerical experiments (see Fig. 2), criterion (I11) is more efficient
 than (10) in order to approach m(w).

 Remark 1. The recursive filtering structure drastically reduces the computational
 effort required for filter implementations. The operations are done with a fixed num-
 ber of multiplications and additions per output point independently of the size of
 the neighborhood considered. (See, e.g., Shen and Castan [15] and Deriche [4] for
 overviews of this subject.)

 Discretization of (1). We now consider the equation (1):

 ut +F(G* ux,, G* u,)u, = O in Rx R+;

 let h > O and k > O be the spatial and temporal increments, and uO u(ih, kn). NNre
 use the following discretization:

 (12)

 u +1 -U', F-(Un)(Un+1 - un+1 ) +F (un,) (Un+ 1- u n+1 iX ]

 where F- (s) = min{O, F(s)}, F+ (s) = max{O, F(s) }v F(Oi) = F( (G* 0i),,,, (G*0i),,),
 G* Oi is calculated using the filter (6), and finally

 G* n ~G Gutn+ + G*u O_ 2G* On

 (13)
 G* un lG*0 1_

 (G )x a Ka-T

 / r It2
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 597

 In order to solve (12) we use the following fixed-point equation:

 (14) wi = Aibi + viwi+l + 7miwi1l for any i E ]T,

 where wi = u+l, Ai = (1 + (k/h)jF(u0)j)-', bi = u, vi = -AF-(u0)k/h, and
 71i = AiF+(uO)k/h.

 Next we show that this fixed-point equation has a unique, stable, and nonoscilla-

 tory solution.

 THEOREM 1. Let bi be a bounded sequence, and Ai, vi, rqi such that vpri = 0, Ai >
 ,0 < vi,ri < 1, and Ai+?v+ri = i for anyiE Cl and some >0. Then we have the
 following:

 (i) The fixed-point scheme (14) has a unique bounded solution wi.
 (ii) Let m = inf{bi,i E 114 and M =sup{bi,i C 114. Then m < wi < M for any

 i E L-

 (iii) If F is defined by (3), then (14) is monotonicity preserving (i.e., if bi is a
 monotone sequence then wi is also monotone).

 Proof. (i) Let E be the space of bounded sequence z = {zi E R, i E 114 and
 Q: E - E defined by Q(z)i = Aibi + vizi+l + 7jziji_. Let z, v C E; then we have

 sup{fQ(z)i-Q(v)iI} < sup{ vi(zi+i-vi)+?i(z-il-i) I C (1-c) sup{tzi-vjt}-
 iEll iEll iEll

 Therefore, Q is a contractive function and (i) follows by using the classic Banach
 fixed-point theorem. Moreover, if zo E E, then the sequence z k E E defined by
 zk = Q(zk-l) converges to the solution w of (14).

 In order to prove (ii) and (iii) we notice that there exist two special types of points
 i E li defined by the sets

 A = {i C 11: ?i+l = } = ,

 B = {i E J1 17: = vi1= 0}

 A represents the set of points i where the solution w of (14) can develop shocks.

 In fact, if i E A, the solution wj for j < i is completely independent of wj for j > i+ 1.
 In i E B, we have (by using (14)):

 Wi = Aibi + (1 -Ai)wi+l

 wi+1 = Ai+lbi+l + (1 -Ai+l)w,

 Wi - [Aibi + Ai+1(l - Ai)bi+,]/[l - (1 - Ai+?)(1 - Ai)],

 Wi+ -[Ai+lbi+l + Ai(l - Ai+?)bi]/[l - (1 - A+1)(1 -Ai)]

 We remark that wi and wi+1 are an average of bi and bi+1.
 Let i1, i2 C A, i1 < i2; then there exist j, C B such that il < il < i2. Moreover,

 if jl, j2 E B, then there exists i2 E A such that ji < i2 < j2-
 Therefore, we can decompose li = U[i,m + 1,im+1], where im, i~m? E A (or

 im = -00, im+i = +oo) and [im + 1,im+i] n B = {jm}. Then we can explicitly
 compute the solution wi in [im + 1, im+1]. Since jm E B, wjX, wj+1I are computed
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 598 LUIS ALVAREZ AND LUIS MAZORRA

 by using the above equality. If -j c [im + 1, jm], then j is not in A and B and since

 r,-im+l = 0, then ri = 0 and we compute wj in a recursive way by using the fact that
 in this region

 W = Aibi + (1 -A)wj.

