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Abs trac t 
In this paper a new derefinement algonthm of nested triangular meshes is 

presented and discussed. This algorithm is combined with a local refinement. 
The refinement 1 derefinement combination, that we cal1 readaptrue process. 1s 
very useful to solve time-dependent problems in which moving refinement areas 
are required. The fact of using nested meshes enables us to use the rnultigrid 
method in order to solve the equation system associated to the h i l e  element 
method. Moreover, a readaptive process can be used to obtain the best piece-wise 
triangular support to interpolate a @ven two dimensional function. 
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1. INTRODUCTION 

In the last years, the efiiciency of the adaptive finite element method has been 
proved, particularly to solve problems in which the solution presents a 
singuiarity 11-41. However, when studying a time-dependent problem, if this 
dependency implies a change of the top gradient area, the existente of a large 
number of points creates a senous difficulty. Many of these nodes -though 
necessary in any past time- are useless in the present moment. This fact is ve- 
irnportant because an increment in the number of nodes in the mesh implies an 
increase in the number of equations of the associated algebraic system to be 
solved, and in the necessary memo- space. If we think that. using element by 
element (EBE) methods, more than 90% of CPU time is employed in solving this 
equation system, it seems necessary to study a derefinement algorithm able to 
remove dupe nodes and to be combined with a local refinement in this kind of 
problems. 





It is easy to observe that: 
i) any proper element of some trianguiations either it is inherited in the 

following triangulations or it has its sons there. 
ii) if an element has not sons, it belongs -as proper or as inherited- to the 

finest mesh of the irregular nested triangulations. 
These definitions and properties are important because in contrast to the 

refinement algorithm in which oniy two Ieveis of meshes are invoived -the iast 
mesh created and the new one that is being created at that moment- in the 
derefinement algorithm we obtain, in general, a new sequence of irre,@ar nested 
triangulations: al1 leve1 of meshes are involved in this process. For this reason. 
the fclm!:Zy or genp&gy of ei& &mefit mist he considered: 

The fundamental property of the derefinement algonthm is the following: 
iii) Only those elernents without successors, that is those which belong to the 

current ~ n e s t  -mesh, can be eliminated. 

3. DATA STRUCTURE 

The structure of nested meshes is defined in the code Neptuno by three 
vectors, that wiii be called intermediate vectors: IMNODE, IMFACE and 
IMELEM. In these vectors the numbers of nodes, edges and elernents of each 
level of mesh are kept. It is sufficient to keep the proper nodes of each ievel 
because if one node beiongs to a particular mesh, it belongs to the foilowing 
m e s h  as well. I"ñis is M s e  witii respeci io edges i+lid e1ement.s. Therefore, aii 
edge or an element appears as many times as  levels of meshes it belongs to. 

O 

The family of each edge is given by the matrix m1:3,1:NUMF] where NUMF f 
is the total number of edges in the structure of meshes. For each edge, IR reports E 
the numbers of the son edges and of the father edge. E 

5 The family of each element is defined by the matrix lXH[ 1:6,1:NUMELI being E 

NUMEL the global number of elements in our structure of meshes. For each 
elernent. IXH @ves us its sons, the local number of the longest side and. finally, $ 
the number of its father. 

Furthennore, we need three vectors that will be called derefinement indicaton 
or leve1 uectors and that will find out when a node, edge or element has to be 
cancelled out, and at  the same time, the level of the mesh in which it is proper. k 
We point out here that this level is well defined. These vectors are: NODES, for 
the nodes, NFACES, for the faces and NELES for the elements. 

The numbers of nodes, edges and elements eliminated by derefine procedure a 
will be kept in other three vectors that will be called sack vectors: NNSAC. 
NFSAC and NESAC. These numbers will be used on next refinernentc. 

Finally, and in order to facilitate the computation of the derefinement 
condition, we introduce a new vector, said IEX[I:NUMP] where NUMP is the 
number of nodes in the mesh. For ea& node IEX reports the surounding edge, 
that is the number of the edge in which that node is in the middle point. 

We should stress that the size of the vectors and macrices used by Neptuno is 



variable. When refining, the size grows; whereas at derefining the size decrease. 
Moreover the space of memory used can be optimzed, e. p. the intermediar 
vectors are not neccesary, but they are very convenient for ease and efjticiencu 1 

the multigrid method implementation. 

4. THE DEREFINEMENT ALGORITHM 

In general, we have a sequence of nested meshes T = í s, < T, < ... c s, } and JV 

want to obtain another sequence after derefining T, T' = 1 r ,  < 7,' .c ... < 7,' 1, ¡.e., 
i ) m  =en 
ii) V s ~ ~ E T ' ,  3 ri, T,ET, such as r, < :,' < : 

J 
In this case, we will say that the secuence T' is coarser than T, or T finer tha 

T', and write T' < T. T h s  relation is a partial order relation in the family c 

sequences of triangular meshes over a 9ven bidimensional domain. 
Schernatically, the derefinement algonthm can be descnbed as follows: 
INPUT: Secuence T = ( r ,  < r, < ... < 7 , )  

For j=N to 2, do: 
1. For each proper node of mesh rl, the derefinement condition is evaluate 

and the nodes and edges able to be eliminated are pointing out. 
2. Confonnity of the new level j is assured, minimizing the derefined area. 
3. New nodal conections, and new families of edges and elements are define, W 

for the level T~-, and for the derefined level of 5, said S'. 
4. The changes in the current leve1 j are inherited to the following ones. O 

5. It is obtained a new sequence of nested meshes, T,, that is the new input i- 
O 

the next iteration of the loop on meshes. 
E 

OUTPUT: Sequence T' = { r, < t2' < ... < ,' } S 
e 

5. DISCUSSION OF THE ALGORITHM 

A new structure of meshes coarser than the preceding one, is obtained in eaci 
iteration of the loop. Thus, the nurnber of different sequences that appear don .  
the derefine procedure is the number of level of meshes minus one. This can b 
expresed as follows: T > T, > . . . > T2 = T. 50. mesh helonp; in genera! t a 
an intermediate sequence; only at the last iterat~on of the loop íj=2) 5,' is in th 
derefined sequence T', and then 7,' is equal to 5'. 

