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ABSTRACT
A new discrete distribution that depends on two parameters is intro-
duced in this article. From this new distribution the geometric distribu-
tion is obtained as a special case. After analyzing some of its properties
such as moments and unimodality, recurrences for the probability mass
function and differential equations for its probability generating func-
tion are derived. In addition to this, parameters are estimated by max-
imum likelihood estimation numerically maximizing the log-likelihood
function. Expected frequencies are calculated for different sets of data
to prove the versatility of this discrete model.

1. Introduction

Mixtures of distributions define one of the most important approaches to obtain new proba-
bility distributions within the fields of applied probability and operational research. Among
all of them, mixture of Poisson distribution with parameter θ > 0 and mixing distribution
g(θ ) defined by

Pr(X = x) = 1
x!

∫ ∞

0
exp(−θ )θ x g(θ ) dθ, x = 0, 1, . . . ,

has played an important role in the statistical literature (see Antzoulakos and Chadjiconstan-
tinidis, 2004; Gupta and Ong, 2005; Karlis and Xekalaki, 2005;Willmot, 1993; among others).
In this case, the density function g(θ ) is intended to capture dependencies on hidden variables
or incorporating individual heterogeneity.

The applicability of Poisson distribution to different scientific scenarios has been accepted
over more than a century. However, modification of the usual scheme when the parameter
involved in the distribution fluctuates randomly as a gamma variate, was first considered by
Greenwood and Yule (1920) in the study of accident proneness with reference to happenings
of multiple attacks of a disease or repeated accidents; the distribution obtained in this chap-
ter was a negative binomial (mixing a Poisson distribution with the gamma distribution).
Alternatively, different models similarly built by considering other mixing distributions have
been proposed in the statistical literature. For example, the Poisson-inverseGaussian distribu-
tion (giving the Sichel’s distribution), the Poisson-beta distribution, the Poisson-Pareto and
the Poisson-generalized Pareto among others. Certainly, the main purpose of these models
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is to search for a more flexible alternative to the Poisson distribution, especially under over-
dispersion (variance larger than the mean) phenomena.

In order to provide another competitive alternative to the models described above, a new
mixed Poisson model is considered in this article. In this regard, a new mixture of Poisson
distribution by mixing its parameter with the generalized exponential distribution proposed
not long ago by Gómez-Déniz (2012) is considered. In recent decades, a lot of attempts have
been made to define new families of probability distributions (discrete or continuous) that
extend the well-known families of distributions. In this sense, the new distribution proposed
here generalizes the geometric distribution and it is competitive with other two-parameters
discrete distributions such as the negative binomial, generalized Poisson, Poisson-inverse
Gaussian, generalized Poisson-Lindley, etc. Different generalizations of the geometric distri-
bution have been proposed over the last decades; see, for example Gómez-Déniz (2010), Jain
and Consul (1971), Makčutek (2008), Philippou et al. (1983), and Tripathi et al. (1987).

The new distribution has a closed-form expression for the probability mass function (pmf)
associated with special functions (Tricomi confluent hypergeometric function) of mathemat-
ical physics. These functions, that show excellent properties, have been recently proposed by
many authors. Two important features of this discrete distribution are unimodality and the
presence of thick tails. Furthermore, since d log g(θ )/dθ can be expressed as a ratio of poly-
nomials, i.e., it is a generalization of the Pearson system, recursive expressions for compound
mixed Poisson distribution and the evaluation of the i-th moments of stop-loss transforms
can be achieved. Finally, ordinary differential equations involving the probability generating
function of the new distribution are given.

In addition to this, the question of parameter estimation is analyzed via maximum like-
lihood estimation (MLE) numerically maximizing the log-likelihood surface; this can be
done either by directly maximizing the log-likelihood function or by using an expectation-
maximization (EM) algorithm. Besides, from a numerical perspective, the discrete model
introduced in this article provides a satisfactory performance, being therefore considered
competitive with other two-parameters mixed Poisson models such as the negative bino-
mial, Poisson-inverse Gaussian, discrete Weibull, generalized Poisson, and hyper-Poisson
distributions.

