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Abstract— Hyperspectral imaging is an active research
field for remote sensing applications. These images provide a
lot of information about the characteristics of the materials
due to the high spectral resolution. This work is focused in the
use of this kind of information to detect tumour tissue,
particularly brain cancer tissue. In recent years, the study of
this kind of tumour has been a challenging task due to the
nature of these tissues. The neurosurgeon usually finds several
problems to detect tumour tissues by the naked eye. In order to
address this problem, this work makes use of high spectral
resolution samples in the range from 400 nm to 6000 nm,
provided by an Agilent Resolutions Pro V.5 spectrometer that
has been diagnosed by histopathology. This instrument can
sample a single pixel with a very high spectral resolution. The
high spectral resolution allows a reliable separation between
the different tissues in brain tumour. The proposed approach
is based on a hierarchical decision tree. This approach is
composed by several systems of Support Vector Machine
classifiers. The 225 used samples come from 25 adults (males
and females) and have been taken at different surgical
procedures at the University Hospital of Southampton. The
main goal is to discriminate between tumour tissue and normal
tissue. Specifically, it assigns priority to the group of classes
known a priori to the classification showed accordingly to the
level of detail. The experimental results indicate that the use of
the proposed new decision tree approach could be a solution to
effectively discriminate between tumour and normal tissue and
additionally provide information about the specific tissue for
these classes. For our data set, a sensitivity of 100% and a
specificity of 99.27% have been obtained when healthy and
tumour samples are discriminated. These results clearly
indicate that the use of high dimensionality spectral data is a
promising and effective technique to indicate if a brain sample
is or not affected by cancer with a high reliability.

Keywords— Support Vector Machine; Hyperspectral
Imaging, Brain Cancer Detection

I.  INTRODUCTION

Gliomas are the commonest primary tumours of the
central nervous system. Gliomas are graded based on their
histological appearance, into grades I-IV. Grades I and II are
considered ‘low-grade’, and are managed differently to
grades III and IV (‘high-grade’), both operatively and post-
operatively. The pre- or intra-operative distinction between
high and low-grade tumours is therefore important. Gliomas
are further termed based on their predominant cell type -
often astrocytomas or oligodendrogliomas. Normal brain
cortex is formed of grey and white matter. White matter is
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so-called due to the presence of myelin - it will therefore
have significant molecular differences based on lipid content
and as such the distinction is reassuring to ongoing
investigation. High grade lesions are incurable and in general
rapidly fatal despite best medical and surgical management
(13 months median survival [1]). There is growing evidence
that life expectancy increases with a more extensive
resection; a gross total resection of high-grade gliomas is
associated with a three month longer survival than subtotal
resection [2]. With low-grade gliomas that have a longer
survival time, the time to tumour progression and malignant
transformation are key, and are thought to be delayed with a
more extensive resection [3]-[5].

Gross total resection (GTR) is usually therefore the goal
of surgery, but achieving it can be challenging due to the
infiltrative nature of gliomas. Confidence that the resection is
not straying into adjacent normal brain depends on accurate
assessment of tumour borders despite this diffuse infiltration.
This is a judgement made throughout the operation on the
basis of anatomical considerations and assessment of
resected tissue; a histologically-complete resection is thought
to be achieved in fewer than 20 % [6]. If cure is therefore
unfeasible, then quality of life becomes paramount. It is
therefore important not to damage areas of eloquent cortex
through over-zealous resection. With this in mind, many
patients undergo a subtotal resection. There are therefore
several important distinctions to be made:

1) Normal vs tumour tissue
2) High-grade vs low-grade glioma
3)  White vs grey matter

These are reflected in our decision tree approach as
explained below.

Surgical adjuncts used to guide resection include image
guidance systems, but these suffer limitations related to
calibration, intra-operative brain shift, and the lack of ‘real-
time’ information. Spectroscopic techniques promise to
assist distinction of tumour from normal brain tissue, at high
resolution and in real-time. This promise can be realized only
through development.

