
1

Asynchronous approach to simulations in Smart
Grid

Jose Evora, Jose Juan Hernandez and Mario Hernandez
University Institute of Intelligent Systems and Numerical Applications in the Engineering (SIANI)

Edificio central del Parque Cientı́fico-Tecnológico, Campus Universitario de Tafira, 35017
Las Palmas de Gran Canaria, Spain

jose.evora@siani.es, josejuanhernandez@siani.es and mhernandez@siani.es

Abstract—The approach that has been used to analyze power
grids does not fit when demand side management is introduced.
This is due to the fact that, from now on, the demand on
power grids requires to be analyzed in an disaggregated manner.
When the demand is represented using a bottom-up approach
where every individual device is represented, a complex system
approach for the simulation must be considered. This approach
is usually performed under a synchronous timing which involves
a unique clock for every entity. However, this paradigm does not
consider the entity nature and, therefore, sticks the simulation
time development to the entity that requires a higher pace. This
involves that many calculations are performed even though they
do not output a different result. The proposal of this paper
considers this regard and allows to each entity to develop their
time according to their nature pace. The case study shows that
this approach achieve a significant gain in terms of execution
time whereas there is a small loss on the memory usage.

Index Terms—agent based model, asynchronous simulation,
complex system, power grid, smart grid

I. INTRODUCTION

The climate change and liberalization of markets are push-
ing the energy sector towards a new paradigm known as
the smart grid. This paradigm is characterized by the in-
troduction in the power grids of renewable energy sources
(RES), new technologies such as storage mechanisms, massive
integration of sensors and decision makers distributed along
the grid. There is also a trend towards the introduction of
a communication layer for the management and control of
these technologies. The smart grid paradigm is also based
on the use of the Demand Side Management (DSM) whose
objectives include the minimization of the peak demand and
the system operation and planning improvement [10]. The
system complexity is therefore increased and new tools are
needed for the analysis and design of smart grids.

Traditionally, simulators have been an essential tool for
analyzing and designing power grid systems. Many simulation
tools have been developed for this purpose: UWPFLOW [8],
TEFTS [6], MatPower [18], VST [15], PSAT [13], InterPSS
[17], AMES [1], DCOPFJ [2], Pylon [4], and OpenDSS [3].
However, these tools are limited to simulating smart grids
specific issues, like a communication system integrated in a
large-scale simulation. GridSim [7] was developed to deal with
these problems. GridSim is a modified version of TSAT [5] (an
industry-proven transient stability simulator) which addresses
the electro-mechanic working mode of the power grid system.

GridSim is a real-time simulator adapted to integrate sensing
with a high data rate. The modeling approach of these tools
manage the production and demand in an aggregated manner.

However, smart grid simulations require the representation
of both demand and production in a dis-aggregated manner.
Tafat is a tool able to simulate smart grids that enables a
bottom-up representation which includes, not only a technical
system description, but also a sociological description of
people interacting with the system [9]. With this represen-
tation, it is possible to design, implement and test smart
grid simulations. All these tools execute the simulation with
a synchronized approach. Synchronous simulations have the
advantage of simple time management as all objects of the
modeled system are running in the same time instant. It forces
objects to always perform calculations, in every time step.
Sometimes these calculations are unnecessary due to the fact
they cannot provide new results. For example, a washing
machine is usually waiting for an agent to be turned on, con-
sidering this as an event. Later on, it develops some washing
cycles where the power may vary along the time. Whenever
the washing machine state does not change, calculations could
be avoided.

In this paper, it is explained how Tafat implements a simula-
tion approach based on an asynchronous timing to study Smart
Grids. In a synchronous simulation, there is only one process
that is responsible for the time management which uses a static
timestep. Asynchronous simulations allow to manage events
or develop the time execution with a time variable since each
process is able to manage its time development. For example,
in an asynchronous simulation where the power consumption
of a washing machine is analyzed, calculations would be done
only when the washing machine state changes. The advantage
with respect to a synchronous simulation is clear since in
the synchronized case, calculations are done every time step.
This approach will be tested from the point of view of the
performance through a use case. This use case regards the
event and data interactions among elements of a power grid.

