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A New Image Quality Index for Objectively
Evaluating Despeckling Filtering in SAR Images
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Abstract—Synthetic aperture radar (SAR) images are cor-
rupted with a multiplicative granular-like noise pattern known as
speckle. The goal for a despeckling filter consists of suppressing
the speckle while preserving all the scene features such as tex-
ture, point-type targets, and, especially, edges. There exist several
speckle filtering techniques and a relevant number of image qual-
ity indexes to evaluate the performances of a filtering operation
on an SAR image. However, assessing the superiority of a filter
over other is not a trivial issue. In this work, we present a new
referenceless estimator (αβ-ratio estimator) based on the ratio
edge detector which allows helping in objectively evaluating a fil-
ter realization on SAR images. The proposed estimator operates
on the ratio image obtained as the point-to-point ratio between the
original image (noisy image) and the filtered image. An ideal fil-
ter operation on an image implies that, in areas where speckle is
fully developed, the ratio image should have the features of pure
speckle and no geometric content. The new estimator measures
the remaining geometric content within the ratio image. This new
estimator is easy to compute and it provides an excellent metric to
rank a filtering operation on real SAR images.

Index Terms—Image-quality index, ratio images, speckle,
speckle filtering, synthetic aperture radar (SAR).

I. INTRODUCTION

S AR SYSTEMS generate images by coherent processing of
the scattered signals and consequently, they are susceptible

to speckle noise [1]. Speckle is not truly a noise in the sig-
nal processing sense and it indeed provides useful information.
However, speckle makes SAR images more difficult to interpret
and filtering is required to better improve postprocessing steps
such as image segmentation or image classification [2].

Speckle filtering for SAR images is a very active area
of research since the years when some of the most known
filters were low-pass averaging filters, filters based on under-
lying image statistics [3], and diffusion-like filters [4]. New
approaches based on the nonlocal-means (NL-means) filters
minimizing a Bayesian risk to reduce white Gaussian noise
have appeared recently [5] and from that, their natural exten-
sion are known as Bayesian NL-means filters [6] which aim to
reduce the Bayesian risk by estimating the prior probability on
the noisy image patch.

However, as it is well accepted, there is no ideal despeckling
filtering. To establish the superiority of any despeckling filter
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over others is not a trivial issue even for those cases where a
ground-truth image (commonly a synthetic image) to compare
results with is available. Sometimes, there is no special inter-
est to obtain the optimal filtered image. In [7], the user guides
the design of an NL-means Bayesian filter to get not an opti-
mal design but his desired design, i.e., a subjective solution
satisfying the user’s criteria.

Despeckled images are usually evaluated using some image
quality index. A large body of literature exists regarding such
indexes. Among them, the peak signal-to-noise ratio (PSNR),
the β correlator [8], Pratt’s figure of merit (FOM) [10], and
the structural similarity (SSIM) index [11] are well established
and commonly used by researches within the SAR community.
To correctly evaluate an image quality index, a ground-truth
image (noiseless) is required, and for most real cases (real SAR
images), such a ground-truth image is not available.

For cases where this is not possible, the estimations of
image mean preservation and variance reduction (both esti-
mated in a user-selected homogeneous area) are mandatory.
Other researchers use the combination of those simple statis-
tical quality-indexes to define the equivalent number of looks
(ENLs), which must be as high as possible for the denoised
image. For a given image I and a chosen homogeneous region
of interest (ROI) with a mean value μ and a standard deviation
σ, the ENL is estimated by μ2/σ2. Larger ENL values indicate
stronger speckle rejection, i.e., an improved ability to tell apart
the different gray levels within the image. A new estimator,
blind/referenceless image spatial quality evaluator (BRISQUE)
[12] has recently appeared to overcome the problem of evalu-
ating a filtered image without needing a ground-truth reference
image. This estimator is intended for additive Gaussian noise.

In this paper, we deal with real images when no ground-truth
image is available to assess the performance of a speckle-
filtering operation on real SAR images.

We propose a new referenceless image estimator for real
SAR images. The proposed estimator operates on the ratio
image obtained as the point-to-point ratio between the orig-
inal image (noisy image) and the filtered image. The use of
ratio images to evaluate a filtering operation is common in
recent publications [5], [13], [7]. This is also becoming a stan-
dard analysis in the SAR community and it consists of visually
inspecting the regularity pattern shown in the ratio image and
estimating the ENL in a homogeneous area within this ratio
image. An ideal filter operation on an image implies that, in
areas where speckle is fully developed, this ratio should show
the features of pure speckle [8]. The ENL estimated should
approach to the ENL of the original SAR image. According
to the multiplicative model [9], the mean of the speckle is 1.

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1298 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 3, MARCH 2016

Therefore, for an ideal filtering, the mean of the ratio image
should also be 1.

Our main goal in this work is to provide an efficient estimator
to objectively evaluate a filtering operation in SAR images. We
remark that the new estimator can be used exclusively to better
design a given despeckling filter through the ranking of multiple
objectively evaluations spanning into filter design parameters.
We present some results dealing with this important application
of the proposed estimator. Besides, although we do not focus on
comparing well-established despeckling filters, it is tempting
to apply the new estimator to rank a filtering operation on real
SAR images. Some promising results pursuing this goal are also
shown.

