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Abstract
In this paper a new derefinement algorithm of nested triangular meshes is

presented and discussed. This algorithm is combined with a local refinement.
The refinement / derefinement combination, that we call readaptive process. is
very useful to solve time-dependent problems in which moving refinement areas
are required. The fact of using nested meshes enables us to use the multigrid
method in order to solve the equation system associated to the finite element
method. Moreover, a readaptive process can be used to obtain the best piece-wise
triangular support to interpolate a given two dimensional function.
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1. INTRODUCTION

In the last years, the efficiency of the adaptive finite element method has been
proved, particularly to solve problems in which the solution presents a
singularity [1-4]. However, when studying a time-dependent problem, if this
dependency implies a change of the top gradient area, the existence of a large
number of points creates a serious difficulty. Many of these nodes -though
necessary in any past time- are useless in the present moment. This fact is very
important because an increment in the number of nodes in the mesh implies an
increase in the number of equations of the associated algebraic system to be
solved, and in the necessary memory space. If we think that, using element by
element (EBE) methods, more than 90% of CPU time is employed in solving this
equation system, it seems necessary to study a derefinement algorithm able to
remove dupe nodes and to be combined with a local refinement in this kind of

problems.
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On the other hand, the multigrid method presents a very convenient feature i:
number of operations required for solving the equation system [5,6]. Hence, th
suitability of using nested meshes both at the refining and at the derefinin
stages. A new derefinement algorithm of nested meshes able to be combined wit
a refinement algorithm and be implemented with the multigrid method :
presented in this work. Now, the meshes generated by a readaptive process ar
more flexible than those obtained by lacal refinement only, and the number
nodes remains bounded during the whole process.

Logically, for each refinement algorithm, a parallel derefinement algorith
can be thought, if the structure of nested meshes is to be maintained. We war
point out here that for every refinement algorithm not always an inver:
derefinement algorithm can be found. We have used a version of the 4-
refinement- algorithm of M.C. Rivara (7,8], that is implemented in our coc

Neptuno [1].

2. PREVIOUS DEFINITIONS. PROPERTIES.

Let T={rt1 <1t <..<71, } be a sequence of nested meshes and -, a
triangulation of T. One node N of 1, will be called a proper node of T if it do
not belong to any previous mesh, i.e. Ne T and Ne 7, Vi<j. In other case,
will be called inherited node in 1.

Similarly, any edge or element is proper or inherited in each mesh. Thus,
one edge is divided in two, in the refinement process, we shall say that t
former edge is the father edge and the latter are the son edges. Father e¢lemer
and son elements are defined in the same manner. Moreover, if an edge is prog
in a mesh, said 1, , we shall distinguish between external and interna{ edges
proper edge is external if it has a father edge, and it is internal if it has not.
figure 1 an example of these definitions is presented. Nodes N, and N, are proy
nodes in 1;; edges f, and f, are external in 1, f, is internal and c, is inhent
finally, element e, has three sons and e, has two.

Figure 1. Example of refinement.
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It is easy to observe that:

i) any proper element of some triangulations either it is inherited in the
following triangulations or it has its sons there.

ii) if an element has not sons, it belongs -as proper or as inherited- to the
finest mesh of the irregular nested triangulations.

These definitions and properties are important because in contrast to the
refinement algorithm in which only two levels of meshes are involved -the last
mesh created and the new one that is being created at that moment- in the
derefinement algorithm we obtain, in general, a new sequence of irregular nested
triangulations: all level of meshes are involved in this process. For this reason.
the family or genealogy of each element must be considered.

The fundamental property of the derefinement algorithm is the following:

iii) Only those elements without successors, that is those which belong to the
current finest mesh, can be eliminated.

3. DATA STRUCTURE

The structure of nested meshes is defined in the code Neptuno by three
vectors, that will be called intermediate vectors: IMNODE, IMFACE and
IMELEM. In these vectors the numbers of nodes, edges and elements of each
level of mesh are kept. It is sufficient to keep the proper nodes of each level
because if one node belongs to a particular mesh, it belongs to the following
meshes as well. This is false with respect to edges and elements. Therefore, an
edge or an element appears as many times as levels of meshes it belongs to.

The family of each edge is given by the matrix IR{1:3,1:NUMF] where NUMF
is the total number of edges in the structure of meshes. For each edge, IR reports
the numbers of the son edges and of the father edge.

The family of each element is defined by the matrix IXH[1:6,1:NUMEL] being
NUMEL the global number of elements in our structure of meshes. For each
element, IXH gives us its sons, the local number of the longest side and, finally,
the number of its father.

Furthermore, we need three vectors that will be called derefinement indicators
or level vectors and that will find out when a node, edge or element has to be
cancelled out, and at the same time, the level of the mesh in which it is proper.
We point out here that this level is well defined. These vectors are: NODES, for
the nodes, NFACES, for the faces and NELES for the elements.

The numbers of nodes, edges and elements eliminated by derefine procedure
will be kept in other three vectors that will be called sack vectors: NNSAC,
NFSAC and NESAC. These numbers will be used on next refinements.

Finally, and in order to facilitate the computation of the derefinement
condition, we introduce a new vector, said IEX[1:NUMP] where NUMP is the
number of nodes in the mesh. For each node IEX reports the surounding edge,
that is the number of the edge in which that node is in the middle point.

We should stress that the size of the vectors and matrices used by Neptuno is
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variable. When refining, the size grows; whereas at derefining the size decrease:
Moreover the space of memory used can be optimized, e. g. the intermediat
vectors are not neccesary, but they are very convenient for ease and efficiency «
the multigrid method implementation.