It is already known (see, for instance, Sankaran, 1970) that when Poisson distribution with
parameter θ > 0 is mixed with a member of the natural exponential family of distributions,
i.e., with probability density function (pdf) distribution

g(θ ) = q(θ ) exp[−φ θ − logψ(φ)], (1)

being φ the natural parameter, q(θ ) a function which depends on θ but not on the natural
parameter, and ψ(φ) = ∫ ∞

0 q(θ ) exp(−φ θ ) dθ the normalization constant, then the result-
ing distribution is given by

px = ψ(φ + 1)
ψ(φ)

μx(φ + 1)
x!

, x = 0, 1, . . . (2)

whereμx(φ + 1) represents the rawmoment of order x of (1) with φ + 1 as parameter. Addi-
tionally, the probability generating function is given by

GX (s) = ψ(φ − s + 1)
ψ(φ)

. (3)



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 2859

The remainder of this article proceeds as follows. Section 2 briefly summarizes the mixing
distribution proposed not long ago by Gómez-Déniz (2012). Section 3 describes the theoret-
ical development of the new discrete distribution. Next, parameter estimation together with
the derivation of a simulation algorithm of the discrete model introduced in this article are
provided in Sec. 4. Then, numerical applications of the proposed model is examined in Sec. 5
and, finally, conclusions are discussed in the last section.

2. The background

Recently, Gómez-Déniz (2012) proposed a new generalization of the exponential distribution
whose pdf is given by

g(θ; λ, σ ) = κ(σ, λ)

(
θ 2

1 + θ

)σ

exp(−λ θ ), θ ∈ � > 0, (4)

where

κ(σ, λ) = 1
	(2σ + 1)U (2σ + 1, 2 + σ, λ)

is the normalization constant. Here, σ > −1/2, λ > 0 and

	(z) =
∫ ∞

0
tz−1 exp(−t ) dt,

U (a, b, z) = 1
	(a)

∫ ∞

0
ta−1(1 + t )−a+b−1 exp(−z t ) dt, z > 0, a > 0 (5)

are the Euler gamma function and the Tricomi confluent hypergeometric function,
respectively.

It is not difficult to prove that (4) is amember of the NEF of distributions given by (1) being
φ = λ the natural parameter, while q(φ) = (

φ2

1+φ )
σ and ψ(φ) = [κ(σ, φ)]−1.

It can be observed that forσ = 0 the normalization constant reduces toλ and, therefore, (4)
is the exponential distribution with parameter λ > 0. This pdf can therefore be considered as
an alternative to both, the generalized exponential distribution in Marshall and Olkin (1997)
and the generalized exponential distribution in Gupta and Kundu (1999). Besides, as proven
in Gómez-Déniz (2012), it is also competitive with the classical gamma distribution and the
two-parameter Weibull distribution.

As it is shown in the same article, the generalized exponential distributionwith pdf given in
(4) can be obtained as the natural conjugate prior distribution of the continuous Lindley dis-
tribution (Lindley, 1958). Moreover, the r-th moment around the origin of a random variable
following the pdf (4) is

E(Xr) = 	(2σ + r + 1)U (2σ + r + 1, σ + r + 2, λ)
	(2σ + 1)U (2σ + 1, 2 + σ, λ)

. (6)

Furthermore, since Lindley distribution and the generalized exponential distribution with
pdf given in (4) distributions are members of the NEF of distributions, we have that for the
samples (Y1,Y2, . . . ,Yn) and (X1,X2, . . . ,Xn), the statistics T (Y ) = ∑n

i=1Yi and T (X ) =∑n
i=1 Xi are sufficient. Therefore, both statistics are also part of the NEF of distributions.
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3. Themain results

Basic properties of a Poisson-generalized exponential distribution are introduced in this sec-
tion. It is easy to see, after simple manipulations, that when (6) is applied to (2), the resulting
pmf is given by

px = Pr(X = x) = 	(x + 2σ + 1)
x! 	(2σ + 1)

U (1 + 2σ + x, 2 + σ + x, 1 + λ)

U (1 + 2σ, 2 + σ, λ)
, (7)

with x = 0, 1, 2, . . . ; σ > −1/2 and λ > 0. Furthermore, from (3) the probability generating
function of a random variable following (7) is