Although not explored in this paper, the proposed reference-
less estimator may also be embedded into the design of the
filter, taking advantage of the objectively evaluation it provides,
to enhance the capabilites of a despeckling filter.

This paper is organized as follows. In Section II, some fil-
tering results for a real SAR image are presented to fully
justify this work. Section III deals with the standard ratio
edge detector for detecting edges in SAR images and its adap-
tion to detect edges in ratio images. The new image-quality
index, the αβ-ratio estimator, is also discussed in this section.
Section IV shows some results for real SAR images, and finally,
in Section V, some conclusion is drawn.

II. SOME RESULTS FOR COMMONLY APPLIED

DESPECKLING FILTERS

In this section, some examples using well-established SAR
despeckling filters are provided to justify the need of a new
referenceless image quality estimator to evaluate a filtering
operation on an SAR image.

To point out the need of a new referenceless image qual-
ity index for SAR images, we show in Fig. 1 some results
for the real SAR intensity image (top left) correspond-
ing to a ROI (500× 500 samples) of the 1-look HH SAR
(Oberpfaffenhofen, Germany). This image contains clear-cut
areas, bright scatterers, urban areas with geometric content
(buildings, roads), and homogeneous areas. As seen, the chosen
ROI for the quantitative test corresponds to a forest area.

The results using the original Lee filter [14] (top right) and
the speckle reducing anisotropic diffusion (SRAD) filter for two
filtering designs (bottom left and bottom right, respectively) are
also shown in Fig. 1.

The Lee filter is an adaptive filter specially designed to elim-
inate speckle noise while preserving edges and point features
(like strong reflectors) in SAR images. This filter uses a lin-
ear speckle noise model and its purpose is to reduce speckle in
terms of minimizing the mean square error. The filter is adap-
tive in the sense that it proceeds by estimating locally the image
mean and the image variance within a small region (usually
a 3× 3 or 7× 7 mask) and combining this information with
the ENL of the image, which is an input parameter to the filter.
From that, the filter operates as an identity filter in edges, which
results in little modification to the pixel values near edges. In
homogeneous areas, the filter leads to the same result as that of
the mean filter.

Fig. 1. Real SAR image (top left). (Top right) Lee filter (mask size: 7× 7),
the SRAD filter (t = 15, bottom left), and overfiltered SRAD filter (t = 100,
bottom right).

The SRAD filter can be seen as a mixture of the classi-
cal anisotropic diffusion filter [15] and the adaptive speckle
Lee filter. The advantages of anisotropic diffusion include
intraregion smoothing and edge preservation, performing well
for images corrupted by additive Gaussian noise. However,
anisotropic diffusion, instead of reducing speckle, will enhance
it for those images containing such multiplicative noise. In [4],
the authors propose an anisotropic diffusion version of the Lee
filter showing the effectiveness of SRAD filter. SRAD filter bet-
ter preserves and will enhance edges while efficiently removes
speckle in homogeneous regions. As a notable difference from
other filters, SRAD filter is formulated in continuous domain
through a partial differential equation (PDE), which implies
that no convolution windows (masks) are needed. Due to that,
it operates simultaneously within the image and as a conse-
quence of that, the related computational cost is significantly
reduced.

The SRAD filter handles some input parameters: t, diffusion
time (number of iterations) and a local statistical estimate of
the speckle in a homogeneous area at each t, which it is conve-
niently avoided through the use of a function modeled by two
parameters. From that, it is clear that the SRAD filter needs to
be well designed to suit to images to be filtered. Fortunately, the
tuning of SRAD filter is not a hard task.

As it can be seen from results shown in Fig. 1, the Lee fil-
ter and the SRAD filter (t = 15) perform well on despeckling
the noisy image. Both filters preserve borders and the strong
reflectors (which are of most importance on SAR filtering) are
also kept. Quantitative results measured on the ROI shown in
the noisy image (top left) for the mean, and ENL estimators are
provided in Table 1. Note that ENL = μ2/σ2, so that standard
deviation is also estimated (but not shown in Table I).

Note that the overfiltered result shown on the bottom right
for the SRAD filter is visually far from the ideal solution (too
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TABLE I
QUANTITATIVE EVALUATION FOR THE REAL SAR IMAGE ESTIMATED IN

THE SELECTED ROI (BEST VALUES IN BOLDFACE)

much edge blurring). However, quantitative results (measured
in the single ROI shown in the figure) proclaim the opposite
(higher ENL value and a reasonable mean preservation value).
Additionally, visual result for the selected ROI is excellent.
Therefore, it is not obvious how to select an ROI (or a number of
ROIs) to get a mean preservation value and an ENL value con-
sistent with visual results. This overfiltered result for the SRAD
filter has been obtained using a larger diffusion time (t = 100)
and also tuning the filter parameters to avoid the well-known
salt and pepper noise related to these overfiltered cases for the
SRAD filtering operation.

To decide whether the Lee filter has produced a better result
than the SRAD filter is not an easy issue to answer. For
cases having a ground-truth image to compare results with,
numerical well-known estimators, such as FOM (Prattś FOM),
SSIM index, PSNR and so on, may help to assess the out-
performing of one filter over others. However, for real SAR
images there is, generally, no ground-truth image to compare
with, which makes more difficult to test a despeckling filter.
Note that the availability of the ground-truth image (phan-
tom) is reduced to academic study through filtering of synthetic
images. Additionally, it is impossible to include all the real-
ity expected in a real SAR image in a phantom, so filter
performances must be decided upon filtering real SAR data.