In the context of discrete event simulation the asynchronous
concept has dual connotation. One of them consists in variable
time-increment procedures as opposed to a `̀ synchronous´́
or fixed time-increment procedures for simulation control.
This connotation is related to the known concept Distributed
Discrete Event Simulations (DDES) [12], [14]. For instance,
Simula [16], a simulation-oriented programming language, is

2

based on this asynchrony concept where the time-management
is mainly event-based. This kind of asynchrony was already
considered in Tafat through using different time steps for each
mode of behavior [9]. On the other hand, the asynchrony can
be understood as a non-sequential processing where simulation
parts may not be executed in the proper temporal order. That
is to say, later parts of the simulation may be executed before
previous ones [11]. The last connotation is the one to which
we subscribe in this paper. The objective is to apply the time-
management to each model element allowing them to be in
different time instants.

II. TAFAT ASYNCHRONOUS SIMULATION

In initial Tafat framework releases, the simulation of power
grids was done following a synchronous timing approach.
This paper examines a new approach to achieve asynchronous
simulations with Tafat. This section introduces the concepts
and constructions that Tafat architecture includes to model
power grids. Theses constructions are focused on dependen-
cies between objects that are massive and very relevant in
a complex system simulation. In order to properly handle
an asynchronous simulation, it is important to understand
the dynamics of coupled objects. For the sake of clarity, a
traced execution of objects interaction during an asynchronous
simulation is demonstrated.

A. Tafat system modeling

modeling in Tafat is done by developing two views: an
object oriented description of the scenario, and a behavioral
specification of these objects. The first view is the static
representation of the real world objects, where each single
object is described with features (static attributes) and vari-
ables (dynamic attributes). This representation also includes
the specification of object relations. The second view focuses
on objects’ dynamic : that is, how objects should behave,
emulating the way they act in the real world (behavior).
A single object can be associated with several behaviors.
These associated behaviors are responsible for modifying the
model object variables along the time. Object variables are
encapsulated and can be only accessed and modified by their
associated behaviors.

The solution of separating objects from their behaviors,
makes it straightforward to change the method for calculating
variables. In this way, it is possible to simulate different
behavioral aspects with the same representation.

For example, a washing machine representation contains:
1) Static View

• The description of their features such as capac-
ity, installed power and energy labeling, and their
variables such as mode (on, off), active program
(temperature, cycle, timeout...), and active power.

• The topological relation to the electrical installation
in a household

2) Dynamic View
• The specification of the washing machine-operating

mode. The behavior is then associated with this
model object.

Fig. 1. The operational behavior of a Washing Machine is associated with
the Washing Machine object description

Fig. 2. Dependencies examples between objects

Normally, a behavior is coupled with other objects, both
for querying their states or sending messages in order to
change their states. In the Tafat model representation, defining
behavior which interacts with other objects is allowed.

This representation approach consists of interfaces that
should be defined in the object which could be externally
accessed. In Tafat, there are two types of interfaces:

1) event interfaces that handle messages and are respon-
sible for modifying the object internal variables as
requested, and

2) data interfaces that handle queries and provide the value
of requested attributes

An example of these types of interfaces is shown in the
figure 2. On the one hand, the thermal behavior within a
household has a data dependence with the temperature of the
surrounding Outdoor. In this case, the Outdoor temperature
data is requested by the associated object through the out-
door data interface. On the other hand, an agent sociologi-
cal behavior wants to turn on the washing machine. Then,
this sociological agent must use the washing machine event
interface to achieve this task. The washing machine event
interface would change the washing machine mode to `̀ ON´́ .
The washing machine operational behavior would calculate
the proper power consumption based on this mode. Later on,
when the cycles end, the operational behavior turns off the
washing machine.

