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S U M M A R Y
The collective excitation of city structures by a seismic wavefield and the subsequent multiple
Structure-Soil-Structure Interactions (SSSIs) between the buildings are usually disregarded in
conventional seismology and earthquake engineering practice. The objective here is to qualify
and quantify these complex multiple SSSIs through the design of an elementary study case,
which serves as a benchmark for theoretical, numerical and experimental crossed-analysis.
The experimental specimen consists of an idealized site-city setup with up to 37 anisotropic
resonant structures arranged at the top surface of an elastic layer and in co-resonance with
it. The experimental data from shaking table measurements is compared with the theoretical
and numerical results provided respectively by an equivalent city-impedance model derived
analytically from homogenization in the long-wavelength approximation and a model based on
boundary elements. The signatures of the site-city interactions are identified in the frequency,
time and space domain, and in particular consist of a frequency-dependent free/rigid switch
in the surface condition at the city resonance, beatings in the records and the depolarization
of the wavefield. A parametric study on the city density shows that multiple SSSIs among the
city structures (five are sufficient) can have significant effects on both the seismic response of
its implantation site and that of the buildings. Key parameters are provided to assess site-city
interactions in the low seismic frequency range: They involve the mass and rigidity of the city
compared to those of the soil and the damping of the building.

Key words: Earthquake dynamics; Earthquake ground motions; Body waves; Seismic
anisotropy; Site effects; Wave propagation.

1 I N T RO D U C T I O N

Urban and industrial areas require a particular attention in seismic analysis due to the concentrations of population, real estates, strategic
public services and human activities having a large socioeconomical impact. However, the presence of the city is usually disregarded in
conventional methods applied in seismology and earthquake engineering: The ground motion is supposed to result from the seismic source
and substratum properties only, for example, Bonnefoy-Claudet et al. (2008), while the response of a structure to the ground motion is studied
independently from the surrounding buildings, for example, Jennings & Bielak (1973). These standard approaches omit the effects of multiple
soil-structures dynamic interactions on the seismic field and the buildings’ response.

While these approximations are reasonable in most cases, they are questionable in urban areas, where high-rise buildings, similar in
height and design, are built closely from one another. Neighbouring buildings can exchange significant amounts of energy with each other,
and form, with the soil, a fully coupled dynamic system that should be treated as a whole. The problem of mutual interactions between
two buildings have been formulated initially by Luco & Contesse (1973) and extended to that of multiple interactions among a group of
buildings by Wong & Trifunac (1975). Later, Wirgin & Bard (1996) suggested that such collective interactions among buildings of a city, the
so-called ‘site-city interaction’, could provide a possible explanation for atypical features observed in accelerograms from the 1985 Michoacan
earthquake: Some records in Mexico City exhibited long durations and beatings (Singh & Ordaz 1993) which could not find a satisfying
explanation through geological site-effects only (Chávez-Garcı́a & Bard 1994). In fact, Mexico is favourable to site-city interactions: The
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clay softness favours soil-structure interactions, and the natural frequencies of buildings are close to the basin’s one, thus magnifying energy
exchanges.

The idea of site-city interactions has been supported by different numerical simulations based on various methods (finite/boundary
elements methods, Green functions, etc.) and performed on simplified cities (2-D or 3-D, periodic or random arrangements) or on groups of
nearby buildings (Clouteau & Aubry 2001; Guéguen et al. 2002; Tsogka & Wirgin 2003; Groby et al. 2005; Kham et al. 2006; Ghergu &
Ionescu 2009; Padrón et al. 2009). As the capacities of computers increase, more and more complex situations can be studied. For instance,
the numerical simulations of Taborda & Bielak (2011) and Isbiliroglu et al. (2015) have been conducted on a supercomputer having 480
processors (Taborda & Bielak 2011), with simulations running for up to 15 hours (Isbiliroglu et al. 2015) in order to compute the response of
up to 81 building-like homogeneous blocks arranged at the surface of a realistic geologic stratification, when submitted to the ground motion
recorded during the 1994 Northridge earthquake.

All these simulations tend to corroborate the idea that the city can interact as a whole with its site, especially at the buildings resonance.
In-situ measurements on single structures already showed that buildings can irradiate significant energy in the soil (Jennings 1970; Chávez-
Garcı́a & Cárdenas-Soto 2002; Castellaro & Mulargia 2010). Besides, experiments on small-scale specimens consisting of a limited number
of closed-spaced buildings (less than 5) have also been performed on shaking table (Kitada et al. 1999) or in centrifuge (Chazelas et al.
2003) and showed that (multiple) soil-structure interactions can have noticeable effects on the dynamic response of the structures and ground
motion. The same trend is observed with the alternative approach developed by Boutin & Roussillon (2004, 2006) to derive analytically the
effective behaviour of idealized city arrangements: Provided that the representative surface element of the city (constituted by one or few
buildings) is much smaller than the seismic wavelength, the homogenization of periodic systems (Sánchez-Palencia 1980; Auriault et al.
2009) enables to describe the city as a surface impedance that modifies the usual condition of free field (Schwan & Boutin 2013; Boutin et al.
2015).

Despite these convergent observations, it is still uncertain in practice whether a city group-effect can noticeably modify the seismic
response of its implantation site and constitutive buildings. In particular, the extent up to which the conventional approaches remain efficient
is still an open question. This uncertainty may rely on the three following facts. First, the identification of a possible ‘site-city’ effect in the
records obtained during earthquake events is a very hard task, due to the specificity of each site-city configuration and to the huge amount
of information required to discriminate that effect from other complex phenomena. Second, the basic experimental data that would clearly
evidence a ‘site-city’ effect is missing: Too few accelerograms are gained during earthquake events (compared to the complexity of the
geological site and the city) and, up-to-date, no experiments dealing with multistructure interactions among a large group of buildings (say
more than 10) have been performed. Third, it is difficult to draw general conclusions or physical rules from the several numerical approaches
mentioned above, due to the vast variety of assumptions retained for the building models (single or multiple degrees of freedom), the city
model (geometric arrangement, buildings with similar or distinct masses, stiffness, eigenfrequencies), the frequency range of investigation
(compared to the buildings and site eigenfrequencies), the nature of the incident wave, and the 2-D or 3-D character of the numerical
simulation. Further, the different methodologies required by each method makes uneasy (if not impossible) a reliable comparison of the
results, expressed in the time or frequency domain, in acceleration or displacement, etc.

Motivated by the above observations, a study case is developed that favours experimental, numerical and theoretical crossed-analyses and
enables to improve the physical insight into this complex phenomenon. The multiple SSSIs are investigated through an idealized experimental
setup and the resulting data is compared with two models: the theoretical city-impedance model (CIM) derived from homogenization (Boutin
& Roussillon 2004, 2006); and a numerical model consisting of a Boundary Elements (BE) approach (Padrón et al. 2004). This paper is
organized as follows: The methodology is presented in Section 2; the CIM is described in Sections 3 and 4; the experimental set-up is designed
in Section 5 and the numerical model in Section 6; the experimental results are presented and compared to the theoretical and numerical
models in Section 7. The main outcomes are discussed in the Conclusion.

2 C RO S S E D - A NA LY S I S M E T H O D O L O G Y

Idealization of urban landscapes. With the development of Geographic Information Systems and imaging networks such as satellite (Sohn
& Dowman 2007) or aerial imaging (Adeline et al. 2013), urban morphology can be characterized over large areas, Fig. 1. While shapes,
sizes and densities of buildings seem to be characteristics of socioeconomic blocks, for example, residential, commercial or business
districts (Yoshida & Omae 2005), a city-taxonomy has been proposed by Figueiredo & Amorim (2007) based upon the likeness of urban
arrangements to a grid. Those observations suggest the possibility to idealize some city districts as the periodic distribution of similar
structures. The present study focuses especially on those made of high(-rise) heavy multistorey buildings capable of strong soil/structure
interactions, and the fundamental resonance of which occur within the seismic frequency range. Examples of idealized city districts
are shown in Figs 2(a) and (b) for isotropic (same resonant behaviour in both principal horizontal directions) and anisotropic buildings
respectively. They consist of the �-periodic arrangement of linear resonant structures at the top plane surface � (outward normal n) of
a homogeneous (near-)elastic linear isotropic layer, with elastic tensor C, shear modulus μ, Poisson’s ratio ν, weak damping ξ s � 1 and
density ρ.

Equivalent CIM. The propagation of small elastic perturbations is investigated in such idealized systems. The study is performed in the
harmonic regime at the frequency f = ω/2π close to the eigenfrequency ωo/2π of the resonant structures. In that frequency range, a scale
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1008 L. Schwan et al.

Figure 1. An example of urban landscape. Satellite view of San Cristobal district, Santiago de Chile, Chile. Coordinates in the World Geodetic System 84 in
decimal degrees: latitude = [−33.435; −33.409] and longitude = [−70.616; −70.584]. On the right: zooms at grid-like arrangements of similar structures.
Source: Google Maps, available at https://maps.google.fr/ (last accessed in March 2015).

Figure 2. Idealization of urban landscapes: (a) isotropic buildings; (b) anisotropic buildings. Illustration of the scale separation: the seismic wavelength 	s is
much larger than the size 
 of the period �.

separation is assumed whereby the characteristic size 
 of the period � is much smaller than the reduced shear wavelength 	s = cs/f = 2π/k
in the medium, where cs = √

μ/ρ is the shear wave speed and k the wavenumber. This scale separation is quantified by the following scale
parameter:

ε = 2π
/	s = k
 � 1. (1)

The smallness of ε � 1 along with the periodic distribution of structures enables the formulation of the elastodynamic problem within the
usual framework of two-scale asymptotic homogenization (Sánchez-Palencia 1980; Auriault et al. 2009). The theoretical analysis, presented
in Sections 3 and 4 and developed in Appendix, has been initially proposed by Boutin & Roussillon (2006). It relies on the localization
within a boundary layer of the near-fields scattered by the city, and leads to reduce the resonant array of buildings into an equivalent surface
impedance. Arising from the building/city up-scaling, this city-impedance inherits frequency-dependence and anisotropic behaviours from
the buildings, and induces unconventional reflection properties such as directional free/rigid switches in the boundary conditions, atypical
depolarization effects (Boutin et al. 2015) and unusual mode conversions (Schwan & Boutin 2013). When the assumptions are fulfilled, this
approach provides a simple analytical expression for 3-D formulation of the site-city effect, well-adapted for parametric studies and design.