In author’s experience, given some results from several
despeckling filters, there are SAR experts that prefer one solu-
tion over the other [7]. Additionally, one may ask what the pur-
pose of such filtering is, because, one solution may be desired
in terms of the required image postprocessing operation (image
classification and edge segmentation) or in terms of demanding
a lower computational time. Besides, values for some estima-
tors may provide contradictory results (for instance, excellent
FOM values but poor SSIM and PSNR values) which strongly
complicates the analysis.

Additionally, for real SAR images, there is no ground-truth
image to compare with and therefore, any filtering operation
must be evaluated on the visual appearance (which is quite
subjective) and on the numerical estimators provided by the
ENL and the mean preservation and variance reduction figures.
It is this subjective evaluation for the visual inspection of fil-
tered images what we try to avoid by applying the proposed
ratio-based referenceless estimator.

A. Visually Inspection of Ratio Images

It is clear that no universal quality measure for filtered SAR
images exists. The use of ratio images to evaluate a filtering
operation is common in recent publications [5], [13], [7]. This

Fig. 2. Ratio images for the Lee filter with mask size 7× 7 (left) and the SRAD
(t = 15) filter (right).

is also becoming a standard analysis in the SAR community and
it consists of inspecting the regularity pattern shown in the so-
called aspect ratio image Π = U/V , where U is the SAR origi-
nal image and V is its denoised version. An ideal filter operation
on image U implies that, in areas where speckle is fully
developed, this ratio should show the features of pure speckle.

Additionally, for a reasonable despeckling operation, the
presence in the ratio image Π of geometric structures or any
detail correlated with the original image U indicates that some
possible relevant information (for instance, edges or bright
scatterers) have been removed or modified. Note that any con-
tent within the ratio image apart from pure speckle indicates
that some modification regarding the nonhomogeneous areas
(edges, mainly) has been performed by the filter. An ideal filter
would not alter such edges or bright scatterers and therefore,
ratio images would show a pure speckle pattern.

Therefore, following [8], for a noisy image (original SAR
image) with ENL = ENLnoisy (measured in a homogeneous
area) and corrupted by speckle with mean value 1, the best filter
is the one for which the ratio image has the ENLratio value
closer to ENLnoisy (ENLnoisy ≈ ENLratio) and the mean
value of the speckle measured in the ratio image μratio closer
to 1 (μratio ≈ 1).

In Fig. 2, the ratio images corresponding to the above filtered
images using the Lee filter and the SRAD filter (t = 15) are
illustrated. As it can be seen on these figures, clearly visible
geometric structures still remain, which indicates that despeck-
ling filtering (for both filters) has not been correctly performed.
As mentioned above, only speckle should remain and should be
the only information content of the filtered images.

Note that the geometric contents for both filters are compa-
rable, although for the SRAD filter, the content appears notably
less marked.

III. RATIO EDGE-BASED ESTIMATOR FOR SAR IMAGES

From above, it is clear that some information is available
within the ratio images apart from the pure visual one. In pre-
vious works, these images are either only evaluated visually,
showing the ratio images and pointing out the remaining geo-
metric content [7] or numerically by means of the evaluation of
speckle statistics. For instance, in [8], the ENL values are mea-
sured in the ratio images and compared to the ideal expected
ones. In [13], the ratio images are visually inspected and the
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Fig. 3. Edges extracted by using Canny’s detector for the ratio images for the
Lee filter with mask size 7× 7 (left) and the SRAD (t = 15) filter (right).

expected value of intensity ratio is considered. But a sound
analysis combining both estimates (visual and numerical) has
not been done.

It seems natural to try to detect geometric content within the
ratio image and to measure it in order to provide a quantitative
figure. This is explained in Section III-A.

A. Measuring the Geometric Content in Ratio Images

To detect the amount of geometric content within the ratio
images, i.e., to provide a numerical score for a given ratio image
would be of maximum interest. In that manner, it will allow to
objectively decide which filtering operation has better removed
speckle from the original noisy image.

To extract the geometric content from the ratio image, several
approaches were tested. Among them, statistical analysis of the
ratio image under some probability density function (pdf) dis-
tributions, histogram analysis, and also texture analysis were
explored. However, the results obtained were not convincing
enough or easy-to-apply to implement a practical image quality
index. Then, a first attempt relying on edges was applied and
some initial results were obtained and then notably improved.

As a first approach, we can use any edge extractor, but, as
it is shown in Fig. 3, the inherently full speckle-like content of
the ratio images makes it hard, if not impossible, to apply it
to extract valuable information. Note that Canny detector [16]
handles some control parameters to get an optimal solution but,
for ratio images and all the set of input parameters tested, no
better results were obtained.

B. Ratio Edge Detector

To detect edges within the ratio images, the ratio edge detec-
tor from [17] is used. This edge detector performs well on SAR
noisy images [17], [18], and it has been applied to this task for
SAR images for years. Note that this edge detector has been
applied to despeckled SAR images. We propose in this work to
apply it to detect edges within the ratio images.