3

Fig. 3. Model composition. The words that start by a upper case letter are
pointing out a variable requirement. Words starting by a lower case letter are
related to orders. Note that Temp refers to temperature

B. A power grid simulation case

In order to consider the main issues that involve asyn-
chronous simulation a simulation case is proposed to show
how objects interact when working in different times (Figure:
3).

The objects within this simulation case are an Outdoor, a
Household, a Washing Machine and a Radiator.

• The Outdoor is the object that represents environmental
conditions, in this case, the temperature. The Outdoor
temperature behavior is responsible for setting the tem-
perature which can be loaded from an external database.

• The Household works as a container of the appliances of a
household, a Washing Machine and Radiator in this case.
The Household behavior is concerned with the thermal
dynamics inside the household.

• The Electrical devices inside the Household are a Radi-
ator and a Washing Machine. These devices are handled
by an Agent.

• Finally, the Agent represents the people living in the
Household and the associated behavior defines the actions
that these people are performing. For example: a person
turning on the Washing Machine.

The coupling in this model is represented by the dotted lines
in the figure 3. This coupling is always defined from behaviors
to interfaces. The Agent depends on the Washing Machine
to change the operation mode of this device. The Radiator
depends on the Household temperature, since the heat radiation
is calculated based on the gap between the Radiator reference
temperature and the Household temperature. The Household
has two dependencies: with the Outdoor temperature and
with the Radiator power, since the Household temperature is
calculated by a numerical solution of a differential equation
which includes these two variables. Note that, in this case,
there is a cyclic dependence between the Household and the
Radiator.

Fig. 4. Synchronous vs Asynchronous simulation

C. Asynchronous simulation dynamics

A system simulation requires time-management to ensure
that temporal aspects are correctly represented and emulated.
This temporal representation only exists during the simulation
process and is referred to as `̀ Simulation Time´́ . Simulation
Time is represented as a timestamp, a long integer where a
unit corresponds to a millisecond of real time.

The time-management in a synchronous simulation is cen-
tralized while the time-management in an asynchronous sim-
ulation is distributed. That is, an asynchronous simulation
involves that every object manages its time, so they could
have different timestamps (Figure: 4).

In this simulation paradigm, when an object is not coupled
with other objects, its Simulation Time develops without
considering other object Simulation Times. In this simulation
case, the Outdoor is completely independent of other objects.

However, when objects are coupled, the challenge consists
of correctly reproducing temporal relationships. The identified
temporal relationships are as follows:

1) Coupling with a data interface
2) Cyclic coupling with data interfaces
3) Coupling with an event interface

In the following sections these relationships are discussed.
1) Coupling with a data interface: Since an object could

access a variable of an external object which may be in a dif-
ferent time instant, every object must keep the different states
that have been calculated during the simulation execution. So,
when a variable is modified, a state snapshot is created in order
to keep the object state in this time instant.

If an object is querying for a variable value in a time instant
ti, there are two cases: the object Simulation Time is delayed
or ahead with respect to the external object Simulation Time.
In the first case, the external object is able to provide the value
by retrieving the last snapshot previous to this time instant (ti).
I n the second case, the dependent object must wait until the
external object reaches this time instant (ti).

In the figure 5, the first case is shown. The Household
Simulation Time is ti and the Outdoor Simulation Time is
tj . Whenever ti is lesser or equal than tj , the requested data
can be delivered since the data has already been calculated
and stored.

However, when the Household Simulation Time (ti) is
greater than the Outdoor Simulation Time (tj), the Household
behavior is blocked (Figure: 6) until tj is greater or equal than

4

:Household :Outdoor

Behaviour
Data

interface

getData(temperature, ti)

data

data

data

data

data

data

Fig. 5. Household requires the external variable temperature from the
Outdoor. Note that the time is vertically represented

:Household :Outdoor

Behaviour
Data

interface

getData(temperature, ti)

data

data

data

data

Fig. 6. The Household behavior request is blocked since the Outdoor
Simulation Time is delayed with respect to the Household one

ti (Figure: 7) delivering the last Outdoor Temperature value
stored in the last calculated snapshot.