GX (s) = U (1 + 2σ, 2 + σ, 1 − s + λ)

U (1 + 2σ, 2 + σ, λ)
. (8)

Besides, the factorial moment of order k is given by

μ[k](X ) = E[X (X − 1) · · · (X − k + 1)]

= λ1+σ	(k + 2σ + 1)
	(1 + 2σ )

U (1 + k + 2σ, 2 + k + σ, λ)

U (σ,−σ, λ) (9)

with k = 1, 2, . . . .
From (8), or alternatively (9), the first two moments of X about the origin are found to be

μ′
1 = (2σ + 1) U (2σ + 2, σ + 3, λ)

U (2σ + 1, σ + 2, λ)
, (10)

μ′
2 = (2σ + 1) U (2 + 2σ, σ + 4, λ)

U (2σ + 1, σ + 2, λ)
. (11)

By using the identity μr = E[(X − μ)r] = ∑r
k=0

(r
k

)
μ′

k(−μ′
1)

r−k, the central moments,
which are not reproduced here can be obtained after some algebra.

Some important indices of the shape of the distribution, apart of the mean and variance,
are the skewness (

√
β1 = μ3/(μ2)

3/2), the kurtosis (β2 = μ4/(μ2)
2) and the coefficient of

variation (C.V. = σ/μ). Different values of these coefficients are shown in Table 1 for selected
values of the parameters.

In addition to this, by using the nice property provided by Chao and Strawderman (1972)
which relates the inverse moments of a discrete random variable to the integration of the
probability generating function (see also Cressie et al., 1981, and Kabe, 1976), it is possible to
obtain that

E
(

1
X + 1

)
= λ

2σ
U (σ, 1 − σ, λ)− λσ U (2σ, 1 + σ, 1 + λ)

U (σ,−σ, λ) .

Now, by using the relation

U (a, b, z) = z1−b U (1 + a − b, 2 − b, z),

it is possible to rewrite (7) as

px = 	(x + 2σ + 1)
x! 	(2σ + 1)

(
λ

λ+ 1

)1+σ (
1

λ+ 1

)x U (σ,−σ − x, 1 + λ)

U (σ,−σ, λ) . (12)

Note that for σ = 0 the geometric distribution with pmf px = λ

1+λ (
1

1+λ )
x is obtained. Fur-

thermore, since U (a, b, z) ∼ z−a for large values of z, the negative binomial distribution with
parameters 2σ + 1 and λ/(1 + λ) is derived for large values of the parameter λ. In Fig. 1,
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Table . Mean, variance, skewness, kurtosis, and coefficient of variation for selected values of parameters.

σ μ′
1 μ2

√
β1 β2 C.V.

λ = 0.1 –. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

λ = 1 –. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

λ = 2 –. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

first- (left-hand side graph) and second- (right-hand side graph) order moments about the
origin, written as a function of λ, for different values of σ are shown. As it can be observed,
both moments decrease with λ. Besides, the larger is the value of σ , the greater are the val-
ues of μ′

1 and μ′
2. It is also noted that the latter expressions, for each value of λ and positive

values of σ (σ = 1 dashed line and σ = 2 dotdashed line) are always higher than μ′
1 and μ′

2
for σ = 0 (geometric distribution with thick solid line). The opposite occurs when σ takes
negative values (σ = −0.25 dotted line).

Some examples of the graphs of pmf (7) for different values of the parameters, σ and λ are
displayed in Fig. 2.

It is important to point out that p0 < λ

1+λ when σ > 0 and, therefore, (7) has a lower value
at x = 0 than the geometric distribution for λ > 0.

Proposition 3.1. The distribution with pmf given in (7) is unimodal.

Figure . First- and second-order moments (as a function of λ) about the origin of () for different values of
σ (top to bottom σ = 2 (dotdashed), σ = 1 (dashed), σ = 0 (solid), and σ = −0.25 (dotted)) are shown.
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Figure . Graph of the pmf () for selected values of parameters σ and λ.

Proof. It is not difficult to observe that

(log(g(θ; λ, σ ))′′ = −σ 2 + x(x + 4)
x2(1 + x)2

< 0.