The ratio edge detector is defined as the ratio of the average
(arithmetic average for a power image and quadratic average for
an amplitude image) of the pixel values of two nonoverlapping
neighborhoods on opposite sides of the points (see Fig. 4). That
is, for a power image I , and two nonoverlapped regions X1 and
X2 computed on the opposite side of the pixel n under analysis

Fig. 4. Edge directions considered to calculate the ratio edge detector (left)
and two masks used to calculate the ratio edge detector along the two oblique
directions (right).

(e.g., the two black regions on Fig. 4), the ratio edge detector at
neighborhood n, Rn is calculated as follows:

X1 =
1

N

∑N

i=1
Xi, X2 =

1

N

∑N

j=1
Xj

Rn = X1/X2 (1)

where Xi and Xj are the intensity values of the ith pixel and
jth pixel for the patch X1 and the patch X2, respectively, and N
is the number of points (pixels) of each nonoverlapped region.

To detect most of the edges, the ratio edge detector must be
applied in all the possible directions, i.e., the vertical and the
horizontal directions and the two oblique directions (left and
right) as shown in Fig. 4.

The ratio edge detector is calculated by applying a sliding
mask to the ratio image centered at every pixel within the
image. Two regions within this mask are split (for instance, in
the oblique direction appearing in Fig. 4) and the ratio value
for the related pixels in the two regions is computed. The ratio
is computed for each direction and the minimum ratio (which
is expected to be the most probable edge direction) is assigned
to each point in the ratio image and then a binarized image is
released. The binarized image is obtained after a classification
step according to the following criteria: given two threshold val-
ues T1 ≤ 1 and T2 ≥ 1, the pixel n under analysis is assigned
to one of the two classes as follows:

1) edge class if Rn < T1 or Rn > T2;
2) homogenenous class in the other case.
The condition T2 = 1/T1 holds to have a symmetrical opera-

tor and therefore, only one threshold value T is used (T = T1).
The T control parameter depends on the number of looks of
the image and it can be computed, assuming a gamma distri-
bution, using the numerical scheme derived in [17]. However,
for practical purposes, a suitable empirical value of T for each
mask size can be easily obtained after running the edge detector
algorithm few times (usually two times) with variable T values.
For instance, given a mask of size 3× 3, it is recommended to
start the search for T with a small T value (around 0.1) and
then, if no geometrical content is obtained, the threshold value
is increased (0.2, 0.3, . . .) till the structure is detected for this
T value. Then, for a larger mask, the search for a valid T ′ shall
start at T ′ > T , and the same approach is applied.
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Fig. 5. Standard algorithm to estimate the ratio edge detector.

In order to efficiently detect the structure content within the
image, this operation is performed several times using differ-
ent window sizes to better capture all the details. Commonly,
three estimations with window sizes of 3× 3, 5× 5, and 7× 7
are applied. The value of the threshold T increases with the
window size (the larger the window size, the higher the thresh-
old T ). Fig. 5 illustrates the algorithm from [18] to estimate
the edges by means of using three different mask sizes and the
related threshold values. Note that small details (micro edges)
are identified by using the small mask (3× 3 in this case) and
larger edges are captured by using larger mask sizes. The stan-
dard method includes an edge thinning (image morphological
operation) to improve edge visualization.

The use of the standard algorithm is indicated to extract all
possible edges within the image or for a particular filtering com-
parison of special difficulty. However, from a practical point of
view of extracting relevant geometric content within the ratio
image, the use of two masks of size 3× 3 and 7× 7 has been
enough for all the experiments carried out in this proposal. Even
for some cases, the use of a single mask has been enough. Note
that by using a single mask, there is need of setting a unique
threshold value T too. The edge-thinning process has not been
included in our implementation to better detect the remaining
geometric content within the ratio image.

This detector is easy to compute and it demands only two
control parameters: 1) mask size and 2) a threshold value T to
classify regions (homogeneous or a border).

A result using this edge estimator for the above ratio images
(Fig. 2) is shown in Fig. 6, where it can be noted how edges,
which were not visible in the ratio image, are now clearly
marked in the binarized image.

Because speckle is a multiplicative noise, the usual estima-
tion of gradient through a central difference scheme used in
the standard Canny implementation does not seem appropri-
ate to real SAR images [18]. This is the reason why detecting
edges by applying the ratio edge detector is more satisfactory
when dealing with SAR images. This becomes more efficient
for the case of dealing with ratio images where using a ratio
edge detector seems to be a natural approach.

Fig. 6. Edges extracted by using the ratio edge detector for the ratio images for
the Lee filter with mask size 7 × 7 (left) and the SRAD (t = 15) filter (right).