 By using the same argument if j E [jm, jm+l] then uj = 0. We compute wj in a
 recursive way by using the fact that in this region

 wj = Aibi + (1 - A)wj-.

 Numerically, this method is very efficient (see Fig. 3). Notice that if B is empty then

 A is empty or A = {io}. When A is empty, we have that r7i = 0 for any i or vz = 0

 for any i and we can apply the above argument to obtain wi in a recursive way. If
 A = {io} then m~ = 0 if i > io and vi 0 if i ? io, then we can compute wi separately
 in (-oo, io] and [io + 1, oo).

 v/$ -V-WIV / _A/V'

 FIG. 3. We show (from top to bottom) some iterations of scheme (12) for a noisy initial signal.

 In the left part oa = 999 and k = 5. In the right part of = 9999 and k = 50. Notice that the initial

 step function is reconstructed perfectly and in a stable way with respect to k and o.

 Finally, (ii) and (iii) follow because we can interpret the solution w of (14) as

 wi= aijbj for any i E II,

 where aij s 0 and Eaij = I for any i E f.
 Remark 2. Notice that if we consider F(p, q) defined by (3) then Ai = A for any

 i E l and if we take k +oo then A - 0 and the solution w of (14) converges to
 a step function w? defined by

 w-O = (bjm + bjm+)/2 for any i E [imj + 1, m+1l

 where jm, im, im+1 are defined above.
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 599

 Remark 3. It can be interesting to take the variance U2 of the filter G,(.) as a
 function of t (i.e., a = a(t)). In this way we introduce a multiscale interaction in

 the calculus of the location of the zero crossing of G*UXX and therefore scheme (12)
 develops shocks in the location of the zero crossing which remain stable in different

 scales given by a(t).

 3. Two-dimensional model.

 Related models. The "low level" analysis of images presents two opposite require-

 ments. Generally, we wish to smooth the homogeneous regions of the picture with

 two scopes: noise elimination and image interpretation.

 The low-pass filtering is generally made by convolution with Gaussians of increas-

 ing variance. We understand easily the necessity of a previous low-pass filtering: if

 the signal is noisy, the gradient will have many irrelevant maxima which must be

 eliminated. Koenderink [9] noticed that the convolution of the signal with Gaussians
 at each scale was equivalent to the solutions of the heat equation (ut - Au = 0) with

 the signal as initial datum. Denoting by uo this datum, the "scale space" analysis
 associated with uo consists in solving the Cauchy problem:

 Ut = UXX + uyy = Au,

 u(x,y,O) = uo(x,y).

 The solution of this equation for an initial datum with bounded quadratic norm is
 given by the convolution of uo with a Gaussian function (u(x, y, t) = G*uo), where

 e_(X2+Y2)/4t

 Gt (xI y) = 4r 4i7rt

 here, the variance of this Gaussian filter is given by the relation t = a2/2. Then

 (x,Iy) is an edge point for the "scale" t at points where Au changes sign and jVul
 is "big." Of course, this last condition introduces some a priori defined threshold.

 Unfortunately, it is well known that the "edges" at low scales give an inexact account
 of the boundaries which, according to our perception, should be regarded as correct.

 An important improvement of the edge detection theory was proposed by Perona

 and Malik [12]. Their main idea is to introduce a part of the edge detection step in
 the filtering itself, allowing an interaction between scales from the beginning of the
 algorithm. They propose replacing the heat equation by a nonlinear equation:

 Ut = div(g(lVul)Vu) in RN x R+

 u(x,O) = uo(x) in RN.