2) Cyclic coupling with data interfaces: The cyclic depen-
dence is a concrete case of the data dependence. Two objects
depending on each other whose Simulation Times are different,
is handled with the following rules: the most delayed one
will always retrieve the required data while the most advanced
will be blocked until the delayed reaches its Simulation Time
(Figure: 8). The mutual blocking is not possible since objects
retrieve the value for the current Simulation Time to calculate
the next Simulation Time value.

In the example shown in the figure 8, the Household requires
the power consumption of the Radiator in order to calculate
the new temperature value. On the other hand, the Radiator
behavior needs the Household temperature value to modify the
Radiator state, since the reference temperature at the Radiator
thermostat serves as a control mechanism.

3) Coupling with an event interface: The event coupling
means that an object receives external messages that contain

:Household :Outdoor

Behaviour
Data

interface

getData(temperature, ti)

data

data

data

data

Fig. 7. When the Outdoor Simulation Time reaches the Household one the
data is delivered.

:Radiator :Household

Behaviour
Data

interface

getData(temperature, tj)

data

data

data

data

data

Behaviour
Data

interface

getData(power, ti)

Fig. 8. Radiator and Household cyclic dependence resolution

data

data data

Behaviour
Event

interface

sendMessage(Mode: ON, ti)

:Agent :Washing machine

data

data data

data

data data

Event
interface

data

data

data data

Event
interface

:Agent :Washing machine

data

data data

Fig. 9. The Agent sends a message to turn on the Washing Machine

orders for changing its internal variables. This is the case of
objects which are managed by people that are represented as
Agents in the model. The Agent interacts with these objects
by sending a message using the object event interface. When
the message is received by the object interface, the object
Simulation Time is developed and then, a new snapshot state
is created.

It could happen that the agent develops its simulation time
without the intention of sending an order to any object. In
this case, the agent behavior must send a `̀ Notification Time
Message´́ to the object. In fact, when the agent simulation
time develops, the agent behavior must send a Notification
Time Message to all objects the agent is controlling. This
notification determines how long an object can develop its
Simulation Time. This type of relationship means that object’s
Simulation Time that is controlled by an agent, will never
exceed the agent Simulation Time.

Figures 9-12 show an event relationship between a social
Agent that turns on the Washing Machine. In this example,

data

data data

Event
interface

data

data

data data

Event
interface

:Agent :Washing machine

data

data data

Fig. 10. The Washing Machine event interface changes the object mode to
on

5

:Agent :Washing machine

Event
interface

sendMessage(NOTIFICATION_TIME, ti)

data

data data

Behaviour

Fig. 11. The Agent indicates the Simulation Time in which it is to its
controlled objects

Event
interface

:Agent :Washing machine

Event
interface

data

data data

Fig. 12. The washing machine receives the message. Now the washing
machine can develop its time until the temporal point indicated in the message

the Washing Machine Simulation Time is always behind the
Agent Simulation Time. In other words, the Agent Simulation
Time sets a restriction for the Washing Machine Simulation
Time.

In the case of the Washing Machine, its power consumption
would be 0 at the beginning of the simulation as it’s off.
Therefore, a new snapshot is created when the Agent turns
on the Washing Machine. From that moment, the Washing
Machine behavior will calculate the new power consumption
with the restriction that the calculations development should
not exceed the Agent Simulation Time, in case the agent turns
off the Washing Machine.