C. Adapting the β Edge Estimator for SAR Ratio Images

From above, it is clear that the geometric content remaining
after the filtering operation can be indeed quantified from the
edges extracted by applying the ratio edge detector. To do that,
the standard β edge estimator [8] is applied. This estimator is
useful to compare edge preservation performance for filtered
images and it is defined, for a given image I in amplitude format
and for the degraded filtered image Î as

β =
Γ
(
ΔI −ΔI, Δ̂I − Δ̂I

)
√

Γ
(
ΔI −ΔI,ΔI −ΔI

) ·√Γ
(
Δ̂I − Δ̂I, Δ̂I − Δ̂I

)
(2)

where Γ(I1, I2) is given by

Γ (I1, I2) =
K∑
i=1

I1i · I2i . (3)

ΔI and Δ̂I are the high-pass filtered version of the image I
and Î , respectively, obtained with a sliding Laplacian pixel ker-
nel window of size 3× 3 or another edge detector such as the

Canny detector. ΔI and (Δ̂I) are the average value of the image
I and the average of the high-pass filtered version of the image
Δ̂I , respectively.

Note that this estimator evaluates the correlation between the
ground-truth edges within the original image and the edges in
the denoised image detected by means of the Laplacian filter
(or the Canny filter). β ranges between 0 and 1, with unity for
ideal edge preservation.

We adapt this definition of the β estimator by replacing the
image I by the original (noisy) image, the degraded filtered
image Î by the ratio image Π, and the Canny edge detector by
the ratio edge detector. This adapted β estimator is renamed as
βratio estimator. From this definition of the βratio estimator, a
high value of the βratio estimator means that some geometric
content still appears in the ratio image.

To avoid spurious noise, the βratio estimator has been
modified to account only for geometric features of a minimum
length (5-pixel length has been used for the experiments
performed). To detect small edges (point targets or small
details), this condition must be removed and spurious noise
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(isolated pixels) can be easily filtered out through basic image
morphological operators.

D. αβ-Ratio Estimator for Ratio Images

As mentioned above, an ideal filter operation on an image
implies that, in areas where speckle is fully developed, this
ratio should have the features of pure speckle and no geometric
content. The proposed referenceless estimator must take into
account, on the first hand, the mean value of speckle and the
ENL measured in a homogeneous area within the ratio image,
and on the other hand, the remaining geometrical content within
the ratio image. Geometrical content is measured by means of
the βratio estimator explained above. The proposed estimator
combines both measures to provide a score which can be used
to rank a filtering operation. Therefore, we define the αβ-ratio
estimator, (αβ) as follows:

αβ = {α · |δENL|+ (1− α) · |δµ|}+ βratio (4)

where α ∈ [0, 1], δENL is the ENL residue (ENLnoisy −
ENLratio) and δµ is the residue of the mean value of the
speckle (1− μratio). Both ENLratio and μratio values are
measured in a homogeneous area in the ratio. ENLnoisy , if
not known (it is generally known), may be estimated in a
homogeneous ROI within the noisy image.

For an ideal filtering operation, ENLratio would correspond
to the original ENLnoisy value of the original SAR image
(δENL ≈ 0), and μratio would be equal to 1 (δµ ≈ 0).

However, for a nonideal filter, it is expected that both
ENLratio and μratio values would differ from the ideal ones
(ENLratio = ENLnoisy , and μratio = 1). Therefore, the α
value in the expression weighs, through a convex sum, the
tradeoff for the δENL and the δµ values. That is, from a prac-
tical point of view, the user selects the α value according to
his/her preferences, for instance, to weigh more the δENL value
against the preservation of the speckle mean value within the
ratio image. Obviously, when comparing different despeckling
filters, the α value must be the same for the sake of a fine
comparison.
βratio value is the one provided by the β edge estimator. An

ideal filter will be the one with αβ = 0.
Finally, note that βratio is adding (without a weight coef-

ficient) to the terms dealing with the ENLratio, and μratio

values in (4). In this manner, the proposed αβ-ratio estimator
strongly favors filters that preserve edges. However, for filters
with similar βratio values, the decision to rank the filters relies
on the α, δENL, and δµ values.

Expression (4) must be evaluated in an homogeneous area
selected within the ratio image. Indeed, as for an ideal filtering,
the ratio image should contain only speckle, there is no need
of choosing a homogeneous ROI to measure the ENLratio and
the μratio (any area of the image could be selected). However,
for practical purposes, to avoid problems with remaining con-
tent (mainly point targets), we recommend to use a homoge-
neous patch (the one selected for the noisy image to estimate the
ENLnoisy). For a standard sensor and image postprocessing
tasks, it is supposed that the whole noisy image shows a unique

Fig. 7. (Left) Phantom with a bright scatter (4× 4 pixels) and (right) image
degraded with simulated speckle (ENL = 1). Homogeneous areas 1 (ROI-1)
and 2 (ROI-2) to estimate ENLratio and µratio values are also represented.

ENLnoisy value. So, just measuring ENLratio and μratio in a
convenient ROI should be enough. Besides, ENLnoisy is gen-
erally known and therefore, the homogeneous area must be only
selected within the ratio image to estimate ENLratio and the
μratio values.

Algorithm 1 describes the steps to calculate the αβ-ratio
estimator using the ratio edge detector to extract the edges (geo-
metric content) remaining within the ratio image. The program
has been coded in MATLAB R2008a [19] and the computa-
tional cost for the phantom shown in this work (see Fig. 7)
and applying one 7× 7 mask is around 2 s in an Intel Core
i7 Q7401.73-GHz machine.