Site-city setup. A site-city setup is devised from the city-impedance analysis in order to enclose the singular predictions made by that
model (Section 5). The setup is realized with up to 37 anisotropic resonators and tested on a large shaking table (3 m wide platform with 21
ton payload). The properties of the experimental model (about 4 m3) are scaled to suit the capabilities of the shaking table (optimized in the
frequency range 0.5–25 Hz).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/205/2/1006/686293 by U

N
IV LAS PALM

AS D
E G

 C
AN

AR
IA user on 30 N

ovem
ber 2018

https://maps.google.fr/


Site-city interaction: a crossed-analysis 1009

Figure 3. Illustration of the two-scale physics in the system in the case of a single isotropic structure on each period �. On the long-wavelength scale (left):
propagation of the seismic field in the presence of the periodic arrangement of structure. On the local scale (right): the building applies the force F and moment
M on its rigid foundation S. Representation of the volume � of integration for the local problem.

Numerical modelling. Independently from the CIM, the site-city setup is analysed as a study case using a 2-D numerical model based on
BE (Padrón et al. 2004) to solve the elastodynamic problem for the soil together with the dynamic response of the buildings, see Section 6.
Using the same fundamental equations and basic assumptions as the CIM, the numerical analysis disregards none of the phenomena that have
been left aside as correctors in the asymptotic approach of homogenization. Moreover, the numerical model does not depend on the scale
separation and it accounts for the finite extent of the setup. As a counterpart, the numerical procedure only applies in 2-D, results require
heavy computations, and the specific physics underlying the phenomena is not condensed in a simple closed-form expression.

Crossed-analysis and discussion. Both CIM and BE model (BEM) are applied to the site-city setup and their results are compared to
experimental data in Section 7. The objectives are (1) to evidence the unconventional phenomena predicted by the CIM, (2) to demonstrate the
agreement (qualitative and quantitative) between the predictions and the experimental results, especially regarding the atypical phenomena
and (3) to compare the models with one another.

3 M U LT I S C A L E A NA LY S I S

The homogenization of the idealized �-periodic city in an equivalent impedance is presented in this section. The model of Boutin & Roussillon
(2006) is applied and extended here to slender resonant structures settled on rigid foundations adhered to the elastic (or viscoelastic) half-space.
For clarity, only one structure is considered on each period �, for example, Fig. 3, but the case of multiple structures on each period � would
follow the same procedure.

3.1 Homogenization method

Following the method described by Sánchez-Palencia (1980), the homogenization of the city is based on two main steps: The two-scale
description of space and the asymptotic expansion of the fields.

Two-scale description of space. The scale separation in eq. (1) introduces two characteristic lengths in the system: The macroscopic
size L = 	s/2π of the seismic field and the lattice size 
 = O(εL) of the city arrangement. To describe field variations at both scales, two
space-variables are used, linked by the scale ratio ε: The macrovariable x and the microvariable y = ε−1x. The differentiation of the fields
is modified using both space variables x and y; for instance grad = gradx + ε−1grady where gradx and grady denote the gradients with
respect to x and y. The space-variables are defined in the Cartesian coordinate system (e1, e2, e3) with e3 = n as the outward normal. In the
local description, that is, with the microvariable y, the origin O of the local frame is chosen at the centre of the period �.

Asymptotic expansions. The physical fields (motion and stress) are expanded asymptotically in powers of ε. The expansions are
substituted in the elastodynamic equations (elastic constitutive law and dynamic equilibrium) and boundary conditions. Terms of equal
powers are collected, providing problems that are solved in increasing order of ε-powers. That requires that the fields have been scaled
beforehand according to the phenomena, see Section 3.3.

3.2 Two-scale phenomena

Collective excitation of the city structures. Set in motion by the seismic field, the buildings on the surface � oscillate and act as mutually
interacting secondary sources. Owing to the linearity in the system, all the elements oscillate at the imposed frequency f = ω/2π (the
time-dependence e−iωt will be implicit in the sequel). In its motion, each building exerts upon its foundation S the force F and the moment M
while the surface outside the foundation is free, see Fig. 3. That results in the heterogeneous distribution of stresses t applied at the surface
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1010 L. Schwan et al.

of the elastic substrate to balance the force F and moment M under the foundation, while t = 0 at the free surface. Without specifying any
further the stress vector t, it is clear that it varies at the wavelength scale (forced by the seismic field) while being locally �-periodic at the
scale of the periods (produced by the periodic array of buildings). As a result, the stress t depends on both space variables, that is, t(x�, y�),
where the index � denote the projection on the surface �.

Localization of small-scale perturbations. The seismic field, which displays significant variations upon long-wavelength distances only,
cannot balance the two-scale stresses t(x�, y�) on its own, because of a scale-mismatch with the local periodicity. To fulfil the scale-transition
between the long-wavelength seismic field and the sub-wavelength city arrangement, a boundary layer is formed in the vicinity of the surface
(Boutin & Roussillon 2006), see Sánchez-Palencia (1980) and Holloway & Kuester (2000) in other domains of physics. Superimposed upon
the long-wavelength field to satisfy the locally periodic boundary conditions, and localized near the city, the Boundary Layer (BL) is made
of evanescent waves which fade away at some distance from the surface.

3.3 Governing equations

Long-wavelength field. Far from the surface �, only the long-wavelength field prevails, with the displacement u(x) and stress tensor σ (x).
Its propagation is governed by the usual equations of elastodynamics expressed with the macrovariable x. Denoting ex(u) = [gradx(u) +
t gradx(u)]/2 the tensor of small strains (with respect to the macrovariable x), and reminding that ey[u(x)] = 0 and divy[σ (x)] = 0 because
the long-wavelength fields are independent from y, the following equations hold:

σ = C : ex(u); (2a)

divx(σ ) = −ρω2u, (2b)

where C is the elastic tensor and ρ the density of the elastic medium. At this stage, the effective boundary condition satisfied by the
long-wavelength field on the surface � is unknown. It will be provided by the equilibrium of the boundary layer in the vicinity of the city.

Boundary Layer (BL). Near the surface �, the equations of elastodynamics are satisfied by the superposition of the long-wavelength
field and the BL fields. Since the boundary layer fields, with the displacement u� and the stress tensor σ �, are locally periodic, they depend
on the microvariable y, namely u�(x�, y) and σ �(x�, y). The elastodynamic equations thus involve the y-differentiation and take the form:

σ + σ � = C : [(ex + ε−1ey)(u + u�)]; (3a)

(divx + ε−1divy)(σ + σ �) = −ρω2(u + u�). (3b)

By subtraction with the set of equations (2) governing the long-wavelength field, the following equations are found, which govern the
BL fields:

σ � = C : [(ex + ε−1ey)(u�)]; (4a)

(divx + ε−1divy)(σ �) = −ρω2u�. (4b)

At some distance away from the city, that is, as y · n → −∞ in the local description, the evanescence of the boundary layer is given by
the conditions:

u� → 0 and σ �.n → 0 as y · n → −∞. (5)

Recall also that the BL fields fulfil the 2-D �-periodicity with respect to the microvariable y.
Boundary conditions. As mentioned previously, the total stress field σ + σ � balances the surface stresses t at the period �:

(σ + σ �).n = t at �. (6)

That condition can be detailed as follows in the case of buildings on rigid foundations arranged on an otherwise free surface: Outside the
foundations S, the surface �f = �\S of the period � is free:

t = 0 at �f = �\S. (7)

At the foundation S, the force F and moment M are balanced by the surface stresses t. Denoting yS the centre of the foundation in the local
description, the following conditions hold:∫

S
t dSy = F;

∫
S

(y − yS) ∧ t dSy = M. (8)

Finally, the foundation S imposes a rigid-body motion to the elastic medium, with the translation uS and the rotation vector θS ; the kinematic
compatibility condition reads:

u + u� = uS + θS ∧ (y − yS) at S. (9)
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Site-city interaction: a crossed-analysis 1011

Here, the local boundary conditions account explicitly for the rigid body motion of the foundation, contrary to Boutin & Roussillon (2006).
Note that, in principle, the rotation vector θS is 3-D and thus accounts for the rocking of the foundation in both horizontal directions, and for
the torsion around the normal axis. However, in practice, for sufficiently regular structures, the torsion induced by translation motions in the
soil can be disregarded in comparison to rocking.

Scaling of the BL fields. Situations are considered where the buildings are strongly coupled through multiple Structure-Soil-Structure
Interactions (SSSIs), which implies that the boundary layer plays an effective role in the equilibrium of the city. For this to be realized, the
surface forces t, the long-wavelength stress σ , and the BL stress σ � should be of the same order of magnitude:

σ � = O(σ ) = O(t). (10)

However, according to the constitutive laws in eqs (2a) and (4a), the following relations also hold:

σ = O(Cku) and σ � = O(Cu�/
), (11)

and consequently, eq. (10) implies:

u� = O(εu). (12)

In other words, the long-wavelength displacement u(x) prevails on the locally varying BL motions.

3.4 Homogenization results—city-impedance

Following Boutin & Roussillon (2006), the homogenization method described in Section 3.1 is conducted. It relies on the integration of the
elastodynamic equations upon the volume � of medium located normally to the period �, see Fig. 3. The derivation is given in Appendix.
The present paragraph provides the main results.