 In this equation, g is a smooth nonincreasing function with g(O) = 1, g(s) > 0,
 and g(s) tending to zero at infinity, while uo(.) represents the original image. The
 idea is that the smoothing process obtained by the equation is "conditional": if Vu(x)
 is big, then the diffusion will be low, and therefore the exact localization of the edges
 will be kept. If Vu(x) is small, then the diffusion will tend to smooth still more
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 600 LUIS ALVAREZ AND LUIS MAZORRA

 around x. This model has been improved in Catte, Coll, Lions, and Morel [3], where

 the authors avoid some practical and theoretical difficulties by using as a model

 Ut = div(g(jV(G*u)j)Vu) in RN x R+,

 u(x, 0) = uO(x) in RN

 where G, is a smoothing kernel (for instance, a Gaussian). This model avoids the
 occurrence of spurious edges produced by noise influence, and it is more consistent
 from a theoretical point of view.

 However, these two models do not have a clear geometric interpretation because

 the term inside the divergence is hybrid and combines the estimate of the gradient

 and the gradient itself. The intuitive idea of edges is that they are generally piecewise
 smooth. Therefore, it seems natural to use a directional smoothing kernel such that

 it diffuses more in the direction parallel to the edge and less in the perpendicular one.

 Following this idea, Alvarez, Lions, and Morel [1] proposed as a model the equation

 Ut = g(IV(G*u)I)u(( in RN x R+

 u(x,0) = uO(x) in RN,

 where ( = ((x) represents the direction perpendicular to the gradient Vu(x). In this
 model, the authors keep the improvement in'troduced in the above model and they
 introduce a new directional diffusion notion. Roughly speaking, this model conserves

 the exact location and sharpness of the edge, while smoothing the picture on both
 sides on this edge. In the particular case g(s) = 1 for any s > 0, this equation has
 received a lot of attention because of its geometrical interpretation; indeed (see, e.g.,
 Osher and Sethian [11] and Evans and Spruck [5]) the level set of the solution moves
 in the normal direction with a speed proportional to their mean curvature.

 In a more recent paper, Alvarez, Guichard, Lions, and Morel [2] generalize the
 above equation by using an axiomatic approach to the low-pass filtering theory. They
 show the exact shape of any local morphological low-pass filter.

 Our model. In a natural way, we merge the shock capturing techniques shown for
 the one-dimensional case in ?2 and the directional smoothing ideas presented above.
 We propose as a model the following parabolic-hyperbolic equation:

 (15) Ut = CL(u) - u F(G*u>, G*u7) in R2 x R+,

 where 71 = 71(x) is the direction of Vu(x), F(. ,.) verifies (2), and G,(., .) is a
 family of two-dimensional smoothing kernels, C > 0 is any positive constant, and
 L(u) is any directional smoothing operator presented above. In this paper we use, as
 a "canonical" example of L(u), the following operator:

 ?(u) = u,

 where ( = ((x) is the direction perpendicular to the gradient Vu(x).
 Roughly speaking, the interpretation of the terms of (4) with ?(u) given above

 are as follows:

 (a) The term uS represents a degenerate diffusion 'term, which diffuses u in the
 direction orthogonal to its gradient Vu. The aim of this term is to make u smooth
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 601

 on both sides of an edge with a minimal smoothing of the edge itself. Moreover this

 operator tends to move the level surfaces of the picture in the normal direction with

 a velocity proportional to the curvature of the level surfaces.

 (b) The linear smoothing kernel G, is introduced in order to avoid noise influence
 in the process by merging different scales.

 (c) The term -uF(G*u,77 G*uU) produces edge enhancement and deconvolu-
 tion by developing shocks in the position of the zero crossing of G ut in the direction

 of the gradient.

 (d) Finally, the constant C > 0 represents the "balance" between the effect of
 anisotropic diffusion and shock filters. We remark that these two procedures are

 complementary in a natural way.

 Discretization of (15). We discretize (15) by using a fast, recursive, and uncon-
 ditionally stable scheme. With respect to the shock filter term, we follow the same

 ideas that we developed for the one-dimensional case. For the anisotropic diffusion

 term, we use the kind of schemes shown in Alvarez, Lions, and Morel [1].