4) Scales: The dependencies explanation has been focused
on the low scale level. This is due to the fact more complex
interactions take place at this level in the demand simulation of
the power grids. Scaling up from the presented case to power
grid levels demonstrates how the time would be developed
following a bottom-up approach. In the figure 13, information
flows are shown which indicate how the demand power is
aggregated from the lowest levels to the highest ones at a
concrete time slice. This aggregation is required to calculate
the demand at every scale. Assuming that every element of a
level makes the same calculations, it could be observed that
each level may be delayed with respect to the lower one. This
is the typical case since the upper elements are waiting for the
information coming from the lower elements. However, it is
possible for all of them are in the same time instant. It is not
possible for upper levels to be ahead of the lower ones.

D. Object time management

In the previous cases, the discussion was focused on objects
with a single type of behavior. However the time-management
of an object with several behaviors or/and several event
interfaces must be dealt with. Every time a type of behavior is
executed, it registers the Next Time Execution, that represents

Fig. 13. Demand simulation in a higher scale

when it should be executed. The object time-manager selects
the behavior with the nearest Next Time execution to the
current Simulation time. The event interfaces are dealt with
in the same way, so that the Interface Next Time Execution
corresponds with the time defined in the last message received.
Whenever a received message concerns a variable value mod-
ification, the object behaviors will be executed afterwards
allowing a change in their Next Time Execution, according
to the new state. Therefore, objects can dynamically develop
their Simulation Times : that is, their Pace could vary from
one Simulation Time to the next one. To illustrate the internal
time-management, the photovoltaic cell behavior is studied.
This behavior calculates the generated power, based on the
environmental solar radiation. Therefore, the generation power
variable will vary along the day until the sunset when the
production will become 0. Then, this variable will not change
until sunrise. According to this behavior, three solutions can
be proposed to avoid systematic calculus along the night:

1) When the sunset is reached the behavior registers the
Next Time Execution in the sunrise time, whenever this
data is available.

2) When the sunset is reached the behavior registers the
Next Time Execution of the previous known sunrise
time. This temporal jump may avoid the first solar
radiation when the sunrise time is before the already
known one. Therefore, the Next Time Execution could
be the previous known sunrise time minus ten minutes.

3) The photovoltaic cell outdoors could send messages to
the photovoltaic cell event interface whenever solar radi-
ation changes. Following this, the photovoltaic behavior
could register its Next Time Execution to infinite (sleep
mode). Therefore, solar radiation changes are received
by the photovoltaic cell event interface-allowing mode
of behavior to access this information.

E. Implementation

In this section, architectural methods to implement this
approach are presented. This architectural proposal takes into
account the previously described requirements for simulating
a power grid, using an asynchronous approach.

A Tafat Thread represents the execution of a single Model
Object and from this point of view describes the execution

6

Fig. 14. Tafat asynchronous simulation architecture

state, awake or sleeping, and the simulation time in which it
is (Figure: 14). During the execution of the whole simulation,
Tafat Core request awake Tafat Threads to be executed. After
this execution, a Model Object will have changed its simula-
tion time and/or its state. In order to improve the performance,
Tafat Core keeps a list of the awake threads and it is listening
for state changes in threads to update this list.

A single Model Object has many controllers that can
modify the Simulation Time. A controller factor could be
either behavior or an Event Interface. These controllers, that
implement the Develop Time interface, participate in the
Model Object simulation, each of them proposing different
Next Simulation times. When the Next Simulation Time of
any of these controllers is undefined, the Tafat Thread that
represents the Model Object turns into a sleeping mode. Once,
the Next Simulation Time of all the Model Object controllers
are defined, the thread will wake up. Next Simulation Time
of Develop Time Controllers could be set to undefined or a
value that should be greater than the current Model Object
Simulation Time. A feasible value for a Next Simulation Time
could be infinite, meaning that behavior is suspended, pending
an external event.