Long-wavelength description of the seismic field. At the leading order of the asymptotic expansions, the long-wavelength description
of the seismic field relies on the two following results: (1) the long-wavelength displacement field is dominant upon the BL field; and (2)
the long-wavelength stress σ is shown to balance the mean stress experienced by the period �, that is, the following boundary condition is
derived at each period � of the surface �:

σ.n = F/|�|. (13)

This effective boundary condition, found here from boundary conditions (6)–(9) at the local scale, is similar to that found by Boutin &
Roussillon (2006) in the case of prescribed surface stresses. Since only the resulting force F is relevant to the long-wavelength field: (1) the
knowledge of the exact arrangement of the resonant buildings on the period � is not required; and (2) the local distribution of moments M
has no direct effect on the boundary conditions.

City-impedance. The force F and moment M depend on the rigid-body motion of the foundations through the frequency-dependent
impedance matrices Zt , Zr , Zc and Z′

c which characterize the buildings’ behaviour:⎛
⎝ F

M

⎞
⎠ = −iω

⎡
⎣ Zt Zc

Z′
c Zr

⎤
⎦ ·

⎛
⎝ uS

θS

⎞
⎠. (14)

Since the motion at the leading order consist of the long-wavelength field u, the dominant motion of the foundations is the uniform translation
uS = u(x�), while the rotation of the foundation stems from the BL field u� = O(εu) one order smaller. Thus, the effects of the foundation
rotation can be disregarded as a first approximation and the force F is given by: F = −iωZt u� where u� = u(x�). Using eq. (13), the following
boundary condition is derived for the long-wavelength field:

σ.n = −iωZ�.u�; Z� = Zt/|�| on �, (15)

where Z� is the effective city-impedance at the leading order. According to the buildings properties in the different directions, anisotropic
and frequency-dependent effects can arise in the supporting elastic medium despite its own isotropy and elasticity, see Section 4.1.

BL corrections. For a more comprehensive description, the BL kinematics of the foundation (the rotation θS and the additional translation
u�

S = uS − u�) induced by the field u� can be included in the previous analysis. It can be shown (see Appendix) that these BL kinematics are
forced linearly by the force F and moment M applied to the foundation. That leads to the definition of the BL flexibility matrices St , Sr , Sc

and S ′
c through the relations:⎛

⎝ u�
S

θS

⎞
⎠ =

⎡
⎣ St Sc

S ′
c Sr

⎤
⎦ ·

⎛
⎝ F

M

⎞
⎠ . (16)

These flexibility matrices stem from the boundary layer equilibrium and depend therefore on the city arrangement. Similar formulations can
be found for local soil/foundation interaction regarding an isolated building (Wolf 1994; Sieffert & Cevaer 1992). Denoting I the 3 × 3
identity matrix, the combination of eqs (14) and (16) with the relation uS = u� + u�

S leads to the relations:

F = −iωZF u�; M = −iωZM u�, (17)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/205/2/1006/686293 by U

N
IV LAS PALM

AS D
E G

 C
AN

AR
IA user on 30 N

ovem
ber 2018



1012 L. Schwan et al.

where[
ZF

ZM

]
=

{[
I 0

0 I

]
+ iω

[
Zt Zc

Z′
c Zr

][ St Sc

S ′
c Sr

]}−1 [
Zt

Z′
c

]
. (18)

Despite the 6 degrees of freedom for the foundation, eq. (17) shows that the system is driven by the long-wavelength field u� only and the
city-impedance can be defined as Z� = ZF/|�|. It includes corrections from the boundary layer and, in particular, from the rotation of the
foundation induced by the moment that the slender structure applies.

Remarks. The general problem of ‘wave/structure interaction’ in seismic engineering is usually split into two problems: (1) the mutual
interactions between structures through the soil, the so-called SSSI; and (2) the global effect of the structures on the soil motion. In the case
(1), the mutual interactions do not modify the seismic excitation: It remains the one that would exist if the structures were not present at the
surface, see for instance Luco & Contesse (1973) or Wong & Trifunac (1975) in 2-D. In the case (2), the global response of the vast collection
of structures is seen as the superposition of the responses of each structure, but usually with the individual response that they would have if
they were isolated on the half-space, for example, Guéguen et al. (2002).

In the present 3-D model, all the structures are in mutual interaction with one another, and their collective response modify the global
seismic field. This is intrinsically related to the local periodicity condition that is imposed to the ground motion field (i.e. to the boundary
layer). As a result, the existence of neighbouring structures and the subsequent mutual interactions are necessarily taken into account. This
condition of local periodicity makes the difference with the conditions of isolated radiation in half-space made in the case (2). Further, the
combination of all the interacting responses of the structures modifies the global soil motion (through the equivalent impedance condition).

4 C I T Y- I M P E DA N C E M O D E L

The previous section has derived the effective surface impedance of the periodic city arrangement from the structural properties (mechanical
impedances) of the constitutive structures. In this section, those impedances are specified and the effects of the city-impedance are investigated.
In particular, the problem of interaction between the city and a soil layer is addressed.

4.1 Unconventional effects of the city-impedance

Equivalent SDOF oscillator. Using modal analysis, the fundamental mode of the structure can be characterized by a Single-Degree-Of-
Freedom (SDOF) oscillator with the mass mo, stiffness K and damping c in one horizontal direction. Focusing on this direction, the problem
is scalar. The motion u� at the surface induces the motion uo of the mass mo while the force F that the oscillator exerts on the period �

balances the oscillator’s inertia. Newton’s Second Law provides

F = moω
2uo = (K − iωc)(uo − u�). (19)

Defining the eigenfrequency fo = ωo/2π = (2π )−1
√

K/mo and the damping ratio ξ = c/2
√

K mo � 1, the transfer function uo/u� and the
impedance Z = F/(−iωu�) of the oscillator take the form:

uo

u�

= 1 − i2ξ ω

ωo

1 − i2ξ ω

ωo
− ω2

ω2
o

; Z = iωmo
uo

u�

. (20)

This provides the city impedance Z� = Z/|�| in the horizontal direction of resonance. Normalized by the shear impedance of elastic substrate
Zs = ρcs = √

ρμ, it reads:

Z�

Zs
= η

i ω

ωo

(
1 − i2ξ ω

ωo

)
1 − i2ξ ω

ωo
− ω2

ω2
o

; η =
√

K mo

|�|√μρ
= moωo

|�|√μρ
. (21)

Frequency-dependent switch from free to ‘rigid’ boundary. According to eq. (21), the free surface condition (Z� = 0) is recovered
with η = 0 while heavy and rigid buildings (compared to the soil) produce substantial interactions, see the expression of η. The normalized
impedance Z�/Zs is shown against frequency in Fig. 4 with the value η = 0.1. At low and high frequency (ω � ωo or ω 	 ωo respectively),
the city-impedance Z� is much smaller than the soil impedance Zs similarly to the usual free surface condition. Conversely, around resonance
ω ≈ ωo of weakly damped oscillators ξ � 1, the impedance ratio reaches the negative value Z�/Zs = −η/2ξ which is large provided that
η/2ξ 	 1, similarly to a rigid condition imposed in the oscillator’s direction only.

Frequency-dependent anisotropy. The SDOF model can be applied in both horizontal principal directions of the building/BL system
around its first modes, say in directions X and Y. To discriminate the effects of resonance, the system is supposed to experience a resonance
in the X-direction but no resonance (i.e. the structure remains inert) in the Y-direction within the frequency range of the scale separation. For
more accuracy in the description, the total mass of the structure is accounted for: If mo is the modal mass of the structure in the X direction,
mi is the complementary mass of the structure not involved in that mode (its motion is the displacement u�). In the inert Y direction, the total
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Site-city interaction: a crossed-analysis 1013

Figure 4. Real and imaginary parts of city-impedance Z� against frequency ω. City-impedance normalized by soil shear impedance Zs; frequency normalized
by the eigenfrequency ωo of the city. Calculations performed with η = 0.1 and ξ = 5 per cent.

mass m = mo + mi of the structure is an inert mass. Focusing on the two principal directions, the problem is planar and the city impedance
matrix takes the form Z� = Z X eX ⊗ eX + ZY eY ⊗ eY where:

Z X

Zs
= iη

(
uo

u�

+ mi

mo

)
ω

ωo
;

ZY

Zs
= iη

(
1 + mi

mo

)
ω

ωo
. (22)

The anisotropy ZX �= ZY leads to depolarization phenomena (Boutin et al. 2015) and atypical mode conversions (Schwan & Boutin 2013).
Remark. In the case where the city-impedance includes the BL corrections, it can be shown that the SDOF model in eqs (20) and (21)

still holds around resonance provided that ωo and ξ are apparent modal parameters accounting for the local soil/foundation interaction, see
Schwan (2014).

4.2 Site-city interaction

In the aim of experimental and numerical validations, the city effects expected from the theory are presented when the city, characterized by
eq. (22), is settled at the surface of an elastic layer (thickness H 	 
) resting on a rigid substratum.

Site-city interaction model. The site-city interaction is derived from the response of the site-city system to a harmonic horizontal
displacement ub imposed at the base of the layer. Solving the wave equation, the horizontal displacement takes the form u(z) = Uc cos(ωz/c∗

s ) +
Us sin(ωz/c∗

s ) where z is the upward vertical abscissa, c∗
s = cs

√
1 − i2ξs is the complex shear-wave speed and Uc and Us are complex

amplitudes given by the boundary conditions. The displacement u(z) satisfies the city-impedance condition (15) at the surface z = 0 and is
equal to the displacement ub at the surface z = −H of the layer. Introduce fH = ωH/2π = cs/4H the eigenfrequency of the layer with a free
surface, and the complex quantities Z∗

s = ρc∗
s and ω∗

H /2π = c∗
s /4H . Solving for the amplitudes Uc and Us in the principal axes X and Y of

the impedance matrix Z� provides the surface displacement u� = u(z = 0):

u� · eX =
[

cos

(
π

2

ω

ω∗
H

)
+ i

Z X

Z∗
s

sin

(
π

2

ω

ω∗
H

)]−1

ub · eX ;

u� · eY =
[

cos

(
π

2

ω

ω∗
H

)
+ i

ZY

Z∗
s

sin

(
π

2

ω

ω∗
H

)]−1

ub · eY ; (23)

and the horizontal displacement u(z) in the layer:

u(z) · eX =
[

cos

(
π

2

ω

ω∗
H

|z|
H

)
+ i

Z X

Z∗
s

sin

(
π

2

ω

ω∗
H

|z|
H

)]
u� · eX ;

u(z) · eY =
[

cos

(
π

2

ω

ω∗
H

|z|
H

)
+ i

ZY

Z∗
s

sin

(
π

2

ω

ω∗
H

|z|
H

)]
u� · eY . (24)

Eqs (23) and (24) show that (1) at the resonance in X, the impedance ratio |Z X/Z∗
s | 	 1 makes the surface motion vanish u� · eX → 0 in that

direction only, similarly to a rigid surface condition along eX ; (2) since ZY �= ZX, the direction of the surface motion u� can depart from the
base motion ub, namely the surface motion is depolarized; and (3) the motion u(z) in the layer is depolarized too.