Therefore, the mixing distribution is log–concave and also strongly unimodal and uni-
modal. Now the result follows by applying a result in Holgate (1970). �

Now, let pk be the probability function (7) and Pr(k|m) be the probability mass function
of a simple Poisson distribution with the same mean, saym. Then, as shown by Feller (1943),
p0 ≥ Pr(0|m) and p1/p0 ≤ Pr(1|m)/Pr(0|m) = m. The asymptotic tail behavior of Poisson
distributions has been studied by Willmot (1990) by assuming that a mixed Poisson distri-
bution has a longer right tail that the Poisson distribution (see, for instance, Gupta and Ong,
2005; and Karlis and Xekalaki, 2005).

As is described in the next proposition, the pmf (7) can be recursively computed in terms
of σ and λ.
Proposition 3.2. By denoting px a random variable following the pmf (7), it is satisfied that

(2σ + x)px−1 + (σ − λ+ x)xpx − (λ+ 1)(x + 1)xpx+1 = 0, x = 1, 2, . . . (13)

Proof. It is simple to see that

d
dθ

logπ(θ ) = φ(θ )

ψ(θ )
=

∑r
i=1 φi θ

i∑r
i=1 ψi θ i

, (14)

being

φ(θ ) = −λ θ 2 + (σ − λ) θ + 2σ

and

ψ(θ ) = θ 2 + θ.
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Now, the result follows by using the recursive relation (seeWillmot, 1993; Antzoulakos and
Chadjiconstantinidis, 2004)

r∑
i=−1

[φi − ψi + (x + i + 1)ψi+1](x + i)(i)px+i = 0,

where a(b) = ∏b
i=1(a + 1 − i) and p−1 = 0. �

In the following, an ordinary differential equation satisfied by the probability generating
function (8) is obtained. For that reason, let us denote asGX (s|σ, λ) the probability generating
function in (8).

Theorem 3.1. The probability generating function satisfies the following differential equation

(s − λ− 1)G′′
X (s|σ, λ)+ (s + σ − λ+ 1)G′

X (s|σ, λ)+ (2σ + 1)GX (s|σ, λ) = 0.
(15)

Proof. From (13), it is straightforward that

(λ+ 1)x(x − 1)px = (2σ + x − 1)px−2 + (σ − λ+ x − 1)px−1.

Consequently, we have that

s2(λ+ 1)
∞∑
x=2

x(x − 1)sx−2px = (2σ − 1)s2GX (s)+
∞∑
x=2

xsx px−2

+(σ − λ− 1)s2
∞∑
x=2

(x − 1)sx−2px−1

+s2
∞∑
x=2

x(x − 1)sx−2px−1.

Now, by having into account that
∞∑
x=2

x(x − 1)sx−2px−1,σ,λ = d2

ds2

∞∑
x=2

sx px−1,σ,λ = d2

ds2

{
s

∞∑
x=2

sx−1px−1,σ,λ

}

= d2

ds2
{
s[GX (s|σ, λ)− p0]

} = 2G′
X (s|σ, λ)

+sG′′
X (s|σ, λ), (16)

∞∑
x=2

(x − 1)sx−2px−1,σ,λ = G′
X (s|σ, λ), (17)

and considering that
∞∑
x=2

x(x − 1)sx−2px = G′′
X (s),

the result is obtained after simple algebra. �

Similarly, differential equations for moment and cumulant generating functions may be
calculated after appropriate change of variable in Equation (15).
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Figure . Different graphs of the hazard function for selected values of parameters.

Although the cumulative distribution function of (7) cannot be obtained in a closed-form,
it can be calculated by using the following expression

F(x; λ, σ ) = 1
x!