For this reason, hyperspectral imaging seems to be a
good alternative for the detection of cancer [7]-[9]. The main
characteristic of hyperspectral images is the large amount of
spectral information (hundreds of narrow bands) and so they
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can be considered as an extension of the concept of digital
image [10]. It allows many different applications such as
classification, spectral unmixing, target detection, etc. In
order to detect cancer tissue in the spectrographic samples
classification it is necessary to separate materials into
spectrally similar groups. Hyperspectral image classification
is a very active area of research in recent years in which the
main objective is to assign a unique label to each pixel [8],
[11]. Several techniques have been successfully used to
perform hyperspectral data classification, particularly
supervised techniques such as kernel methods, which can
deal effectively with the Hughes phenomenon [12], [13]. It is
important to emphasize that the analysis of hyperspectral
images is not an easy task; this is due to the great variability
of hyperspectral signatures and the high dimensionality of
the data. In this work, the main goal is focused on brain
cancer detection using supervised classification techniques.
Given the problems to detect brain tumour tissues our
motivation is focused on exploiting the information that
offers the spectrographic samples (very high spectral
resolution), it can be a great opportunity to develop a new
and efficient technique able to detect tumour tissue using
limited training samples [14].

The remainder of this paper is organized as follows.
Section II presents an introduction about the existing
technology and the process of obtaining medical samples.
Section III provides our experimental setting, with emphasis
on describing the different hierarchies and the classification
systems in order to validate the presented technique. Section
IV concludes with some remarks and hints at plausible future
research lines.

II.  METHODS

This section is organized as follows. Subsection II-A
introduces the instrument and the medical samples used for
validating the proposed approach. Subsection II-B describes
the data pre-processing applied to the medical samples to
acquire their full spectral data using the spectrometer.
Finally, subsection II-C describes the new proposed
approach developed to detect brain tumour tissues.

A. Spectrographic System and Medical Samples

The set of samples used in these experiments was
collected by a spectrometer. For this purpose, we used an
Agilent Resolutions Pro V.5 spectrometer which has been
pioneered in areas such as biotechnology, food, agriculture
and security. The 600-IR spectrometers are especially
suitable for research applications or method development.
The samples (single pixels) obtained by this spectrometer are
absorptions in the range from 400 nm to 6000 nm,
comprising 2906 bands, with a spectral resolution of 1.92
nm. They come from 25 different adults (males and females)
and have been taken at different surgical procedures. In
Table I, the samples used to perform these experiments are
shown. A total of 213 samples have been used, including 198
tumours and 15 normal samples. The shortage of normal
brain samples has been one of the main difficulties
encountered during the development of the classification
algorithm, due to the difficulty in obtaining normal brain
samples. Fig. 1 shows several spectrographic samples, which
comprise tumour samples and healthy samples.

B. Data Pre-processing

Samples were collected from appropriately consented
patients undergoing craniotomy for suspected glioma. Tissue
was identified as tumour by one of two surgeons, under
image-guidance technology. En bloc resection specimens
were collected, along with tissue derived from the ultrasonic
aspirator system, which is used extensively in developing a
plane around the tumour, and debulking the tumour mass.
Samples were washed in sterile medical-grade water 0.9 %
saline to remove visible blood traces where appropriate.
They were then weighed and air-dried at approximately 41.7
until they reached a consistency compatible with grinding,
and once dry were ground into a homogenous powder with
KBr powder, using a pestle and mortar. The resulting
mixture was then fractionated into 0.5 g portions and pressed
at ~ 10 tonnes in a pellet press with a vacuum facility, to
create a solid pellet suitable for mounting in the
spectrometer. Samples were stored individually at -20 °C,
with a sachet of silica gel in order to reduce water absorption
by KBr.
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Fig. 1. Spectrographic samples associated to the Patient 21



TABLE 1. SPECTROGRAPHIC MEDICAL SAMPLES USED IN THIS SET OF
EXPERIMENTS RELATED WITH THE DIFFERENT CHARACTERISTICS OF THE