Site-city effects in the resonant direction. In the X direction, the effect of the free/rigid switch in the boundary condition is magnified
when the eigenfrequency ωo of the city belongs to the frequency range of the layer resonance, that is, close to ωH. As shown in Fig. 5 the
following phenomena are expected: (1) at the frequency at which the layer resonance should occur, a surface antiresonance happens due to
the rigid-like condition imposed by city resonance; (2) the layer resonance peak is split into two soil-city resonance peaks; (3) the amplitude
of those peaks is substantially reduced compared to the layer resonance peak; and (4) the phase is strongly modified. In the time domain, such
a two-peak-spectrum is favourable to beatings.
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1014 L. Schwan et al.

Figure 5. Transfer function between the displacement u� at the top surface of the elastic layer and the input motion ub at the base of the layer in both
principal directions X (resonant) and Y (non-resonant) of the anisotropic city: (a) amplitude of u�/ub and (b) phase of u�/ub . Frequency normalized by the
eigenfrequency ωo of the city. Comparison with the case of a layer with a free surface, that is, without the city. Calculations performed with ξ s = 4 per cent,
η = 0.1, mi = mo, ωH = ωo and ξ = 5 per cent.

Site-city effects in the non-resonant direction. In the Y direction, the city is non-resonant and the impedance ratio ZY /Z∗
s is given in

eq. (22). When η(1 + mi/mo) is small compared to 1, the transfer functions in eqs (23) and (24) tend to those of a layer with a free surface:

u(z) · eY ≈
[

cos

(
π

2

ω

ω∗
Y

|z|
H

)] [
cos

(
π

2

ω

ω∗
Y

)]−1

u� · eY (25)

with the apparent resonance frequency ω∗
Y ≈ ω∗

H (1 + m
ρ|�|H )−1. That latter is lower than the layer eigenfrequency ω∗

H because of the additional
mass m = mo + mi provided by the city at the top surface. This phenomenon is shown in Fig. 5. Note that the inert mass mi in the X-direction
has also the effect to reduce the layer eigenfrequency to the value ω∗

X ≈ ω∗
H (1 + mi

ρ|�|H )−1.
Discussion. Despite different physical origins, the observations made in the resonant X-direction (double-peak resonance, antiresonance

trough, modified phase) recall those described in dynamics when two co-resonant mass-spring systems are associated (Hartog 1956).
Numerical simulations, reported by Wirgin & Bard (1996), Clouteau & Aubry (2001), Semblat et al. (2008) and Groby & Wirgin (2008)
have shown similar splits of the layer resonance when adding resonant structures at the top surface of an elastic layer. However, comparisons
are not straightforward due to different sets of configurations, hypotheses and frequency ranges in the models. That is why: (1) the CIM will
be compared with a BEM based on similar assumptions; and (2) both models will be validated against shaking table measurements on a
specifically devised site-city experimental setup.

5 E X P E R I M E N TA L S E T U P

In this section, the experimental setup is designed on the basis of the city-impedance analysis in order to evidence the site-city effects predicted
theoretically in Section 4.

5.1 Description and design

Description of the setup. The idealized small-scale city consists of 37 identical resonating structures arranged periodically with a centre-to-
centre spacing 
 = 5 cm, see Fig. 6(a). They are glued at the top surface an elastic layer with cellular polyurethane foam as soil analogue
material (density ρ = 49 kg m−3, shear modulus μ = 55 kPa, Poisson ratio ν = 6 per cent, damping ξ s = 4.9 per cent, giving cs = 33 m s−1)
so as to respect the theoretical assumptions (homogeneity, linearity) in a large range of deformation. Each resonant structure is made up of
a vertical aluminium sheet (density ρAl = 2700 kg m−3, Young modulus EAl = 69 × 109 Pa, Poisson ratio νAl ≈ 0.3) sandwiched along its
lowermost edge between two rigid aluminium angles to provide a footing with the width 2b = 2 × 1.3 cm, see Figs 6(b) and (c). The sheet
has the length L = 1.75 m, thickness e = 0.5 mm and height h out of the angles, Fig. 6(c). It can resonate in bending in response to an
out-of-plane motion of the footing (direction eX ); it remains quasi-inert when excited with an in-plane motion (horizontal direction eY ⊥ eX ).
The system is secured to the platform of the shaking table through a base-plate assembly.

Equivalent SDOF oscillators for the resonators. Since the modal frequencies of a clamped-free bending beam are well separated
(according to the series ωj/ωo ≈ {1 ; (3/1.2)2 ; (5/1.2)2 ; . . . }), the bending sheet can be modelled, in the X-direction and in the frequency
range close to the first mode (say ω � 2ωo), as a SDOF oscillator associated with an inert mass mi. The SDOF oscillator is characterized
by: the modal mass mo ≈ 0.613ρAlLeh of the sheet; the eigenfrequency ωo/2π of the bending structure; and the weak damping ξ � 1.
The top motion usheet of the sheet in the X-direction is related around resonance to the motion uo of the equivalent SDOF oscillator by

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/205/2/1006/686293 by U

N
IV LAS PALM

AS D
E G

 C
AN

AR
IA user on 30 N

ovem
ber 2018



Site-city interaction: a crossed-analysis 1015

Figure 6. Schematic of the experimental site-city setup. (a) Overall view of the experimental setup on the shaking table: 37 resonators are arranged periodically
at the top surface of an elastic layer. (b) Detail of one anisotropic resonator: an aluminium sheet is sandwiched at its lowermost edge between a pair of angles;
it can resonate in bending in the out-of-plane X direction but not in the in-plane direction Y. (c) Dimensions of the resonant structure in a cross-section.

usheet = χuo where the geometrical coefficient χ ≈ 1.57 is derived theoretically from the first mode shape of a bending beam (Schwan 2014).
In the direction Y, all the mass m = mo + mi is inert.

Design. The system is designed so that: The scale separation is satisfied at city eigenfrequency (εo = 
ωo/cs � 1); the city-impedance
is significant compared to the soil one (η/2ξ ≥ O(1)); and the shear resonance frequency ωH of the layer (with a free surface) is close to the
city eigenfrequency ωo in order to magnify site-city interactions. For that purpose, the sheets are h = 18.4 cm-high outside the angles, which
provides (theoretically) the modal mass mo = 0.266 kg, and the total mass mo + mi = 0.849 kg and (experimentally) the city eigenfrequency
ωo/2π = 8.45 Hz and the damping ξ ≈ 4 per cent. That leads to the small scale parameter εo = 0.08 at city eigenfrequency while the parameter
η = 11.5 per cent makes η/2ξ ≈ 1.44. The foam block is 2.13 m wide in X and 1.76 m wide in Y and has the thickness H = 0.76 m. That
provides the shear resonance frequencies 9.36 Hz and 9.11 Hz for the foam block in the directions X and Y respectively. The repeatability and
linearity of the system have been checked experimentally in the frequency range [0; 20] Hz.

Remarks. To prevent the gyration mode of the foam block, that is, its rotation around the horizontal axis similarly to a bending motion,
that could develop in addition to the shear translation motion, 22 thin vertical steel rods (3 mm diameter and 75 cm long) are adhered at 35 cm
centres around the periphery of the foam block, see Fig. 5(a). Their diameter and spacing are designed not to disturb the shear block’s modes
(i.e. their bending stiffness is much smaller than the shear stiffness of the foam block) while restraining parasite vertical edge movements (i.e.
their elongation stiffness is much larger than that of the foam block).

5.2 Other configurations

To analyse the influence of city-density on site-city interactions, four other configurations have been tested in addition to the full city-
arrangement described here-above: Three periodic city-arrangements with the period sizes 2
 (19 resonators), 4
 (9 resonators) and 8


(5 resonators), and one isolated structure on the foam block, see Fig. 7. Those configurations challenge the CIM and its scale-separation
assumption: The wider periods � weaken the scale parameter according to 2εo = 0.16, 4εo = 0.32 and 8εo = 0.64 respectively. The CIM
will be considered despite the poor scale separations, in order to assess the robustness of the model.

5.3 Instrumentation and excitations

Instrumentation. Measurements are performed with 3-D-accelerometers located on the foam block (on the top and lateral surfaces, Fig. 8)
and at the top of four resonant structures, Fig. 7. The reference input motion is recorded by accelerometers on the shaking table. Two types
of accelerometers are used: Where mass of the sensor could have a deleterious effect on the response (at the top of some sheets) and where
little space is available (on the foam block between two structures), low-mass MEMS accelerometers are used (Analog Devices ADXL335, 2
gram mass, 2 cm wide footprint); otherwise, Setra type 141A accelerometers are used. The position of the accelerometers on the elastic block
enables to study the spacial variability of the top surface motion and the shear-deformation shapes in the principal directions X and Y.