 Let k and h be the temporal and spatial increments, i = (il, i2) C II x ]i, and
 xi = (iih, i2h). Let U0' be an approximation of u(xi, nk) and Vui be an approximation
 of Vu(xi, nk). Let B C EI x EI be a neighborhood of (0, 0). Let j: :1 x 1- B be such
 that for each i, j(i) maximizes the function Ei : B R-

 (VUn~, j)
 Ei (j) (V''Aj

 This means that j(i) is the best approximation to the orientation of VuO in the
 set B. We also define the function 1: :1 x ]I - ]I x II, where 1(i) =(j2(i), -j1(i)) (i.e.,

 the direction perpendicular to j(i)).
 Remark 4. The set B C II x 11 represents the number of directions that we use in

 order to approximate the vector Vun in the lattice ]l x ff. For instance, in the numerical
 experiments that we show in ?4 we use as B the following set:

 B = {i E ff x E:]11 i 112 < 5}.

 Next, we discretize (15) in the following way:

 n - n+~1 - 2u~ ?n+l Un1 Ui Ul - Ci-l(i) i +l)
 k 11 1(i) P12h2

 F- (Un) (Un+ ( n+1 ) + F+ (ut )(un+l - n+1
 11 j(i) Ilh

 for any i E ff x ff, where F-(s) = min{O, F(s)}, F+(s) = max{O, F(s)}, and F(t40)

 F((G* 0).17w, (G*u 0)7).
 In order to calculate the sequence un+1 for any i E ff x f we use the following

 fixed-point equation:

 (16) wi Aibi + ai(wi_l(i) + wi+i(i)) + viwi+j(i) + 7riwi-j(i) for any i E ff x ff.

 where bi = ui, i

 1 kC

 1 + 2kC/ 111112h2 + (kF+ (i) - kF(u0))/ 11 j IIh' t 111112h2X

 kF= 1 j(n) an =AkF (uh) Vi ~~and -7 =A h for any iCEffxlf.
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 602 LUIS ALVAREZ AND LUIS MAZORRA

 Therefore, we can interpret Uin+l as the solution wi of (16).

 THEOREM 2. Let bi be a bounded sequence, and Ai, ai,vzi,r7i such that vi?7i=
 O,Ai > e,0 < ai,vi, i7 < 1, and A. + 2ai +?vi +?ri = 1 for any i E IT x IT and some
 E > 0. Then we have the following:

 (i) The fixed-point scheme (16) has a unique bounded solution wi.
 (ii) Let m = inf{bi, i E 1[ x Ef} and M = sup-{bi, i E E[ x-T}. Then m < wi < M for

 any i E I x I.

 Proof. (i) Let E be the space of bounded sequence z = {zi G R, i G 1[ x I[} and
 Q: E - E defined by

 Q(z)i = Aibi + ai(zi-l(i) + Zi+i(i)) + ViZi+j(i) + TiZi-j(i).

 Let z, v E E; then we have

 sup {jQ(z)i - Q(v)il}
 iEIXI

 < sup {lai(zi-l(i)-vii(i) + Zi+l(i)-Vi+l(i)) + vi(zi+j(i)- Vi+j(i))
 iEIXII

 + ni(zi-j(i)-vi-j(0,1

 < (1-e) sup {zi-Vil.}
 iEl[XII

 Therefore, Q is a contractive function and (i) follows by using the classic Banach
 fixed-point theorem. Moreover, if zo c E, then the sequence z k G E defined by
 zk = Q(zk-l) converges to the solution of (14).

 (ii) Let z? = bi for any i E ]I, m = inf{bi,i E li x li}, M = sup{bi,i E E x E[}, and
 zk defined above. Since Ai, ai, vi, hi > 0 and Ai + 2ali + vi + ni = 1 for any i E E x X,
 we have that m < zk < M for any i 1 II x 1E and k E N, and (ii) follows by passing to
 the limit when k - +oo.