AVAILABLE
Medical Samples
. . Number of
Sample Diagnosis Samples
Low 1T Astro
Grade Grade 1T 11 Oligo 22
IIT Astro
Tumour Grade IIT | III Oligo 30
High GBM mixed astro/oligo
Grade GBM astro
Grade IV | IV gliosarcoma 146
GBM
Normal Grey Normal grey matter 6
Normal Normal White Normal white matter 9

C. SVM Hierarchical Tree Approach

The rich spectral information available in remotely
sensed hyperspectral images allows for the possibility to
distinguish between spectrally similar materials [15]. For this
reason, supervised classification techniques in hyperspectral
images is a very challenging task due to the generally
unfavourable ratio between the (large) number of spectral
bands and the (limited) number of training samples available
a priori, which results in the Hughes phenomenon [16]. In
this study, the use of hyperspectral data sets is focused in
order to detect brain tumour samples. For this reason, the
supervised classification model is adopted in which kernel
methods have been widely used due to their insensitivity to
the curse of dimensionality [13]. However, the good
generalization capability of machine learning techniques
such as SVM [17] can still be enhanced by an adequate
extraction of relevant features to be used for classification
purposes [18], especially if limited training sets are available
a priori.

This paper proposes a SVM Hierarchical Tree approach
based on the well-known classifier support vector machine
classifiers [19]. This classifier combines three ideas: 1) the
optimal search technique hyperplanes as a solution, 2) the
idea of convolution of scalar product, linear extension to
non- linear functions, and 3) the notion of soft margins,
which allows errors in the training patterns. This technique
works with the Structural Risk Minimization or SRM, which

is better than ERM (Empirical Risk Minimization) and many
other techniques. SVM can be reduced to a convex quadratic
programming problem (QP). It offers some advantages in
comparison to the classical methods and they seem to get a
better performance (more robust) with high amounts of data.
In the literature, SVM has been used in many fields, such as
text categorization, image classification, bioinformatics, and
of course in medical imaging [8], [11], which performs better
accuracies compared to the classical techniques used.

In the proposed work, it has been developed a new
technique in which the different levels of information are
taken into account. The main advantage of the
spectrographic samples is the spectral resolution of each
pixel. This special characteristic allows exploiting a huge
amount of information. The new technique is composed by a
hierarchical tree with several classification systems as Fig. 2
shows. These classification systems use support vector
machine algorithm in order to discriminate between the
selected classes. This strategy can be divided in two steps
depending on the hierarchical tree. In the first step, this
approach is designed to provide information about the
tumour tissues and normal tissues available in the input data
sets. The principal goal of the new approach is focused on
this hierarchical tree. It is important to obtain acceptable
results in this part of the algorithm because in case of getting
too many errors (low classification results) the next
classifiers will not perform well, as they will make a
classification based on erroneous input data. However, the
proposed algorithm provides additional information about
the behaviour of these tissues. In order to address this issue,
the second step composed by the second decision tree is
introduced. It is divided in two classification systems: second
classification system and third classification system. In order
to obtain information about the level of the tumour tissue, the
second classification system is developed. The possibility to
explore in detail the nature of the tumour tissues can be
observed in this classification system. In the third
classification system, normal tissue can be separated into
normal gray and normal white matter. With this approach,
more detailed information about the nature of the samples is
obtained. It can be developed in more detail but it depends
on the samples known a priori.
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Fig. 2. Block diagram illustrating the new decision tree approach using several classification systems.



The new technique is developed in supervised fashion
and a very small set of training samples has been selected.
The process of the new proposed supervised strategy can be
summarized by the flowchart given in Fig. 3. It graphically
shows how the decision tree approach is divided in several
classification systems over the medical samples known. This
system is also composed by a set of training samples for the
classification process and tested with the remaining samples.