Excitations. Excitation is provided by the motion of the shaking table in either the resonant X-direction, or the non-resonant Y-direction,
or the horizontal direction making an angle of 45◦ with X (so as to evidence depolarization effects). The level of the excitation is a compromise
between small deformations requirement and good accuracy of the measurements. Input signals consist of Ricker wavelets and sinusoidal
waveforms. The Ricker wavelets have the displacement uRicker ∝ (2a(t) − 1) e−a2(t) with a(t) = π fr(t − tr) where fr is the central frequency
and tr the time delay. In the frequency domain, Ricker wavelets (with spectral acceleration peak around 8 Hz) provide the transfer functions
with a low level of noise without windowing nor averaging (transfer functions have been confirmed by white noise); in the time domain
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1016 L. Schwan et al.

Figure 7. Schematic at scale of the different configurations for the site-city setup: Position of the resonant structures on the elastic block in the cross-section
plane (X, Z). The arrows with plain line indicate the structures (A, B, C and D) instrumented with a MEMS accelerometer at their top. The arrows with dashed
line (named 1 to 4) indicate the position of MEMS accelerometers on the ‘free’ surface of the elastic block between resonators.

Figure 8. Instrumentation of the elastic block. Two types of accelerometers are used: low-mass MEMS and Setra accelerometers.

they give the decay response of the system. Sinusoidal waveforms are used to evidence accurately mode shapes modifications and wavefield
depolarization at the (anti-) resonance frequencies of the city/layer coupled system.

6 B O U N DA RY E L E M E N T S M O D E L

Independently from the CIM, site-city interactions can be simulated at geophysical scales by means of numerical methods applied to the
elastodynamic equations, see the Introduction. For 2-D configurations and in-plane wavefield, a harmonic numerical model based on boundary
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Site-city interaction: a crossed-analysis 1017

Figure 9. Boundary Elements Model (BEM) for the resonant structures on an elastic medium: (a) BEM for the soil layer; (b) SDOF oscillator for the resonant
structures of the city and details of the coupling with BEM soil layer. The arrangement and size of the oscillators in panel (a) and deformation of the surface
in panel (b) are purely illustrative.

elements (Padrón et al. 2004) is applied to the small-scale experimental setup as an independent study-case. This section presents briefly the
modelling assumptions made in the numerical model; their similarities and differences with those from the CIM; and the numerical procedure.

6.1 Boundary elements soil-city model

The direct BEM is used to analyse the elastic substrate (domain �BEM), while the resonant structures are modelled as linear-elastic 1-D
horizontal oscillators.

BEM layer. The material domain �BEM has the same dimensions as the foam block in the experimental setup (Fig. 9a). Like the layer in
the CIM, it has the same physical properties as those found experimentally (density ρ = 49 kg m−3, damping ξ s = 4.9 per cent and Poisson’s
ratio ν = 6 per cent) while the shear modulus μ = 46.5 kPa is such that the elastic substrate (with the boundary conditions detailed hereafter)
has the same shear eigenfrequency 9.36 Hz as the experimental foam block (with the edge rods). The following boundary conditions are
applied to the domain �BEM: The horizontal harmonic displacement ub is imposed at the lowermost edge while the top surface � (ignoring
the resonant structures) and the lateral surfaces are free. To take into account the effects of the edge rods that prevent the gyration of the
top surface in the experiments, any vertical displacements are prevented near the edges X = ±1.065 m on the top surface, see Fig. 9(a). As
a result, the field here-after computed takes into account phenomena that have been left aside by the CIM (the correctors in the asymptotic
expansions) and the finite lateral extension of both the elastic medium and the city (not accounted for in the site-city interaction model
described in Section 4.2). The application of the BEM to the plane viscoelastic problem in the frequency domain leads to an algebraic system
of equations in the following form, see for example, Domı́nguez (1993):

Hu = Gt (26)

where u and t stand for the vectors of nodal displacements and tractions, respectively, and H and G are the matrices of influence. The coefficients
of these latter are obtained by integration of the corresponding products of shape functions by the fundamental solution in tractions and
displacements, respectively. In this study, three-nodded quadratic elements have been used in the discretization of the boundaries.

City model. To ease comparison with the CIM, each resonant structure in the numerical model is reduced to the same horizontal SDOF
oscillator as those used in the CIM, see Fig. 9(b). The modal mass mo of the structure is localized at the ‘free’ node of the element while
the inert mass mi is localized at the node where the oscillator is clamped to the elastic substrate. The steady-state harmonic response of the
resonant structures can be described by the classic formulation:

(K̄ − iωC − ω2M)U(ω) = K(ω)U(ω) = F(ω) (27)

where K̄, C and M are the global stiffness, damping and mass matrices respectively and F is the external load vector. As would be done
for in-situ measurements, the resonant structures are characterized by the apparent resonance frequency and the damping ratio measured
from the experimental transfer function usheet/u� of the resonator. As a result, in both the CIM and the numerical model, the stiffness K
of the representative SDOF oscillator is chosen so that the eigenfrequency ωo = √

Ko/mo coincides with the experimental one (for each
city-configuration) and the coefficient c is such that the damping ratio is the same as the experimental one, that is, ξ = c/2

√
K mo = 4 per cent.

6.2 Numerical procedure

Soil-city coupling. The coupling between the domains �BEM and the SDOF oscillators is made through plane rigid surfaces �c, perfectly
bonded to the surface �, and which stand for the rigid foundations of the resonant structures, see Fig. 9(b). Kinematic compatibility conditions
and equilibrium are established between the boundary elements of a surface �c and the rigid foundation of the structure attached to it. The
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1018 L. Schwan et al.

kinematic compatibility among the boundary element nodes of one rigid coupling surface (3 quadratic elements per rigid footing �c) and the
clamped node of one resonant-structure can be described by the 2N × 3 compatibility matrix Di as:

uci = Di ubi , (28)

where ci refers to the set of boundary nodes on the ith rigid coupling surface and bi to the node at the base of the structure coupled to it, and
where uci and ubi are vectors of 2N and 3 components respectively, N being the number of boundary nodes in the rigid coupling surface. On
the other hand, equilibrium between the resonant-structure and its foundation can be expressed through a 3 × 2N equilibrium matrix Ci as:

fbi = Ci tci , (29)

where fbi and tci are vectors of 3 and 2N components respectively, fbi being the forces acting at the base of the ith structure.
Resolution. Using eqs (28) and (29) to couple the boundary elements and the SDOF oscillators systems, and after application of boundary

conditions and reordering, the equations describing the dynamic response of the system can be written as in eq. (30), where n is the number of
resonant-structures; indexes s and g refer, respectively, to structure and boundary-element nodes not allocated on coupling rigid boundaries;
HgD j = Hgc j D

j and HDi j = Hci c j D
j . The quantities A, B and x arise from the application of boundary conditions on the boundary element

equations and reordering, where xf is the vector of unknowns in the boundary element nodes on �f, that is, not allocated on coupling rigid
boundaries. The resolution of this linear algebraic system of equations for each excitation frequency yields the nodal solution at all points of
interest. See Padrón et al. (2004) for more details about the coupling.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1
ss · · · 0 K1

sb · · · 0 0 0 · · · 0

...
. . .

...
...

. . .
...

...
...

. . .
...

0 · · · Kn
ss 0 · · · Kn

sb 0 0 · · · 0

K1
bs · · · 0 K1

bb · · · 0 0 C1 · · · 0

...
. . .

...
...

. . .
...

...
...

. . .
...

0 · · · Kn
bs 0 · · · Kn

bb 0 0 · · · Cn

0 · · · 0 HgD1 · · · HgDn Agg −Ggc1 · · · −Ggcn

0 · · · 0 HD11 · · · HD1n Ac1g −Gc1c1 · · · −Gc1cn

...
. . .

...
...

. . .
...

...
...

. . .
...

0 · · · 0 HDn1 · · · HDnn Acn g −Gcn c1 · · · −Gcn cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

us1

...

usn

ub1

...

ubn

xf

tc1

...

tcn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

0

...

0

Bgg

Bc1g

...

Bcn g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

7 R E S U LT S A N D D I S C U S S I O N

In this section, experimental results are presented and compared to both the CIM and the BEM. The discussion focuses in particular on the
phenomena predicted theoretically by the CIM.

7.1 Kinematic homogeneity

According to the CIM, the long-wavelength displacement field prevails in the elastic medium, thus ensuring a kinematic homogeneity in the
layer and a group-effect in the response of the city. The kinematic homogeneity in the city configurations 1, 4 and 5 is evidenced in Fig. 10
for the layer top surface and in Fig. 11 for the resonators. Fig. 10 shows, both in the time and frequency domain, the accelerations recorded in
the direction X by four accelerometers located at the top surface of the foam block, in response to a Ricker wavelet prescribed in the direction
X. Fig. 11 shows the same for the accelerometers located at the top of the instrumented resonators.

As expected, records realized at the top-surface of the foam block are nearly similar and synchronized, whether there are 37 resonators
(Fig. 10a), or 5 resonators (Fig. 10c), or a single resonator on the surface (Fig. 10e). Similar comments can be made about the records
realized at the top of the resonators, see Figs 11(a), (c) and (e). In particular, note that all the instrumented resonators oscillate in phase with
one another. These results bear testament to the quasi-homogeneous horizontal translation of the top-surface and to the subsequent in-phase
response of the resonators. These properties have been observed experimentally for the other city-configurations 2 and 3 (see Fig. 7), for
other excitations (white noise, sinusoidal waveform) applied either in the direction X or Y. The numerical model provides similar results too
(checked on every structure).

The similarity in the different records realized at the top-surface of the foam block for a given city-configuration leads to similar transfer
functions between the acceleration measured at different points of the surface and that on the shaking table, see Figs 10(b), (d) and (f).
The only noticeable difference between these transfer functions for a given city-configuration is the amplification of the acceleration at the
surface as the accelerometer is closer to the edge of the foam block. This parasite edge effect, which is apparent for a single resonator in
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Site-city interaction: a crossed-analysis 1019

Figure 10. Kinematic homogeneity at the surface of the layer. (a, c, e) Accelerations recorded on the layer top surface by accelerometers 1 to 4 and at the
shaking table in the direction X for the city-configuration 1, 4 and 5 in response to a Ricker wavelet prescribed to the shaking table in the direction X. Low-pass
filter [0, 30] Hz applied to the records. (b, d, f) Modulus of the transfer function in the direction X between the layer top surface motion (recorded by the
accelerometers 1 to 4) and that of the shaking table for the city-configuration 1, 4 and 5.