For example, the Next Simulation Time of a Washing
Machine behavior can be infinite, so that the washing machine
is off and therefore, it is waiting to be turned on (Figure: 15).
On the other hand, the Next Simulation Time of this Washing
Machine Event Interface is undefined until other Model Object
behaviors that use it, set the Next Time Simulation. Since the
Washing Machine depends on the Social Agent to be modified,
the Social Agent must inform this device of this. This Current
Time is transmitted through a message which arrives at the
Washing Machine Event Interface. When the Social Agent
Current Time arrives, the Washing Machine Event Interface
will modify its Next Simulation Time from an undefined value
to the one which has arrived in the message. Whenever an
event for modifying the state of the Washing Machine arrives,
the Washing Machine behavior will be executed once, allowing
to it to calculate its Next Simulation Time based on this new
state.

Another improvement from the performance point of view is
based on the Snapshots removing. A concrete Model Object

Fig. 15. The Washing Machine Event Interface Next Simulation Time turns
from undefined to a defined value when the behavior of the Social Agent
sends its Current Time. On the other hand, the Washing Machine behavior
Next Simulation Time turns from infinite to a reachable time when its state
is changed to ON by the Agent

may have dependences for requesting data or set values in
external Model Objects. Similarly, other Model Objects could
require this one to be accessed. For this reason, the Model
Object must keep the snapshots for all the Model Objects
which request data. As this Model Object knows the data
requesters, it is able to find out the time in which the requesters
are and, therefore, it could delete the Snapshots which are
previous to the Current Time of the most underdeveloped
Model Object requester.

III. CASE STUDY

In order to test the implementation a case study has been
developed. This case study is intended to show the trade
offs by comparing both synchronous and asynchronous imple-
mentations. The scenario represents the power grid demand
in a disaggregated manner allowing for the study of DSM
policies and its effects can be analyzed from the very bottom
level of the grid. Therefore, the policies consequences can
be studied at each level (devices, households, buildings...).
The effects at the global system can also be studied as the
simulation is performed using a complex system approach
which allows to see the emergent behavior. The composition
of the experimental scene used to comparatively evaluate
synchronous and asynchronous approaches is described in the
list below:

• 1 outdoor which represents environmental conditions
• 1,000 buildings which are located within the same out-

door
• 20,000 households (20 per building)
• 20,000 agents (each one related to one household)
• 60,000 radiators (3 per household)
• 20,000 washing machines (1 per household)

A. Coupling details

Even though the coupling has been summarized in the list
above, this must be clarified as much as possible since the
performance results depend on this factor, among others. In
figure 16 and 17 relations that exist among the elements of the
scenario are presented. In figure 16, the relations are shown
at the outdoor-building level whereas 17 presents them at
the building-household level. Those relations shown in those
figures are defined and justified in the list below:

7

Fig. 16. Coupling details at the outdoor-building level

Fig. 17. Coupling details at the building-household level

• Outdoor has no coupling with other entities
• Each building is related to the outdoor and the radiators

that are inside. A building get the external temperature
from the outdoor which is used to calculate the thermal
behavior. The radiators inside the building provide the
active power which is also used in the thermal behavior.
Both dependencies are required by the thermal behavior
in order to calculate the internal temperature

• Households do not have any dependency since they do not
need any variable and they are not requested to provide
information. In this simulation, households play the role
of a device container

• Every agent is related to a household. This relation
implies that they are able to modify the state of the
devices within its household. This modification consists
in changing the device states from off to on and in reverse.
Therefore, they are related to a washing machine and a
radiator.

• Radiators need the internal temperature of the building in
which they are. This information is taken into account by
the thermostat in order to find out whether they must heat
or not. Furthermore, they depend on the agent to develop
their time since they cannot be ahead.

• Washing machines have the same dependency that the
radiators have with the agent.

B. Timing
Both synchronous and asynchronous simulations correspond

to 24 hours. In the synchronous case, the simulation pace is
fixed to the entity that requires the highest pace, which is
the building. The building needs a higher pace than the rest
due to the fact that the thermal calculus must be performed
frequently in order to decrease the accumulated error. Since
the asynchronous approach delegates the time management to
each entity, the way in which they develop their time can be
different. The table I presents the timing configuration used at
each simulation.