D. Evaluation

In order to quantitatively evaluate the performance of the
proposed approach, it is necessary to define some figures of
merit. For this work, it has been adopted several standard
metrics described below:

o Sensitivity: relates to the tests ability to identify a
condition correctly. It is obtained as the number of
true positives divided by the total number of true
positives and false negatives in population.

e Specificity: relates to the tests ability to exclude a
condition correctly. It is obtained as the number of
false negatives divided by the total number of true
negatives and false positives in population.

e Average Accuracy: the average accuracy is calculated
as the sum of the sensitive and specificity figures
divided by the number of classes in the test set.

e Overall Accuracy: is the total number of correctly
classified samples divided by the total number of test
samples. So, it is the probability that a sample will be
correctly classified by a test.

III.

The experimental settings used to validate the described
new technique using real spectrographic samples are
described in this section. The proposed approach is mainly
based on the support vector machine classifier. For this
process, a very limited training set was selected for each
classifier, in order to study the worst case for the proposed
approach, considering that these samples are difficult and
expensive to acquire. The reported measurements correspond
to the average of the results after running 10 independent
Monte Carlo runs with respect to the training set in order to
demonstrate the stability of the proposed approach. Kernel
parameters were optimized by a grid search procedure, and
the optimal parameters were selected using 10-fold cross-
validation. Particularly in this set of experiments, it has been
chosen the Linear, Polynomial and Gaussian Kernel. The
LIBSVM library was used for the experiments (available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

EXPERIMENTAL RESULTS AND DISCUSSION

The classification system is currently in the
implementation stage in order to reach real time
performance. Two platforms have been considered: the
NVIDIA GPU Tesla K40 [20] and the Kalray many-core
platform [21]. This paper shows different tables in which can
be appreciated the evaluation metrics (percentage and
standard deviation), the training set (first class/second class),
its corresponding decision tree and its corresponding
classification system. This section is organized as follows.
Subsection III-A introduces the first hierarchy decision tree
results obtained in these experiments. Subsection III-B
describes the experiments conducted with a second hierarchy
decision tree. And finally the general study of the impact of
this approach is showed in the subsection III-C.
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Fig. 3. General process of the proposed approach for brain cancer
detection.

A. First Decision Tree Hierarchy

The first decision tree hierarchy is the most important
part of this technique in which the main goal in cancer
detection is to optimally separate normal and tumour tissue.

For the validation process, it has used the standard
metrics previously described and several sets of training
samples are used for the classification process as can be
observed in Table II.

Table II reveals competitive accuracy results for
spectrographic medical samples in cancer detection (tumour
and normal tissue) using Linear, Polynomial and Gaussian
kernel. In all the cases, the first decision tree is seen to be a
robust framework in our classification system, even when we
used a very small set of training samples. For instance, with
6 and 4 labelled samples in Gaussian kernel the classification
results are around 99%. It can observe that the proposed
technique can efficiently separate tumour and normal tissue.

TABLE II. FIGURES OF MERIT OBTAINED USING THE FIRST DECISION TREE OF THE PROPOSED APPROACH FOR BRAIN CANCER DETECTION WITH SEVERAL SET OF
TRAINING SAMPLES AND DIFFERENT KERNELS

Decision Tree 1

Classification System 1
Linear Kernel Polynomial Kernel Gaussian Kernel
Training Set 6/4 9/6 6/4 9/6 6/4 9/6
Average Accuracy (%) | 100 100 100 100 99.64 + 1.80 100
Overall Accuracy (%) 100 100 100 100 99.95 + 0.22 100
Sensitivity (%) 100 100 100 100 100 100
Specificity (%) 100 100 100 100 99.27 +3.60 100




B. Second Decision Tree Hierarchy

The proposed approach in the second decision tree
hierarchy is composed by two classification systems. In this
subsection, it has been described the experimental results
obtained for this hierarchy tree. The second classification
system is used to provide information about the level of the
tumour tissue while the third classification system offers
information about the nature of the normal tissue. Table III
summarizes experimental accuracy results obtained after
applying the second decision tree algorithm for medical
samples. In the top of this table, it can be appreciated the set
of training samples used for the classification process
(number of samples for first class/number of samples for
second class) and its correspondent kernel.