Fig. 10(f), is also present without resonators (not presented here). It affects in similar proportions the transfer functions in the presence of
the city-arrangements. Note that signals and spectra of accelerometers 1 and 4 are almost identical, which can be attributed to symmetry
in the X direction. The transfer functions between the top of different resonators and the shaking table are also nearly identical for a given
city-configuration. The small discrepancies can be attributed to: The parasite edge-effect of the foam block, which excites slightly differently
the resonators closer to the edge than those at the centre of the foam surface; and the difference in the resonators themselves, inherent to the
experimental realization.

Those observations are coherent with the macroscopic motion in the layer and the collective behaviour of the resonators that the
theoretical model predicted at the leading order under the condition of scale separation. That situation is actually different from that observed
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1020 L. Schwan et al.

Figure 11. Kinematic homogeneity of resonators’ response. (a, c, e) Accelerations recorded at the top of resonators A to D and at the shaking table in the
direction X for the city-configuration 1, 4 and 5 in response to a Ricker wavelet prescribed to the shaking table in the direction X. Low-pass filter [0, 30] Hz
applied to the records. (b, d, f) Modulus of the transfer function in the direction X between the resonators top motion (resonators A to D) and that of the shaking
table for the city-configuration 1, 4 and 5.

at higher frequencies, where the signature of site-city interactions is the desynchronized motion of the structures, as reported for example
by Ghergu & Ionescu (2009), Uenishi (2010) and Volkov & Zheltukhin (2015). In particular, inhomogeneous modes whereby consecutive
resonant-structures would be in phase-opposition, cannot be excited in the system within the frequency range of interest: They would require
a surface motion with a characteristic length of variation O(
) at the dominant order, which is prohibited here due to the scale separation.
This kinematic homogeneity also justifies the use of the records from the central accelerometer 1 on the layer top-surface and that at the top
of the central resonator A as representative experimental data in the following.
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Site-city interaction: a crossed-analysis 1021

7.2 Site-city effects in the frequency domain

Site-city effects are evidenced in the frequency domain in Fig. 12 for the city configuration 1 with 37 resonators: It shows the transfer functions
between the top surface of the layer and the shaking table in both directions X and Y and also that between the top of the central resonator
and the shaking table in the resonant direction X. The transfer function |usheet/u�| of the resonators is also shown. As expected from the CIM
(see Section 4.2), soil/city interactions lead to the split of the layer resonant peak in the direction X of city resonance while the layer’s transfer
function is the usual single peak in the direction Y where the city remains inert. Other phenomena concern the amplitude reduction and the
atypical phase in the direction X. These experimental results are in very good agreement (both in amplitude and phase) with the predictions
from the CIM and with the numerical results from the BEM (direction X only). Both models are in excellent agreement with one another.

The convolution between the layer top-surface motion and the resonator transfer function in the direction X of resonance (eq. 20 and
Figs 12g–h) leads to the resonator’s motion shown in Figs 12(e) and (f). The spectrum displays two atypical phenomena compared to that of
an isolated resonator on the layer: (1) the resonant peaks correspond neither to the resonator’s resonance (eigenfrequency at 8.45 Hz) nor to
the layer resonance; and (2) the broadband flat response of the resonator around its eigenfrequency (the city eigenfrequency), has an amplitude
|usheet/ub| = O(χ/η) that can be explained neither by the resonator structural damping ξ nor by the layer’s damping ξ s.

7.3 Site-city effects in the time domain

The unconventional response in the frequency domain gives rise to atypical records in the time domain. To evidence it, Fig. 13 shows the
accelerations recorded at the top surface of the layer in the directions X and Y when a Ricker wavelet is prescribed to the shaking table in either
of those directions. For comparison, the signals are plotted for the city-configuration 1 with 37 resonators, and for the configuration 5 with a
single resonator. In the direction X of city-resonance, the records exhibit lower accelerations and beatings compared to the usual exponentially
decreasing oscillations (similarly to that of a layer with a free surface) recorded in the direction X when only a single resonator is present, and
in the direction Y, whether with 37 resonators or a single resonator, due to the non-resonant behaviour of those on the direction Y. Signals
are synthesized at the layer top-surface with the CIM and the BEM (direction X only) from the Ricker wavelet recorded at the shaking table.
Fig. 13 shows that both the theoretical and numerical models describe the site-city effects in the time domain with a good accuracy. Note
that the signals synthesized with the CIM in the case of a single resonator on the surface are those of the layer with a free surface: A single
resonator does not modify (significantly) the incident field, while the city-arrangement with 37 resonators does.

7.4 Mode shapes

The unconventional features of the layer transfer function in the direction X of city-resonance is associated with specific soil/city mode
shapes when a harmonic motion is imposed by the shaking table. Fig. 14 shows those mode shapes at four particular frequencies: out of
resonance (5 Hz), at the coupled-soil-city resonance-peaks (around 6.7 Hz and 10 Hz) and at the city-resonance (around 8.4 Hz) close to the
eigenfrequency of the layer with a free surface. The mode shapes correspond to the horizontal displacement field in the layer at the time
t0 when the layer experiences the largest displacement. The displacement has been normalized by the amplitude of the harmonic motion
prescribed at the shaking table. The displacement of the resonators has been plotted too, using the eigenfunction of a bending beam at its
first mode. Out of resonance the behaviour is conventional: for instance at 5 Hz the set-up follows the shaking table in a quasi-static way. At
the two coupled soil-city resonance peaks, the layer is at resonance with the usual quarter-wavelength shape while the resonators oscillate
in phase (first peak around 6.7 Hz) or in phase opposition (second peak around 10 Hz) with the block. At city-resonance, the surface is
nearly stationary while the resonant-structures oscillate. Without the resonant mass of the city, the layer resonance should occur around this
frequency. But due to the city-resonance, the surface is a node in the mode shape, as for a rigid surface condition. These experimental results
are compared with mode shapes provided by the CIM, eq. (24), and by the BEM (nodal displacement at the free lateral surface of the elastic
medium). Both models are in qualitative and quantitative agreement with experimental results and with one another.

7.5 Depolarization

As it has been pointed out in Section 4.1, the anisotropic behaviour of the city leads to atypical depolarization effects, even in a homogeneous
medium without topological singularities. Since the city anisotropy induces significant differences between the transfer functions in the
directions X and Y (Fig. 12), depolarization can be demonstrated with harmonic motions Ub (at specific frequencies) prescribed to the shaking
table in directions that stand out of the city principal axes X and Y. Figs 15(a)–(e) show the acceleration polarization at the top surface of the
layer in response to harmonic excitations applied in the horizontal direction at the angle 45◦ counted from the direction eX , for five different
frequencies: out of resonance (5 Hz), at the coupled-soil-city resonance-peaks (around 6.7 Hz and 10 Hz) and at the city-resonance (around
8.4 Hz) and at the layer resonance in the Y direction (around 7.3 Hz), close to the city-resonance. Those results evidence that the top surface
motion U� can strongly depart from the direction of the input motion Ub.

First, in the frequency range around 8.4 Hz, the response spectrum along X is close to zero due to the city resonance, while the response
spectrum along Y is amplified by the resonance of the elastic layer. Consequently the top-surface motion U� is mostly polarized along Y, see
Figs 15(c) and (d). Second, in the frequency range around 10 Hz, the response spectrum along X is amplified by the second soil/city coupled
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1022 L. Schwan et al.

Figure 12. Comparison between the experimental results (EXP), the City-Impedance Model (CIM) and the Boundary Elements Model (BEM) in the frequency
domain for the city-configuration 1 with 37 resonators: (a) amplitude and (b) phase of the surface displacement u� in the resonant direction X, normalized
by table displacement ub in that direction; (c) amplitude and (d) phase of the surface displacement u� in the non-resonant direction Y, normalized by table
displacement ub in that direction; (e) amplitude and (f) phase of the displacement usheet at the top of the resonator in the resonant direction X, normalized by
table displacement ub in that direction; (g) amplitude and (h) phase of the displacement usheet at the top of the resonator in the resonant direction X, normalized
by surface displacement u� in that direction. Experimental data from central accelerometer 1 on the foam block and central resonator A.
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Site-city interaction: a crossed-analysis 1023

Figure 13. Comparison between the experimental results (EXP), the City-Impedance Model (CIM) and the Boundary Elements Model (BEM) in the time
domain: (a, b) for the city-configuration 1 with 37 resonators; (c, d) for the configuration 5 with a single resonator. (a, c) Experimental records (central
accelerometer 1) and synthesized signals in the direction X of city-resonance, at the surface of the elastic layer in response to a Ricker wavelet prescribed to
the shaking table in the same direction. (b, d) Experimental records (central accelerometer 1) and synthesized signals in the direction Y at the surface of the
elastic layer in response to a Ricker wavelet prescribed to the shaking table in the same direction.

resonance, while the response spectrum along Y has passed its resonance and is decreasing. As a result, the top-surface motion U� is mostly
polarized along X, see Fig. 15(e). Note that at the first soil/city coupled resonance, the response spectra along X and Y are amplified in a similar
way (due to the resonance in the Y direction) but the phase difference between the two principal directions induce an elliptical polarization,
see Fig. 15(b). Out of resonance, for example, around 5 Hz, the behaviour is conventional: The top-surface motion U� is polarized linearly in
the direction of the shaking table, Fig. 15(a).

All these observations concur with the CIM and evidence that the city can have a substantial effect on the polarization of the seismic
field. This is evidenced in the case of a broadband signal in Fig. 15(f) where a Ricker wavelet is applied in the horizontal direction at 45◦

from the direction X. This polarization can be seen as the combination of the two records given in Fig. 13. What could be regarded at first
as an erratic displacement is actually explained by the CIM. Moreover, recall that the shaking table signals is a short impulse: The complex
polarization pattern of the surface is the free response of the soil/city system to that impulse.