∫ ∞

0
	(x + 1, θ )g(θ; λ, σ ) dθ, (18)

where we have used the fact that the cumulative distribution function of the Poisson distri-
bution with parameter θ > 0 is F(x; θ ) = 	(x + 1, θ )/x!, where 	(a, z) is the incomplete
gamma function given by 	(a, z) = ∫ ∞

z ta−1e−tdt .
The survival function is obtained from (18) and it is given by F̄(x; λ, σ ) = 1 − F(x −

1; λ, σ ). By using (7) together with F̄(x; λ, σ ) we obtain the failure rate given by h(x) =
px/F̄(x). In Fig. 3, different graphs of the hazard function of the new distribution are shown
for selected values of the parameters. It seems that it is decreasing for σ < 0, increasing for
σ > 0 and constant (the geometric case) for σ = 0. Besides, although difficult to prove, it
might be conjectured that the hazard rate is reverse J–shaped for σ ≤ 0.

Finally, posterior moments of parameter θ can be easily derived. On this subject, let the
random variable X follow a Poisson distribution with parameter θ > 0 and prior distribution
g(θ ); then, by using Proposition 10 in Karlis and Xekalaki (2005), the posterior expectation
of θ r given X = x can be expressed as

E(θ r|X = x) = (x + r + 2σ )!x!
(1 + λ)r(x + r)!(x + 2σ )!

U (σ,−σ − x − r, 1 + λ)

U (σ,−σ − x, 1 + λ)
.

In particular, the posterior mean is provided by

E(θ |X = x) = (x + 2σ + 1)
(1 + λ)(x + 1)

U (σ,−σ − x − 1, 1 + λ)

U (σ,−σ − x, 1 + λ)
.
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3.1. Left–truncated version of the distribution

As Mahmoudi and Zakerzadeh (2010) pointed out, in some occasions the practitioner
requires a distribution with some kind of truncation. These distributions are interesting when
modelling different situations, for example the number of offspring per family, the number of
occupants per car, etc. Perhaps, one of the most well-known method of truncation is based
on deletion of zeros from the distribution, i.e., left–truncation. The probability mass function
of the zero–truncated distribution is given by

Pr(X = x) = 1
1 − p0

	(x + 2σ + 1)
x! 	(2σ + 1)

(
λ

λ+ 1

)1+σ (
1

λ+ 1

)x U (σ,−σ − x, 1 + λ)

U (σ,−σ, λ) ,

for x = 1, 2, . . . , and where

p0 =
(

λ

1 + λ

)1+σ U (σ,−σ, 1 + λ)

U (σ,−σ, λ) .

Although the left–truncated distribution with support x = r, r + 1, . . . can be straightfor-
ward derived, right–truncation requires more effort since a closed-form expression for the
cumulative distribution function is needed.

Additionally, zero-inflated models can be built starting with the discrete distribution pro-
posed here in the conventional way.

3.2. Compoundmodel

In actuarial statistics the distribution of the aggregate claims S = ∑X
i=1Yi, known as the com-

pound distribution, is usually of interest to practitioners. Let us assume that X is the number
of claims in a portfolio of policies at a time period; let us also consider that Yi, i = 1, 2, . . .
is a sequence of independent and identically distributed non-negative random variables with
common pdf f (y), y = 0, 1, 2, . . . , denoting the amount of the i-th claim. Moreover, X and
{Yi}i≥1 are assumed to be stochastically independent.

There exists an extensive literature dealing with compound mixture Poisson distributions
(Willmot, 1986, 1993; Antzoulakos and Chadjiconstantinidis, 2004). An extensive review of
the topic can be found in Sundt and Vernic (2009).

Furthermore, by having into account (14) together with a result provided in Willmot
(1993) (see also expression (1.7) in Antzoulakos and Chadjiconstantinidis, 2004), the follow-
ing Proposition is not difficult to prove.

Proposition 3.3. If the claim size is a discrete random variable with pmf f (x) for x > 0, then the
pmf, gs(x), of the compound Poisson-generalized exponential distribution satisfies the following
recursion:

gS(x) = 1
1 − f (0)− σ + λ

x∑
y=1

(
1 + 2σy

x

)
f (y) gS(x − y), x ≥ 1.