It is worth to be noted that only proper nodes are elegible in each mesh-level 
and uUt uf h\ese, UiJy su;'Gb:e be ca7ce::ed are iakell fui eua:-udti'uli 

This means that if one node cannot be cancelled this impiies that an. 
neighbouring nodes cannot be cancelled either. In this manner the nestedness o 
the new sequence is assured. h example of this question can be observed i r  
figure 1: if Ni has to cQy, nodes A.5.C 2nd E KC a!sc stay. This a!!nws 1is tc 



evaluate the derefinement condiction in a number of nodes minimal, and only 
once for ea& of those. 

Regarding the derefinement condition, the following one has been used: the 
absolute difference between the numerical solution at  node N and the 
interpolated solution of the ends of its surounding edge, is checked. If this 
absolute difference ís less than a constant -that can be fixed for each program 
nin-, the node N can be cancelled. This imposed constant will be called epsilon. 
However, the relative difference can also be used. 

The conforrnity of al1 meshes in each sequence is assured to maintaining some 
nodes that othenvise, and conceming the derefinernent condition, could have 
been cancelled. In fact, if a node N belongs to the longest edge of an element in 
which in other edge there is another node, the node N remains. For instance, in 
figure 1, if N2remains, N, remallis too. 

In the derefinement process some new elements may arise; these elements djd 
not exist in the input sequence. For instance, in figure 1, if node N, is cancelled. 
the element AN,C was not in tj . These elements will be cailed half-sons. At 
derefining, an element that had four elements might tum out to have three, two, 
or none sons. The definition of the new nodal connections is obtained considenng 
al1 of different possibilities and their old nodal connections. 

The algorithm cheks whether al1 proper nodes of every mesh are going to be 
eliminated. In this case, it is not necessary to define new nodal connections, but 
to take the intermediate vectors in order to compress thern. That mesh leve1 is 
then eliminated. For thís reason, the number of meshes in the output structure 
can be made Iesser than in the input sequence. O 

At the end of each iteration, the modifications of the new nodal connections 
have to be passed on to the following Ievels of meshes. This is obtained by E 
changing the intermediate vectors. Therefore it is necessary to manage the E 
derefinement indicators. A new intennediate sequence is obtained and taken out  
as  input in the next iteration. 

C nrr7nmnT~ A -C n - m r r r  
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Some numerical exarnples are presented in this section. 
Figure 2 shows some meshes and the solution in different time of events of a 

Pninnn nrnhlnm in urh;eh thn Firnrtinn ~f thn cn~nnd mamher jr fimo-dnnondpt - ------- r-""-.,- .- -., -" ""-"-a- M--.."* -- --r------. 

The domain geometry is non symetrical and we have Dirichiet and Neumann 
conditions in the boundary. Maximun number of nodes managed was 3397, and 
maximun number of mesh-leve1 was 24. The maximum number of nodes 
eliminated by one application of the derefinement algonthm was 2748 and the 
minumun 252. Parameter epsilon used was 0.0009 with relative difference as 
derefinement condition. 

Figure 3 shows the efficiency of the derefinement algorithm to obtain the best 
piece-wise support to interpolate a @ven two-dimensional function. The function 



selected here is a classical image of 256x256 pixels, see for exarnple @l. 
sequence of eight nested meshcs has been generated automatically. In each noc 
we allocate the corresponding grey leve1 value, from O to 255. Mter, tt 
derefinement algorithm has been applicated using different values for epsilr 
and absoiute difference as derefinement condition. 

(b) (a) 

O 
Figure 2. Derefined meshes and solution of a quasievolutive Poisson probler a 

m 

(a) t=O S, 674 nodes on the mesh, (b) t=6 S, 823 nodes. 
O e 
E 
d 



7. CONCLUSIONS 

The refinementíderefinement combination is very useful to solve time- 
dependent problems in which moving refinement areas are required. The struc- 
tured derefinement algorithm enables us to  use the muitigrid method in order t o  
solve the equation system associakd to the Gnite-element method. The aditional 
computation time required by this algorithm amounts less than 1% of total 
execution time. Only a scalar optimization a t  compilation time has been done on 
a Stardent 3000 computer. 

AS another application, this derefinement algorithm can be used for local 
refining. Derefining af'ter global refinement is thereby equivalent to a local 
refinement procedure, not requiring the use of error indicators. This implies clear 
advantages in the class of problems for which error indicators cannot be found or 
their computation in too costiy. 

Rnally, this algorithm can also be used in order to obtain the best piece-wise 
support to interpolate a given two-dimensional function, or to approach the 
initial solution in an evolutive problem. 
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