Algorithm 1. Computing the αβ-Ratio Estimator

input :
U: Corrupted (speckled) image
V: Denoised version of U
ROInoisy: Homogeneous patch for the noisy image
ROIratio: Homogeneous patch for the ratio image
ENLnoisy: ENL of the corrupted image
muNoisy: Mean value of the ROI (corrupted image)
N: Number of masks to calculate the edge ratio detector
S1, . . . , SN : Size of the masks (edge ratio detector)
T1, . . . , TN : Threshold values for the edge ratio detector
alpha: weighting coefficient

Output: The αβ-Ratio estimator: AlphaB
// Compute the ratio image Π
RatioImage = U /V;
// Compute the βratio edge estimator
EdgesCorruptedImage = RatioEdgeDetector(U, N, S, T);
EdgesRatioImage = RatioEdgeDetector(RatioImage, N, S, T);
BetaR = Beta(EdgesCorruptedImage, EdgesRatioImage);
// Estimate μratio and σratio

muRatio = Mean(ROIratio); // Mean(): μ value
sigmaRatio = Sigma(ROIratio); // Sigma(): σ value
// Estimate ENLratio

ENLratio = muRatio · muRatio / (sigmaRatio · sigmaRatio);
// Evaluate expression 4
dENL = abs(ENLnoisy - ENLratio); // abs: |·|
dMSpeckle = abs(1 - muRatio); // abs: |·|
AlphaB = (alpha · dENL + (1 - alpha) · dMSpeckle) + BetaR;
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IV. RESULTS

The αβ-ratio estimator is intended for objectively evaluat-
ing performances of despeckling filters on real SAR images.
However, an evaluation on a case with an available ground
truth would be also of interest. Therefore, a set of experimental
results has been obtained processing simulated SAR data and
real SAR images.

For the simulated SAR image, a quantitative analysis is per-
formed through well-established statistics estimators (mean and
ENL), the FOM and the SSIM index estimators. The mean
preservation and a high ENL value measured within a region (or
through the entire image) indicates a successful filter operation.
The FOM estimator calculates an empirical distance between
the ground-truth contours Iref and those obtained after the
segmentation of the noisy image. As indicated in [20], this esti-
mator is most frequently applied in image processing, although
it has no theoretical proof. FOM ∈ [0, 1] with unity for ideal
edge detection.

The SSIM index measures the similarity between the original
and the despeckled image through a local statistical analysis
of the image using the mean, the variance, and the covariance
between the unfiltered and despeckled pixel values from the
sliding window. SSIM ∈ (−1, 1) and a bad similarity between
the original and the despeckled image corresponds to SSIM
�→ −1, while a good similarity will be indicated by values SSIM
�→ +1. We refer the reader to the references [20] and [21] for
a complete description. The results include a visual compari-
son with other filtering strategies, such as the Lee filter and the
SRAD filter.

A. Results for an Image Corrupted With Speckle

Fig. 7 shows the 1-look 100× 100 SAR phantom, the sim-
ulated image, and the two ROIs selected for evaluating the
aforementioned quality estimators. The speckle has been simu-
lated following the Gamma distribution with a mean value of 1
and fitted to provide an ENL = 1. As it can be noted in the sim-
ulated image, a strong scatterer has been added to appreciate
the effectiveness of the filters on preserving them. The phan-
tom consists of two well different homogeneous areas sharing
a nonabrupt edge.

The filtered image by the Lee filter (7× 7 mask size) and
the SRAD filter (t = 20) is shown in Fig. 8. The related ratio
images and edges extracted by using the ratio edge detector
(7× 7 mask with T = 0.4) are also shown in the same figure. It
is observed that both filters perform well, preserving edges and
notably reducing the image variance (this is more noticeable
for the SRAD filter). Note also the preservation of the strong
scatterer which is more evident for the case of applying the
SRAD filter.

In the ratio images, it can be seen that filtering has slightly
modified the edge boundary. This effect is more evident in the
case of the SRAD filter, which, as expected, acts on the edge
(this is known as the negative diffusion effect, which is particu-
lar of the SRAD filter). The Lee filter inhibits the filtering at the
edge, but near to it, the filtering is less performed. Additionally,
note that the strong scatterer is also seen in the ratio image. This
clearly indicates that nonideal filtering has been done on it.

Fig. 8. Results for the SAR Phantom: (top row and left to right) The Lee
filter (7× 7), the ratio image, and the extracted edges from the ratio image.
(Bottom row and left to right) The SRAD filter (t = 20), the ratio image, and
the extracted edges from the ratio image.

Edges extracted by the edge ratio detector from the ratio
images reveal that some geometric content still remains in the
ratio image (just the edge or the edge boundaries). Note that to
extract edges for the bright scatterer is a difficult task, but for
both filters, some edges are slightly detected (more evident for
the case of the SRAD filter).

Table II shows the quantitative performance evaluation for
the filter realizations. As it can be seen, from the standard
estimators evaluated (FOM, SSIM, ENL, and mean), it is not
obvious to assess that one filter performs better than the other
(look, for instance, the FOM and the SSIM values for both fil-
ters). However, for ratio ROI-1 and ratio ROI-2, the proposed
αβ-ratio estimator indicates that, although more geometric con-
tent remains in the ratio image (βratio = 0.0762 for the SRAD
filter against βratio = 0.0424 for the Lee filter), the SRAD
filter performs better than the Lee filter (ratio ROI-1: αβ =
0.0948 against αβ = 0.1750 for the Lee filter; ratio ROI-2:
αβ = 0.0888 against αβ = 0.1698 for the Lee filter).