By following the works ofWillmot (1986, 1993) andAntzoulakos andChadjiconstantinidis
(2004), recursive evaluation of the j-th order cumulative distribution function and the j-th
order tail probabilities can also be calculated.
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4. Estimation

The estimation of the two parameters by the method of moments (MM) can be achieved
from (10) and (11) by setting equal their theoretical expressions to the sample first and sec-
ond order sample moments, respectively. Certainly, the resulting system of equations must be
solved numerically and non-explicit values for the estimators are obtained. Although they are
relatively easy to obtain, they tend to behave weakly since only limited information is used. In
order to overcome this issue, parameters are estimated via maximum likelihood estimation
(MLE) numerically maximizing the log-likelihood surface; firstly by directly maximizing the
log-likelihood function, and secondly by using an expectation-maximization (EM) algorithm.
They are described in the next section.

4.1. Maximum likelihood estimation

Let us assume that x = (x1, . . . , xn) is a random sample of size n from the discrete distribu-
tion (7). The maximum likelihood estimates of the model are obtained by maximizing the
following log-likelihood function

� =
n∑

i=1

log
	(xi + 2σ + 1)
xi! 	(2σ + 1)

+
n∑

i=1

logU (1 + 2σ + xi, 2 + σ + xi, 1 + λ)

−n logU (1 + 2σ, 2 + σ, λ).

It is already known that ∂

∂cU (a, b, c) = −aU (1 + a, 1 + b, c), from which the score equa-
tions are obtained after differentiating with respect to each parameter and setting the results
equal to zero. These equations cannot be explicitly solved. They must be solved either by
numerical method or by directly maximizing the log-likelihood function. Since the global
maximum of the log-likelihood surface is not guaranteed, different initial values of the para-
metric space can be considered as a seed point. In this sense, by using the FindMaxi-
mum function of Mathematica software package v.8.0 (the derivative of the Trinomi confluent
hypergeometric function is available in this package). Besides, by using other different meth-
ods such as Newton, PrincipalAxis and QuasiNewton the same result is obtained.

The second partial derivatives can be used to obtain an approximation of the Fisher’s infor-
mation matrix in the conventional way. This is calculated by using of an approximation of the
Hessian matrix by means of the Cholesky factors. This package is available on the web upon
request.

In addition to this, an expectation-maximization (EM) algorithm can be used to findmax-
imum likelihood estimates of parameters in situations where data contains missing values.
It is based on an expectation (E) step, which produces an expression for the expectation of
the log-likelihood evaluated using the current estimates, and a maximization (M) step, which
updates parameter estimates by maximizing the expected log-likelihood computed on the
E–step. This methodology is suitable for distributions arising as mixtures since the mixing
operation produces missing data. The algorithm is based on the structure behind the mixed
Poisson distributions (see Karlis, 2005). In this case, the problem of estimation is reduced to
one of estimation of themixing distribution. One of themain advantages of the EM algorithm
is its numerical stability, increasing the likelihood of the observed data in each iteration. How-
ever, it presents slow convergence rate in a neighborhood of the optimal point. Although, in
general, the convergence to the global maximum is not guaranteed, for this particular model,
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the log-concavity implies that the log-likelihood has a unique maximum. It can be usually
reached by starting the parameters at method of moments estimates.

In mixed Poisson distributions the unobserved quantities are the realizations of θi of the
unobserved mixing parameter for each data point xi, i = 1 . . . n. We assume the distribution
of Xi|θi is the Poisson distribution where θi follows (4). Then, given the observations X =
(x1, . . . , xn) and the missing observations � = (θ1, . . . , θn), to implement the algorithm we
define the hypothetical complete-data distribution,

f (x, θ ) = g(θ; λ, σ ) f (x|θ ), θ > 0 and x = 0, 1, . . . (19)

where f (x|θ ) denotes the probability distribution of the Poisson distribution.
Following Karlis (2005), at the E–step of the ( j + 1)− th iteration, the conditional expec-

tations of some function of θi’s are calculated. Later, the log–likelihood of the complete data
model is maximized, this problem is equivalent to maximizing g(θ; λ, σ ). As we have mix-
tures from the exponential family, these conditional expectations coincide with the sufficient
statistics needed for maximum likelihood estimation of the mixing distribution. In this case
θi and log θ2i

1+θi .
The EM type algorithm for this model can be described as follows. From the current esti-

mates ˆσ ( j) and ˆλ( j).
� E-step.Calculate the pseudo-values ti and si. As it can be seen in Karlis (2005), for linear
functions of θ the conditional posterior expectations can be easily obtained, then

ti = E(θi|xi, λ̂( j), σ̂ ( j))

= (xi + 2σ̂ ( j) + 1)
U (2 + 2σ̂ ( j) + xi, 3 + σ̂ ( j), 1 + λ̂( j))

U (1 + 2σ̂ ( j) + xi, 2 + σ̂ ( j), 1 + λ̂( j))
.