 Remark 5. In order to accelerate the convergence to the solution w E E of the
 fixed-point equation (16), we use a recursive scheme based on the Gauss-Seidel algo-

 rithm to solve linear systems. Let zo - b E E; we define zk E E, for any_k E N, to be
 an approximation of w. Assuming that zk-l is known, we define zk as

 (17) Z= Aibi + cai(Z-1) + +1(i) ) + kZ k + k'

 for any i = (il, i2) E ] x ]T, where k' is k or k - 1 according to the method we use to go
 through the index i 1 E x ff. For instance, in the numerical experiments that we show
 in ?4, we go through ff x ff in a decreasing or increasing way according to the value of
 k (k odd or even).

 Remark 6 (estimation of Vui, removing noise influence). We need an estimation
 of Vui in our scheme in order to obtain the functions j(i) and 1(i). A simple estimate
 of Vui is given by

 uix = Ui+(10) - Ui-(1,0) and ui = ui+(0,1) - Ui-(o,)
 2h 2h

 This estimate gives satisfactory results in the case of smooth functions. However,
 in the case of discontinuous functions as a noisy picture, it could be interesting to
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 SHOCK FILTERS AND ANISOTROPIC DIFFUSION 603

 replace Vui by a local dominant orientation. One may think that it is sufficient to

 filter (ujx, ujv) with a linear smoothing kernel. However, this will not work for one
 important reason: in our analysis the opposite directions (ui., ui2) and (-ui. - uiv)
 are equivalents, but the convolution with a linear smoothing kernel will cancel each
 other out. One .way to solve this problem is as follows.

 Let G,(. , .) be a two-dimensional smoothing kernel. We define 0(i) to be the
 orientation of Vui as the angle 9 that maximizes the function

 E(O) = G*(ui, cos 0 + ui, sin 0)2.

 This estimate eliminates noise influence if we assume, in a natural way, that the
 noise does not have any special orientation. On the other hand, it is not difficult to
 show that 0(i) satisfies

 tan(20(i)) = 2Ge (u_Ui)-

 A similar estimate was used in Kass and Witkin [7] and Ravishankar and Schunck
 [13] for analyzing oriented structures in an image.

 4. Experimental results. We present experiments on three images of varying
 difficulty which demonstrate the merits (or demerits) of the model (15) and its as-
 sociated algorithms. The first image is a synthetic picture (128 x 128 pixels) which
 consists of a triangle above a narrow rectangle. We have introduced in this picture a
 noise generated by a random average of two convolutions of the original image with
 Gaussian functions Ga(., .) and with different standard deviation (a = 7 and a = 14;
 see Fig. 4). Of course, this is a very special noise and it cannot be modelled by the
 classical methods for picture restoration. We have chosen this kind of noise to point
 out the fact that our method does not use any a priori information about the noise
 introduced in the image.

 .. .. .... ... . .

 FiG. 4. In the left part we present the noisy image and in the right part we present the result
 of 15 iterations of the scheme (17). The time discretization step is 4, a = 10 and C = 2.

 in the second experiment we present a medical image of the brain (512 x 512
 pixels). In this image (see Fig. 5), which is actually extracted from a series of slices,
 we have intrQ-duced a standard noise which involves both blur and noise. The blur -is
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 604 LUIS ALVAREZ AND LUIS MAZORRA

 generated by convolving with a Gaussian function G, (. , .) with standard deviation
 f = 6. White Gaussian noise was added with means zero and standard deviation
 = 10.

 Finally, in Fig. 6, we present a satellite image where we have not introduced any

 special noise. We point out here the nontrivial asymptotic state of the solution of the

 mathematical model (15).

 FIG. 5. In the left we present the original image. In the center we present the noisy image, and

 in the right, we present the result of five iterations of the scheme (17). The time discretization step

 is 5,oa = 3 and C = 1.

 FIG. 6. In the left part we present the original image. In the right part we present the asymptotic

 state image by using the scheme (17). The time discretization step is 1, a = 3 and C = 1. (The

 number of iterations to obtain the asymptotic state is 20.)
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