Note that the better αβ value for the SRAD filter comes from
the better values got at μratio and ENLratio, whereas the value
of the βratio edge estimator is not excessively large compared
to the βratio value for the Lee filter.

B. Testing the Consistency of the αβ-Ratio Estimator on
Synthetic SAR Data

The need for consistency for an image-quality index is one
of the most well-established requirements. A natural manner to
test the consistency of the proposed estimator consists of com-
paring its value for different results obtained for a given filter
under different filter designs. It is expected that, for a bad fil-
tering operation (for instance, an overfiltered result), αβ will
provide a high value.
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TABLE II
QUANTITATIVE EVALUATION FOR THE SAR PHANTOM (BEST VALUES IN BOLDFACE)

Π Indicates Ratio Image and α = 0.5. Ideal Values are µratio = 1, ENLratio = 1, βratio = 0, and αβ = 0.

Fig. 9. Results for the SAR Phantom: (top row and left to right) The Lee fil-
ter (21× 21), the ratio image, and the extracted edges from the ratio image.
(Bottom row and left to right) The SRAD filter (t = 100), the ratio image, and
the extracted edges from the ratio image.

In Fig. 9, some overfiltered results for the simulated SAR
data obtained for the Lee filter (with a mask size 21× 21) and
for the SRAD filter (t = 100) are shown. The bright scatter
appears much blurred and edges are clearly degraded for both
filters (left and center images). The edges detected by the ratio
edge detector (right image) are more visible (particularly for the
SRAD filter). Numerical results for these images are collected
in Table II (two last columns). As it can be seen, there is a cor-
relation of βratio values with the overall performances of the
filters.

To finish this analysis, note that the αβ-ratio estimator gets
similar values for the two ROIs selected in the Π image. This
confirms the consistency of the proposed estimator and it also
means that it suffices to select a unique homogeneous ROI to
correctly evaluate αβ.

Besides, the FOM values (which accounts for edge preser-
vation), measured as usual, i.e., on the filtered images, agree
with the values obtained by the αβ-ratio estimator. That is, high

FOM values correspond to low αβ-ratio values and the oppo-
site also holds true. This also confirms the consistency of the
proposed estimator with a standard edge-based estimator.

C. Real Images Results

To evaluate the performances of the new estimator on real
SAR images, four despeckling filters have been selected: the
Lee filter, the SRAD filter, the Bayesian nonlocal (BNL) filter,
and the enhanced Bayesian nonlocal (EBNL) filter. The real
SAR image selected is the one shown in Fig. 1 (top left) and
visual results for the Lee filter and the SRAD filter are also
shown in this figure (top right for the Lee filter, and bottom
left for the SRAD filter with t = 15) and not repeated in this
section.

The BNL-means filter [22] aims to reduce the Bayesian risk
by estimating the prior probability on the noisy image patch.
Bayesian-like filters are recognized as excellent filters in terms
of mean, edge, and detail preservation. The EBNL filter [6] is an
improved version of the BNL filter which combines the sigma
preselection by Lee [3] and a procedure to filter dark areas,
which provides filtered images of great contrast.

Visual results for the EBNL, the BNL, the Lee. and the
SRAD filters, as it can be seen in Fig. 10, and Fig. 1, are notably
different: the EBNL filter performs better than the other three
filters on preserving the bright scatterers due to the sigma pre-
selection approach (notice, e.g., the evident differences for the
bright targets in this EBNL and BNL filtered images). Besides,
the EBNL image shows a greater contrast, and homogeneous
dark areas are specially well filtered (the EBNL filtered image
reveals a remarkable contrast compared to the results obtained
by the BNL, the Lee, and the SRAD filters). See how the EBNL
filter performs on dark areas in [6].

The amount of geometric content visible in the ratio images
for both Bayesian filters are similar and comparable to the one
provided by the SRAD filter (see Fig. 6) and minor than the
geometric content provided by the Lee filter.

In Table III, the values of the μratio, the ENLratio, the
βratio edge estimator, and the αβ estimators are collected. For
this SAR image, ENLratio = 1 and the value of the speckle
mean μratio should be equal to 1. αβ = 0.4810 for the Lee
filter (last position in the ranking among the visually shown
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Fig. 10. Comparison of filtering operation on original SAR image: (top left)
the EBNL filter (search window: 11× 11, patch: 5× 5, iterations: 3), the
ratio image (middle left), and the corresponding edges detected using the
ratio edge estimator (bottom left). (Top right) The BNL filter (search window:
11× 11, patch: 5× 5, iterations: 3), the ratio image (middle right), and the
corresponding edges detected using the ratio edge estimator (bottom right).

TABLE III
QUANTITATIVE EVALUATION FOR THE REAL SAR IMAGE

(BEST VALUES IN BOLDFACE)

α = 0.5. Ideal Values are µratio = 1, ENLratio = 1, βratio = 0, and
αβ = 0.

results, according to the proposed ratio estimator) and αβ =
0.3241 for the SRAD filter. These values for the αβ estimators
correspond to α = 1. However, by setting α = 0.1, to evalu-
ate the performances of the filters assigning more weight to the
preservation of the μratio than to the preservation of ENLratio,
the best filter is the EBNL (αβ = 0.2823 against αβ = 0.3012
for the SRAD filter).