7.6 City density

The emergence of the Site-city phenomena are studied through a parametric study on the density of the city. For each city configuration
represented in Fig. 7, the transfer function between the layer top-surface and the shaking table is plotted in Fig. 16 in both directions X and Y;
the transfer function between the displacement at the top of the resonators and the shaking table in the direction X is plotted too, as well as
the transfer function between the displacement at the top of the resonators and the layer top-surface.

Fig. 16 shows that, for a given extension of the city, the denser the city, the stronger the effects. In the direction X, the peaks of soil/city
coupled resonance are more separated with lower amplitudes as the density increases. Only 5 resonators (configuration 4) are sufficient for
the site-city effects to be noticeable in the direction X; the effects are already significant with 9 resonators (configuration 3). In the direction
Y, only a decrease in the layer resonance frequency is significant, due to the added inert mass of the city, as explained in Section 4.2.
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1024 L. Schwan et al.

Figure 14. Comparison between the mode shapes from the experimental results (EXP), the City-Impedance Model (CIM) and the Boundary Elements Model
(BEM) for the city-configuration 1 with 37 resonators. Deformation profile in the direction X represented on a slab of layer and one resonator: (a) below
resonance; (b) at the first soil-city resonance; (c) at the resonance of the city; (d) at the second soil-city resonance. The system without deformation has been
represented for reference. Experimental data is obtained in the time domain by central accelerometers 1, 7 and 8 on the foam block and central resonator A, in
response to a harmonic motion imposed to the shaking table. The measured accelerations have been normalized by the amplitude of the harmonic input motion
and are represented here at the time t0 when the layer experiences its largest displacement.

Figure 15. Accelerations recorded at the surface of the foam block (central accelerometers 1) and the shaking table in the directions X and Y for the city-
configuration 1 with 37 resonators in response to (a–e) sinusoidal signals with 100 cycles and (f) a Ricker wavelet, prescribed to the shaking table in the 45◦
direction. Polarization of the particle acceleration represented: (a) below resonance; (b) at the first soil-city resonance in X; (c) at the soil resonance in Y; (d)
at the resonance of the city in X; (e) at the second soil-city resonance in X. Comparison with the surface accelerations provided by the City Impedance Model
(CIM) in response to similar excitations. The arrow provides the orientation of polarization.
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Site-city interaction: a crossed-analysis 1025

Figure 16. Experimental transfer functions for the city-configurations 1 to 5 with 37, 19, 9, 5 and 1 resonators respectively: (a) amplitude and (b) phase of
the surface displacement u� in the resonant direction X, normalized by table displacement ub in that direction; (c) amplitude and (d) phase of the surface
displacement u� in the non-resonant direction Y, normalized by table displacement ub in that direction; (e) amplitude and (f) phase of the displacement usheet at
the top of the resonator in the resonant direction X, normalized by table displacement ub in that direction; (g) amplitude and (h) phase of the displacement usheet

at the top of the resonator in the resonant direction X, normalized by surface displacement u� in that direction. Experimental data from central accelerometer
1 on the foam block and central resonator A.
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1026 L. Schwan et al.

Another significant phenomenon is the resonance frequency shift and split observed in Figs 16(g)–(h), with transitional configurations
2 and 3 being of particular interest. Indeed, as the city-density increases, the apparent resonance frequency of the city increases too. This is
due to a reduction of the boundary layer flexibility under the foundations as the city gets denser, see eq. (16), in particular that regarding
the rotation of the foundations. Models can be proposed to quantify that effect (Schwan 2014) but they are out of the scope of this paper.
Instead, as it has been explained in Section 6.1, the eigenfrequency of the resonators has been matched with that observed experimentally for
each city-configuration in the CIM and the BEM. Recall that the city-configurations satisfy all the elementary properties of the theoretical
model for site-city interactions (periodicity, extension over the whole surface of the layer) but the condition of a sharp scale separation
(except the configuration with 37 resonators). The CIM is applied nevertheless and its results are compared with the experimental and
numerical results: Fig. 17 shows the transfer functions of the layer thus obtained in the direction X of city-resonance. The CIM remains
accurate both qualitatively and quantitatively even for large periods �: In practice, the physical concepts underlying the phenomena under the
long-wavelength approximation are still pertinent under poor scale separations. The BEM is in good agreement with both the experimental
results and the CIM.

7.7 Discussion

Numerical and experimental validation of the CIM. The good agreement observed in Figs 10 to 17 between the analytical, experimental
and numerical results in the cross-section XZ and between the analytical and experimental models in the 3-D in general, validates the CIM
and clearly evidences the signatures of site-city effects predicted by the theory. To simplify the demonstration, the study has been focused
experimentally on plane shear waves. However, the presented CIM applies for wavefields of any kind, provided that the scale separation is
satisfied. Furthermore, to comply as closely as possible with the basic assumptions of homogenization, periodic arrangements of resonators
have been considered. Note however that when the scale separation is sharp, periodic or non-periodic spatial distribution lead to similar
macroscopic behaviour (Auriault et al. 2009). This idea is supported by a large range of complementary parametric experiments (Schwan
2014) that show the robustness of the concept of city-impedance and the possibility to combine phenomena related to different resonator
arrays (which would make the subject of another article). Recall however that the notion of effective impedance relies on the existence of
a scale separation under the long-wavelength approximation; other phenomena can occur at high frequencies, as presented for instance by
Ghergu & Ionescu (2009); Uenishi (2013); and Volkov & Zheltukhin (2015).

Moreover, the theoretical CIM is, in essence, 3-D. This particularity allowed Boutin & Roussillon (2006) to predict the depolarization of
elastic waves by anisotropic structures: Such depolarization effects necessarily require a 3-D model to be explained. In order to evidence clearly
those depolarization effects, the present study has been focused experimentally on strongly anisotropic structures. This strong anisotropy
allowed the application of a 2-D boundary element formulation in order to study the system in the cross-section XZ. In that plane, the
numerical, analytical and experimental models are comparable and a very good agreement is observed between them. However, the 2-D
numerical model is limited to the cross-section XZ and cannot account for the depolarization.

Make models comparable. The present study aimed at isolating the site-city interactions in a well-controlled idealized environment in
order to discriminate and characterize the phenomena of multiple SSSIs. In particular, the analytical formulation of the CIM enabled the
design of an analogous prototype, wherein attention has been paid for the experimental and numerical models to share a common set of
properties with the theoretical model, so that the three of them are comparable. One particular aspect of it lies in the boundary conditions
applied in the experimental model (paragraph 5.1) and numerical model (paragraph 6.1) so that the theoretical horizontal kinematic of a layer
(with infinite lateral extension) is recovered for the elastic block without the city for every model (e.g. see Figs 17a and b for the response
of the layer top-surface with a single resonator). That involves restraining the vertical motion with edge rods in the experimental model,
and preventing it near the edges at the block top-surface in the numerical model. Despite the good agreement between the models, some
minor discrepancies can be found in Figs 12 and 17, in particular regarding the frequency of the second resonance peak in the direction X
in the presence of the resonators. Moreover, the differences between the analytical (CIM) and numerical (BEM) models remain small for all
city-configurations, while they are more significant between these two and the experimental results. At this stage, several hypotheses can be
formulated to explain those discrepancies, which would require further analyses: The inherent dispersion of the resonators’ modal properties
in the experimental realization which could widen the frequency range of the city-resonance; the reduction of the resonators’ behaviour
to a mass-spring oscillator in the theoretical and numerical models (moments of inertia are neglected); the effects of the correctors in the
asymptotic approach, and in particular the effects of the rocking of the foundations; the boundary conditions applied to the elastic medium,
which differ in the way stresses are balanced near the edges; and numerical approximations associated with the discretization performed in the
boundary element model. Besides, the limited expression of additional kinematics of the elastic block at higher frequencies (around 11.5 Hz)
can also be noted in Fig. 16, which are not accounted for in the models.

Example of handy application. The analytical model provides the key parameters (scale parameter at resonance εo; the parameter η;
and the buildings’ damping ξ � 1) that can be used as indicators to help find building arrangements which favour multiple SSSIs in urban
landscapes or industrial plants. This idea is illustrated by considering a group of identical nearby-buildings, the characteristics of which are
taken from Hans et al. (2005): they are 43.2 m high (15 storeys), 31.4 m long and 13.4 m wide, with the linear mass 110 t/m in height, the
eigenfrequency 1.56 Hz and the damping ξ = 1.5 per cent. The buildings are supposed to be separated by a 10 m wide gap (period � = 
 × L,
with 
 = 23.4 m and L = 41.4 m) and to be built on a soil with the density and shear-wave velocity of the order ρ ∼ 1800 kg m−3 and
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Site-city interaction: a crossed-analysis 1027

Figure 17. Amplitude (left) and phase (right) against frequency of the surface displacement u� in the resonant direction X, normalized by the table displacement
ub in that direction. Comparison between the experimental results (EXP), the City-Impedance Model (CIM) and the Boundary Elements Model (BEM): (a, b)
city-configuration 5 with 1 resonator; (c, d) city-configuration 4 with 5 resonators; (e, f) city-configuration 3 with 9 resonators; (g, h) city-configuration 2 with
19 resonators. Experimental data from central accelerometer 1 on the foam block.

cs ∼ 250 m s−1. The key parameters take the values: εo = 
ωo/cs ≈ 0.88 < 1 and η = moωo/(|�|ρcs) ≈ 10 per cent. The scale parameter
εo suggests that the impedance model can be applied (despite a poor scale separation) while the ratio η/2ξ ≈ 3 suggests significant
multibuilding interactions.