To determine the pseudo-value si, as the exact solution is not available, numerical inte-
gration is required,

si = E
(
log

θ 2i

1 + θi
|xi, λ̂( j), σ̂ ( j)

)

=

∫ ∞

0
log

(
θ 2i

1 + θi

)
θ 2σ̂

( j)+xi

(1 + θ )σ̂
( j) exp(−θ (λ̂( j) + 1)) dθ

∫ ∞

0

θ 2σ̂
( j)+xi

(1 + θ )σ̂
( j) exp(−θ (λ̂( j) + 1)) dθ

.

� M-step. Find the new estimates σ ( j+1) and λ( j+1) by maximizing the complete data
log-likelihood.
Then, we have

σ ( j+1) = 1
2

(
t̄
U (1 + 2σ ( j), 2 + σ ( j), λ( j))

U (2 + 2σ ( j), 3 + σ ( j), λ( j))
− 1

)
,

being t̄ = �n
i=1ti
n ;

and

λ( j+1) =
{U (σ ( j),−σ ( j), λ( j))

κ1(σ ( j), λ( j))

(
s̄ − 2�(1 + 2σ ( j))

)} 1
1+σ ( j)

,



2868 E. GÓMEZ-DÉNIZ AND E. CALDERÍN-OJEDA

where s̄ = �n
i=1si
n , κ1(σ ( j), λ( j)) = ∂

∂σ
U (1 + 2σ, 2 + σ, λ)|(σ,λ)=(σ ( j),λ( j) ) and �(·) is the

digamma function given by�(α) = 	
′
(α)/	(α).

� The convergence is assumed when the absolute differences between successive estimates
are less than a given error tolerance. Otherwise move back to the E-step for another
iteration.

4.2. Deriving a simulation algorithm

The Acceptance-Rejection method of simulation can be used to generate random variates
from (4). We begin by simulating a value from a gamma distribution with shape parameter
σ + 1 and rate parameter λ. Note that the pdf of this gamma distribution can be written as

h(θ; σ + 1, λ) = κ(σ, λ)
U (σ,−σ, λ) 	(2σ + 1)

	(σ + 1)
θσ exp(−λ θ ),

where σ and λ are defined as in (4) and θ > 0.
Then, having chosen an alternative random variable that has a gamma probability distri-

bution to simulate from, we define a constant c in the following way:

c = max
x

g(x)
h(x)

= 	(σ + 1)
	(2 σ + 1)U (σ,−σ, λ) .

The algorithm for simulating a value from the distribution with probability mass function
(7) is as follows.

1. Generate a random variate from the gamma distribution

θi ∼ Gamma(σ + 1, λ).

2. Generate a random variate from the standard uniform distribution. Call this value u1.
3. If u1 ≤ (

θi
1+θi )

σ then set the simulated value from (4) equal to θi. Otherwise return to
step 1.

4. Generate Xi where Xi ∼ Poisson(θi).

Table . Fit of number of European corn borer Pyrausta Naubilalis. Rodríguez et al. ().

Count Observed Fitted

  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
Total  
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Table . Summary of the results.

Estimates NGG

σ̂ .
(.)

λ̂ .
(.)

Selection Criteria GPL NB NGG

Maximum log-likelihood –. —. –.
AIC . . .

5. Applications

This section contains several numerical applications of the discrete distribution introduced
in this article. The first set of data has been considered to compare the performance of the
different method of estimation given in this paper. This set of data appears in Rodríguez
et al. (2008). It describes the spread of European corn borer larvae Pyrausta naubilalis in field
corn. This data set is over-dispersed and positively skewed with a long and thick right tail. In
Table 2, the number of corn borer and the corresponding observed frequency appears in the
first two columns. Expected frequencies have been computed by directly maximizing the log-
likelihood function, they are shown in the right-hand side column. Same values are achieved
by using the EM algorithm described in the previous section. By using this procedure, the
solution was found after 16 iterations when the relative change of the estimates between two
successive iterations was smaller than 10−7 and taking initial starting values in the neighbor-
hood of the moment estimates.