Note that the SRAD filter performed much better than the
Lee filter for the phantom corrupted with speckle and also for
this case (for both selected α values). The superior performance
of the SRAD filter in comparison to the enhanced Lee filtered

Fig. 11. Results for the consistency test for the real SAR image: (top left) Real
SAR image. (Top right) extracted edges by the ratio edge detector for the Lee
filter (7× 7). (Bottom left) extracted edges by the ratio edge detector for the
Lee filter (11× 11). (Bottom right) extracted edges by the ratio edge detector
for the Lee filter (15× 15). Homogeneous areas 1 (ROI-1) and 2 (ROI-2) to
estimate ENLratio and µratio values are also represented.

is analyzed in [4]. Because the filter applied is the original Lee
filter (and not its enhanced version), the comparison favors even
more the result for the SRAD filter.

It is interesting to observe that, visually, the EBNL filter
seems better than the SRAD filter, but this is a subjective eval-
uation. Numerical data confirm that, according to the proposed
ratio estimator, for this image and for the filters applied (each
filter with the indicated design), the SRAD filter gets the first
position in the ranking (α = 1) as the best filter, combining an
excellent edge preservation with ENLratio and μratio values.

The results in Table III justifies the need of the αβ estimator,
because, from the the visual inspection of the ratio images, it
is hard to rank, for this SAR image, the performances of the
SRAD, the EBNL, the BNL, and the Lee filters.

We remark that we tested the new proposed estimator on
nonpolarimetric SAR data. A discussion of the influence of
polarization, radar frequency, bandwidth, and radar geome-
try would require a general discussion of the effects of these
parameters on data coming from a wide variety of targets [23].
We think that this is far away from the scope of this work.
Similar analysis to the one performed above must be carried
out to assess whether the proposed estimator can be applied to
polarimetric SAR data to rank despeckling filters.

D. Testing the Consistency of the αβ-Ratio Estimator on Real
SAR Data

In Table III, the overfiltered solutions obtained by the Lee fil-
ter (15 × 15) and the SRAD filter (t = 100) for the real SAR
image shown in Fig. 1 are collected. As it can be seen, the
results obtained are ranked in the last positions.
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TABLE IV
QUANTITATIVE ANALYSIS OF THE CONSISTENCY TEST FOR THE REAL

SAR IMAGE (BEST VALUES IN BOLDFACE)

α = 0.5. Ideal Values are µratio = 1, ENLratio = 1, βratio = 0, and
αβ = 0.

We complete the consistency test by discussing some results
for another real SAR data. A different (500 × 500) ROI from
the same 1-look HH SAR (Oberpfaffenhofen, Germany) was
chosen (Fig. 11, top left) and filtered by the Lee filter and the
SRAD filter. Two homogeneous areas have been selected (ROI-
1 and ROI-2) to evaluate the αβ-ratio estimator and to check
the possible dependency of its value with the chosen ROIs. In
the same figure, only the results (edges extracted within the
ratio images) for the Lee filter with different mask sizes (7 × 7,
11 × 11, and 15 × 15) are shown. The increase in the geomet-
ric content with the increasing size of the mask applied is quite
noticeable. As a consequence of that, βratio values must also
increase.

The numerical values related to the estimators, for the Lee
and the SRAD filters, are collected in Table IV. It is important to
note how the αβ estimator may be correctly evaluated from and
unique ROI from the ratio image. This result greatly simplifies
the computation of the αβ estimator.

Once again, the results were consistent and they respond to
the expected one for the proposed estimator.

V. CONCLUSION

Comparing different filter performances is an intricate task
even through the existing plethora of image quality indexes.
A new referenceless image-quality index based on the ratio
edge detector to help in evaluating a filter realization on real
SAR images has been presented. The need of such estimator
has been extensively discussed and justified using for that pur-
pose several efficient despeckling filters. Some results for a
synthetic image corrupted with one look speckle, and for real
one look SAR images clearly shown that the new αβ-ratio esti-
mator certainly allows to objectively evaluating more in detail
the performances of a filtering operation on an SAR image.

The proposed αβ-ratio estimator is easy to compute and intu-
itively simple. A relevant characteristic is that it favors filters
that preserve edges, which is of especial relevance in the context
of SAR imagery.

The consistency of the proposed estimator has been tested
under several experiments with synthetic data and real SAR
images. For all cases, the results shown that for bad filtering
designs, αβ gets high values and that it is specially sensible to
degradation of edges after filtering operations.

The difference of this new estimator with existing image-
quality indexes is that the remaining geometric content within
the ratio image is taken into account. Besides, the new estimator
is the first one evaluated within the ratio image.

Future work includes extending this study to compare perfor-
mances of other competitive despeckling filters (for instance,
total variation-based filters), and to enhance the αβ-ratio esti-
mator to account for the remaining geometric content related
to small bright scatterers. Rigorous analysis of how to select
the optimal threshold values and the corresponding mask sizes
used by the ratio edge detector is required for detecting small
remaining features within the ratio images.

Additionally, this work may be extended to deal with polari-
metric SAR data.
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