Comparison with other studies. The same procedure can be applied to configurations considered in other studies. For example, Kham
et al. (2006) analysed numerically, by means of a 2-D boundary element method, the effect of up to 33 building-like blocks arranged
periodically at the surface of an elastic basin over a distance of 500 m (building spacing is around 15 m). They showed that a group effect
among the buildings led to a ground motion reduction which was enhanced by higher densities. Those numerical observations are similar to

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/205/2/1006/686293 by U

N
IV LAS PALM

AS D
E G

 C
AN

AR
IA user on 30 N

ovem
ber 2018



1028 L. Schwan et al.

those obtained in the present paper. Actually, with a frequency range below 2 Hz and a shear-wave velocity around 200 m s−1, the scale factor
is below 0.95 in this case, which suggests that the CIM could be applied in that configuration. The interaction parameter η ∼ 17 per cent
assessed from the material properties found in their article, associated with the building damping ξ = 5 per cent leads to η/(2ξ ) ∼ 1.7 which
indicates significant interactions, as testified by their numerical simulations.

Another example is given by Isbiliroglu et al. (2015) who analysed, by means of sophisticated finite element techniques, the 3-D response
of up to 9 × 9 = 81 isotropic building-like blocks arranged periodically in a square pattern at the surface of a realistic geological stratification.
The presence of a double peak can be observed in the spectrum of the motion at the top of the buildings. Moreover, little variability can be
observed in the response spectra from one building to another in the low frequency range. That probably bears testament to similar group
effects than those studied in the present study, despite the complex geological structures. In fact, in the frequency range around 1 Hz, for
shear-wave velocity around 300 m s−1 and with building spacings of 20 m to 40 m, the scale parameter ranges from 0.42 to 0.84 approximately,
which suggests once again that the CIM could be applied in that configuration to analyse those phenomena.

On the other hand, the 2-D situations described by Tsogka & Wirgin (2003), extended by Groby et al. (2005) for viscoelasticity, and the
wide range of city configurations described by Groby & Wirgin (2008), do not seem within the scope of the present CIM. In those studies,
the city is settled on 50 m thick soft soil layer (shear-wave velocity c1 = 60 m s−1), resting on a half-space bedrock (shear-wave velocity
c2 = 600 m s−1). For building-spacings 
 ≥ 60 m and a frequency range around ω/(2π ) ∼ 0.5 Hz, the scale parameter in the soft layer is

ω/c1 ≥ 3. These configurations are far beyond the scale separation that the CIM requires.

8 C O N C LU S I O N S

The specificity of the present study lies in the coincidence within the same frequency range of a long-wavelength dynamics in the soil layer,
and the local resonance of the buildings. The surface resonance then leads to particular boundary conditions expressed through asymptotic
homogenization in terms of a frequency-dependent impedance matrix (potentially anisotropic). This phenomenon and its formulation depart
from the usual conditions of a free surface: The collective behaviour of city buildings can differ greatly from that expected from conventional
seismic analyses.

The fact that a city group effect can notably modify the seismic response of both the implantation site and the constitutive buildings has
been demonstrated experimentally, theoretically and numerically, with a systematic comparison between the three approaches. The particular
methodology made sure that the three of them are based on the same set of basic properties regarding the soil behaviour (linear elasticity), the
building models (SDOF oscillator), the city model (periodic arrangement of similar buildings), the frequency range of investigation (city/layer
co-resonance under scale separation) and the nature of the excitation. This study brings basic experimental data that clearly evidence a site-city
effect issued from up to 37 resonators arranged at the top of an elastic layer. Signatures of site-city interactions have been identified and
include in particular: Split resonance peaks in layer responses; beatings in records; and atypical (de)polarization of the surface motion in the
presence of anisotropic resonant structures. Site-city effects can be noticeable with as few as five structures.

The main interest of the CIM relies on the two following facts: (1) it pares the complexity of multibuilding interactions down to its
most crucial characteristics described explicitly in an analytical formulation issued from the fundamental principles of elastodynamics; and
(2) it allows the 3-D calculations at very low computation cost, particularly well adapted for preliminary analysis. Moreover, the complex
SSSIs at the city scale and the expected accuracy of the description are quantified by three parameters: The scale parameter at resonance εo;
the parameter η related to the impedance contrast between the city and the soil; and the damping ξ � 1 of the buildings. They are a-priori
indicators which can be assessed before any sophisticated simulations.

Certainly, the experimental setup considered here is quite far from the complexity of realistic geological sites and cities in many respects;
but it should be considered as a proof of concept for multistructure interactions among a large group of buildings. The next step would be to
bring these concepts in the field and identify site-city signatures in in-situ records. Once again, to help find favourable building arrangements
in urban landscapes or industrial plants, the aforementioned indicators can be assessed.
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A P P E N D I X : T W O - S C A L E A S Y M P T O T I C H O M O G E N I Z AT I O N O F T H E C I T Y

Following the homogenization method (Sánchez-Palencia 1980; Auriault et al. 2009), the fields are expanded in power of ε � 1 (orders are
specified in superscripts) such as

u(x) = u(0)(x) + εu(1)(x, y) + . . . ; (A1)

σ �(x�, y) = σ �(0)(x�, y) + εσ �(0)(x�, y) + . . . ; (A2)
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and similarly for the fields σ (x), F(x�), M(x�), t(x�, y), uS and θS . In accordance with the BL estimate in eq. (12), the expansion of u�(x�, y)
begins at the order ε:

u�(x�, y) = εu�(1)(x�, y) + . . . . (A3)

The expansions are introduced in eqs (4)–(9). Terms of equal power of ε are collected, providing problems that are solved in increasing order
of ε-powers. At the order ε0, the following holds:

σ �(0) = C : ey(u�(1)); (A4a)

divyσ
�(0) = 0; (A4b)

[σ (0) + σ �(0)].n = t(0)(x�, y�); (A4c)∫
S

t(0) dSy = F(0); (A4d)

∫
S

(y − yS) ∧ t(0) dSy = M(0); (A4e)

t(0) = 0 on �\S; (A4f)

u(0)
S = u(0); (A4g)

u�(1) = u�(1)
S + θ

(0)
S ∧ (y − yS) at S; (A4h)

σ �(0).n → 0 and u�(1) → 0 as |y · n| → ∞. (A4i)

The absence of inertial term in eq. (A4b) shows that the boundary layer equilibrium is quasi-static at the leading order. It indicates that
the boundary layer has a thickness O(
) � 	. Applying the divergence theorem and using the �-periodicity and evanescence of σ �(0), the
integration of (A4b) over the column � of medium normal to one period � (see Fig. 2) leads to∫

�

divyσ
�(0) d�y =

∫
�

σ �(0).n d�y = 0. (A5)

Since the stress field σ (0)(x) is uniform on � (area |�|):∫
�

σ (0).n d�y = |�|σ (0).n. (A6)

Besides, using eqs (A4d) and (A4f), the integration of the stress t(0) over the period � yields:∫
�

t(0) d�y =
∫

�\S
t(0) d�y +

∫
S

t(0) dSy = 0 + F(0). (A7)

Finally, integration of eq. (A4c) over the period � gives∫
�

σ �(0).n d�y +
∫

�

σ (0).n d�y =
∫

�

t(0) d�y. (A8)

Combining eqs (A5)–(A8), the effective boundary condition is derived for the long-wavelength field:

σ (0).n = F(0)/|�| on �. (A9)

As seen in Section 3.4, this condition is sufficient for a leading order description of the long-wavelength field. For a more accurate description,
the BL displacement at the foundation can be accounted for. In that aim, consider a test field û; using eq. (A4a), periodicity and evanescence
of the BL fields, the weak form of eq. (A4b) reads:∫

�

ey(û) : C : ey(u�(1)) d�y =
∫

�

û · (t(0) − σ (0).n) d�y. (A10)

Since û satisfies the rigid-body motion of the foundation:

û = ûS + θ̂ ∧ (y − yS) at S, (A11)

and using the boundary conditions (A4d), (A4f) and (A9), eq. (A10) can be re-written as∫
�

ey(û) : C : ey(u�(1)) d�y = (ûS − 〈û〉) · F(0) + θ̂ · M(0), (A12)
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where 〈û〉 = |�|−1
∫

�
ûd�y is the mean value of û over the period �. Eq. (A12) shows that the energy of elastic deformation results from

the work of the force F(0) and moment M(0) within BL foundation kinematics. The problem being linear with F(0) and M(0) as independent
source terms, the BL field u�(1) takes the following form:

u�(1) = a�(1).F(0) + b�(1).M(0), (A13)

where a�(1) = ∑
j e j ⊗ a�(1)

j and b�(1) = ∑
j e j ⊗ b�(1)

j are matrices, the column vectors a�(1)
j and b�(1)

j of which are defined as the unique
solutions of eq. (A12) for unit forces F(0) and moments M(0) applied in the direction e j , respectively:∫

�

ey(û) : C : ey

(
a�(1)

j

)
d�y = (ûS − 〈û〉) · e j ; (A14a)

∫
�

ey(û) : C : ey

(
b�(1)

j

)
d�y = θ̂ · e j . (A14b)

Using the BL field itself as the test field, that is, û = u�(1), in these last equations, the BL translation u�(1)
S − 〈u�(1)〉 of the foundation and

its rotation θS are found in the form:

u�(1)
S − 〈u�(1)〉 = S�(1)

t .F(0) + S�(1)
c .M(0); (A15a)

θS = S�(1)
c .F(0) + S�(1)

r .M(0); (A15b)

where the components (j, k) of the symmetric matrices of flexibility S�(1)
t , S�(1)

c and S�(1)
r read:

S�(1)
t

∣∣∣
jk

=
∫

�

ey

(
a�(1)

k

)
: C : ey

(
a�(1)

j

)
d�y; (A16a)

S�(1)
c

∣∣
jk

=
∫

�

ey

(
a�(1)

k

)
: C : ey

(
b�(1)

j

)
d�y; (A16b)

S�(1)
r

∣∣
jk

=
∫

�

ey

(
b�(1)

k

)
: C : ey

(
b�(1)

j

)
d�y. (A16c)

These lead to the relation in eq. (16) after scaling:

St = S�
t + 〈a�〉; Sc = S�

c + 〈b�〉; (A17a)

S ′
c = S�

c ; Sr = S�
r . (A17b)
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