4. THE DEREFINEMENT ALGORITHM

In general, we have a sequence of nested meshes T = {7,<7,<...<T, } and w
want to obtain another sequence after derefining T, T' = { 1,< 7,' <...<%,'}, ie.,

i) m =<n

i) vV 5 'eT, 3 1, 7eT, suchas 1, < 7'< ]

In this case, we will say that the secuence T' is coarser than T, or T finer tha
T', and write T' < T. This relation is a partial order relation in the family «
sequences of triangular meshes over a given bidimensional domain.

Schematically, the derefinement aigorithm can be described as follows:

INPUT: Secuence T={1,<1,<...<7, }

For j=N to 2, do:

1. For each proper node of mesh T, the derefinement condition is evaluate
and the nodes and edges able to be eliminated are pointing out.

2. Conformity of the new level j is assured, minimizing the derefined area.

3. New nodal conections, and new families of edges and elements are define: ;

for the level 1, and for the derefined level of 1,, said 7,".
4. The changes in the current level j are inherited to the following ones.

5. It is obtained a new sequence of nested meshes, T, that is the new input i: .

the next iteration of the loop on meshes.
OUTPUT: Sequence T'={1,<1,' <..<1g'}

5. DISCUSSION OF THE ALGORITHM

A new structure of meshes coarser than the preceding one, is obtained in eaci |

iteration of the loop. Thus, the number of different sequences that appear alon:
the derefine procedure is the number of level of meshes minus one. This can b.

expresed as follows: T > T, > ... >T,=T" So, the mesh 7" belongs, in general t |

an intermediate sequence; only at the last iteration of the loop (j=2) 1, is in th
derefined sequence T', and then t," is equal to 7,'.

It is worth to be noted that only proper nodes are elegible in each mesh-levei -

and out of these, only those suitable to be cancelled out are taken for evaluation
This means that if one node cannot be cancelled this implies that an:
neighbouring nodes cannot be cancelled either. In this manner the nestedness o
the new sequence is assured. An example of this question can be observed i1
figure 1: if N, has to stay, nodes A.B.C and D will alsc stay. This allows us t
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evaluate the derefinement condiction in a number of nodes minimal, and only
once for each of those.

Regarding the derefinement condition, the following one has been used: the
absolute difference between the numerical solution at node N and the
interpolated solution of the ends of its surounding edge, is checked. If this
absolute difference is less than a constant -that can be fixed for each program
run-, the node N can be cancelled. This imposed constant will be called epsilon.
However, the relative difference can also be used.

The conformity of all meshes in each sequence is assured to maintaining some
nodes that otherwise, and concerning the derefinement condition, could have
been cancelled. In fact, if a node N belongs to the longest edge of an element in
which in other edge there is another node, the node N remains. For instance, in
figure 1, if N, remains, N, remains too.

In the derefinement process some new elements may arise; these elements did
not exist in the input sequence. For instance, in figure 1, if node N, is cancelled,
the element AN,C was not in 7, . These elements will be called half-sons. At
derefining, an element that had four elements might turn out to have three, two,
or none sons. The definition of the new nodal connections is obtained considering
all of different possibilities and their old nodal connections.

The algorithm cheks whether all proper nodes of every mesh are going to be
eliminated. In this case, it is not necessary to define new nodal connections, but
to take the intermediate vectors in order to compress them. That mesh level is
then eliminated. For this reason, the number of meshes in the output structure
can be made lesser than in the input sequence.

At the end of each iteration, the modifications of the new nodal connections
have to be passed on to the following levels of meshes. This is obtained by
changing the intermediate vectors. Therefore it is necessary to manage the
derefinement indicators. A new intermediate sequence is obtained and taken out
as input in the next iteration.

6. NUMERICAL RESULTS

Some numerical examples are presented in this section.

Figure 2 shows some meshes and the solution in different time of events of a
Poisson problem in which the function of the second member is time-dependet.
The domain geometry is non symetrical and we have Dirichlet and Neumann
conditions in the boundary. Maximun number of nodes managed was 3397, and
maximun number of mesh-level was 24. The maximum number of nodes
eliminated by one application of the derefinement algorithm was 2748 and the
minumun 252, Parameter epsilon used was 0.0009 with relative difference as
derefinement condition.

Figure 3 shows the efficiency of the derefinement algorithm to obtain the best
piece-wise support to interpolate a given two-dimensional function. The function
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selected here is a classical image of 256x256 pixels, see for example [9].
sequence of eight nested meshes has been generated automatically. In each noc
we allocate the corresponding grey level value, from 0 to 255. After, tt
derefinement algorithm has been applicated using different values for epsilc
and absolute difference as derefinement condition.

(a) (b)

Figure 2. Derefined meshes and solution of a quasievolutive Poisson proble:
(a) t=0 s, 674 nodes on the mesh, (b) t=6 s, 823 nodes.
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Figure 3. Different derefined meshes to approach a black-and-white imag
(a) e=15; 13892 nodes; (b) £=25; 9112 nodes.
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7. CONCLUSIONS

The refinement/derefinement combination is very useful to solve time-
dependent problems in which moving refinement areas are required. The struc-
tured derefinement algorithm enables us to use the multigrid method in order to
solve the equation system associated to the finite-element method. The aditional
computation time required by this algorithm amounts less than 1% of total
execution time. Only a scalar optimization at compilation time has been done on
a Stardent 3000 computer.

As another application, this derefinement algorithm can be used for local
refining. Derefining after global refinement is thereby equivalent to a local
refinement procedure, not requiring the use of error indicators. This implies clear
advantages in the class of problems for which error indicators cannot be found or
their computation in too costly.

Finally, this algorithm can also be used in order to obtain the best piece-wise
support to interpolate a given two-dimensional function, or to approach the
initial solution in an evolutive problem.
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