Summary of results for this first example is given in Table 3. Parameter estimates together
with standard errors (in brackets) obtained by the procedure explained above are provided.
Furthermore, in order to compare the fit to data obtained when new discrete distribution
with other competitor models two measures of model selection criteria have been included
in the bottom part of Table 3: maximum of the log–likelihood and Akaike’s Information Cri-
terion (AIC). It is important to mention that the latter measure adjusts for the number of
parameters in the distribution and it allowsmodels with different numbers of parameters to be
more fairly compared. Two two-parameter discrete distributions have been considered for this

Table . Fit of automobile claim frequency data in Germany  (Kokonendji and Khoudar, ).

Expected frequencies

Count Observed frequencies GPL NB NGG

  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .

Parameters estimation α̂ = 1.10 r̂ = 1.11 λ̂ = 7.71
δ̂ = 8.38 p̂ = 0.88 σ̂ = 0.06

Maximum log-likelihood –. –. –.
Pearson’s Chi-squared . . .
Degrees of freedom   
p-value . . .
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Table . Number of monthly crimes the period - in Greece (Karlis, ).

Expected frequencies

Count Observed frequencies GPL NB NGG

  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .

Parameters estimation α̂ = 4.39 r̂ = 4.49 λ̂ = 1.78
δ̂ = 2.10 p̂ = 0.66 σ̂ = 2.23

Maximum log-likelihood –. –. –.
Pearson’s Chi-squared . . .
Degrees of freedom   
p-value . . .

purpose, the negative binomial distribution (NB(r, p), r > 0, 0 < p < 1) and the general-
ized Poisson-Lindley distribution (GPL(α, δ), α > 0, δ > 0) inMahmoudi and Zakerzadeh
(2010). The discrete model given by (7) has been denoted by NGG. As it can be observed
in Table 3, the discrete distribution presented in this manuscript outperforms both NB and
GPL distributions since a marginally larger value of the maximum of the log-likelihood is
achieved. Besides, as the three models considered have equal number of parameters, similar
conclusions can be derived from AIC.

Figure . Quantitle–quantile plot (QQ-Plot) under the three models considered for the set of data in Karlis
().
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In the following, two additional over-dispersed sets of data have been considered to com-
pare again the fit to data by using the discrete NGG model with NB and GPL distributions.
The estimates based on maximum likelihood estimation have been calculated for these three
discrete distributions and the results are shown in Tables 4 and 5. Then, by taking the maxi-
mum of the log–likelihood as criterion of comparison NGGmodel provides a marginal better
fit to data than the other two models. In addition to this, it is also important to mention that
NGG model outperforms the group of distributions provided by Karlis (2005) for the set of
data in Table 5 with the exemption of the Poisson-inverse Gaussian distribution.

Furthermore, three different QQ-Plots for the latter set of data are given in Fig. 4. The three
discrete models described above have been considered. As it can be seen, the three distribu-
tions provide similar results as it has been confirmed by the small differences between sample
and theoretical quantiles.

6. Conclusions and comments

In this article, a new generalization of the geometric distribution has been introduced. This
distribution has been obtained by mixing the Poisson distribution with a member of the nat-
ural exponential family of distributions. This distribution satisfies interesting properties and
its pmf can be recursively calculated. Besides, ordinary differential equations satisfied by the
its probability generating function have been obtained. The issue of parameter estimation
has been studied by using maximum likelihood estimation two perspectives; this has been
done either by directly maximizing the log-likelihood function or by using an expectation
maximization (EM) algorithm. Both methods require the use of special functions. From the
numerical results analyzed in the previous section, it can be inferred that the discrete distri-
bution introduced in this article shows a similar behavior than other discrete distributions
traditionally used for that purpose; but having the advantage that only two parameters are
required.
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