The classification accuracy results in the second
classification system provide several problems in the case of
the low level. However the classifier offers better accuracy
results in the case of the high level. This behaviour is due to
the unbalance between the numbers of samples known a
priori. The use of support vector machine as a classifier

algorithm provides a high number of advantages but in this
case it generates some problems because the number of
samples between classes is unbalanced.

On the other hand, Table III also reveals competitive
experimental results in the third classification system. This
system is quite robust as the achieved classification results
are very similar to those found in the optimal case.

C. General Analysis

Finally, Fig. 4 shows a classification comparison for
algorithm using a reduced set of labelled samples when the
classifiers are applied in supervised fashion. Fig. 4 displays
the average of the classification results (out of 10 runs)
obtained after applying the SVM to each classification
system considered for the spectrographic samples.
Improvements in classification accuracy can be appreciated
(particularly, in the first decision tree part). Overall, the
results reveal that, the new technique can provide adequate
classification results in a challenging classification problem
for brain cancer detection using spectrographic samples.

TABLE III. FIGURES OF MERIT OBTAINED USING THE SECOND DECISION TREE OF THE PROPOSED APPROACH FOR BRAIN CANCER DETECTION WITH SEVERAL SET

Decision Tree 2

Classification System 2

Linear Kernel

Polynomial Kernel

Gaussian Kernel

Training Set 6/8 8/12 8/12 6/8 8/12

Average Accuracy (%) 7747 £ 7.94 81.30 £ 8.51 75.90 £ 7.90 80.24 £ 9.97 69.93 + 8.12 70.62 £ 9.45
Overall Accuracy (%) 75.75 £ 10.33 80.21 £ 10.17 76.90 £ 9.14 81.08 £ 9.87 75.87 £ 9.57 81.08 £ 10.74
Sensitivity (%) 75.34 £ 11.53 79.99 £ 11.21 77.13 £ 10.48 81.25 £ 10.82 77.27 £ 12.77 83.24 + 13.46
Specificity (%) 79.60 £ 12.66 82.62 = 14.31 74.67 £ 15.53 79.23 £ 17.80 62.59 £ 25.63 58.00 £ 26.52

Classification System 3

Linear Kernel

Polynomial Kernel

Gaussian Kernel

Training Set 3/5 4/6 4/6 3/5 4/6
Average Accuracy (%) 98.50 £ 6.00 99.33 + 3.30 99.50 £ 2.47 99.67 £ 2.36 96.00 + 8.62 100
Overall Accuracy (%) 98.29 + 6.85 99.20 £ 3.96 99.43 £ 2.83 99.60 £ 2.83 96.57 £ 7.39 100
Sensitivity (%) 100 100 100 92.00 £ 17.25 100
Specificity (%) 97.00 £ 11.99 98.67 £ 6.60 99.00 £ 4.95 99.33 + 4.71 100 100
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Fig. 4. The comparative accuracy results (specificity and sensitivity) for medical samples using a very small set of training samples using the proposed

techniques



IV. CONCLUSIONS

In this work, a new approach for brain tumour tissue
detection using spectrographic data in which a hierarchical
decision tree based on support vector machine classifiers has
been developed. In this context, the proposed approach offers
information about the nature of the tissues. The main goal is
to discriminate between tumour tissue and normal tissue
which is achieved in the first decision tree. The behaviour of
this technique has proven to be efficient in a set of
spectrographic samples. One of the main advantages is the
possibility of providing more detailed information about
tumour and nor- mal tissue which could be useful in surgical
situations. The accuracy of results is high when the number
of samples of each class is well balanced. Further researches
are focused on introducing spatial information in the
acquisition data process in order to complete the applications
of this proposed approach and improve the accuracy of
results.
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