Moving on to the asynchronous case, the outdoor does
not have a pace since it works as a database from where

TABLE I
TIMING OF EVERY DEVICE AT EACH SIMULATION

behaviors/Step Synchronous Asynchronous
Outdoor 60 seconds -
Building 60 seconds 60 seconds
Agent 60 seconds Dynamic
Radiator 60 seconds ON: 60 seconds / OFF:∞
Washing machine 60 seconds ON: cycles-based / OFF: ∞

TABLE II
PERFORMANCE COMPARISON BETWEEN SYNCHRONOUS AND

ASYNCHRONOUS CASES

Synchronous Asynchronous Benchmark
Execution time
(seconds) 192 113 40.84% faster
Average memory
usage (megabytes) 671 789 17.65% higher

the external temperature can be extracted. Buildings have the
same pace as the synchronous case because of the requirement
presented in the paragraph above. Agents have a dynamic
pace which allows them to develop the time according to their
decision making. When they apply a decision they have made,
they calculate the next decision and the time when it will be
applied. This time will define the temporal jump that the agent
will do. Radiators have the same pace of the buildings when
they are on and ∞ when off since they are slept until the agent
interacts with them. Washing machines behave the same but
the pace when they are on is based on their cycles, this is, if
the heating water cycle takes thirty minutes the temporal jump
will be thirty minutes too when it is in this cycle.

C. Agent decisions

Every agent at each household will behave the same. Agents
behavior has been simplistically developed since they are not
the focus of this work. Since radiators are turned on from the
beginning of the simulation, agents turn them off at 8 am. The
next action they perform is turning on the washing machines
at 1 pm. The last action they apply is turning on the radiators
at 8 pm.

D. Performance

When considering the performance of an implementation,
two important indicators are the execution time and the mem-
ory usage. Therefore, both implementations will be compared
under both indicators. The table II presents those indicators
for each simulation.

There is a significant improvement when applying a asyn-
chronous paradigm in the execution time for this experiment.
However, there is a certain penalty in the memory as a result of
the use of snapshots. It is also interesting to see the times when
every element kind finished the simulation. In the synchronous
case, it is evident that all of them finished at the same time.
However, in the asynchronous one (Figure: 18), this does not
happen since every entity develops its time according to its
pace.

Since outdoor does not have pace, it finishes at the very
beginning. Agents finish when they stop the events sending.

8

Fig. 18. Times in which each entity kind finished

This makes possible to the radiators and washing machines
develop their times. Seconds later, washing machines are able
to finish. However, radiators cannot since they are coupled
with the buildings. Radiators and buildings finish at the same
time involving the simulation end.

IV. CONCLUSIONS AND OUTLOOK

Going towards asynchronous complex system simulations
involves a re-conceptualization. This re-conceptualization af-
fords objects interaction issues which could come from both
data and event dependencies. In a synchronized execution
environment, every object of the system is in the same time
slice and the time-management is usually handled using a
single clock. The main advantage of this approach is, among
others, the simplicity when accessing or modifying an object
since all of them are in the same time slice. However, the
main disadvantage of the execution of object calculations, is
that some of them are unnecessary because the execution is
not going to produce any different output.

The use of an asynchronous approach for simulating com-
plex systems provides flexibility in the object evolution.
Objects can freely develop as far as their dependencies are
satisfied. Furthermore, object behaviors can be both event and
time-based which provides the possibility of having sleeping
behaviors. This sleeping behavior could change their status to
active by receiving external events. The behavior step may
vary from one execution to the next at a dynamic speed.
Both sleep mode and dynamic speed are important features to
avoid the systematic calculations at fixed steps which produce
the same values. Furthermore, we think this approach may
facilitate the parallel complex simulation execution.

Concerning the results obtained in the experiment, it must
be noted that the performance we have obtained cannot be
extrapolated. To obtain general conclusions, more experiments
must be executed as future work, in order to extract the relation
between the scenario nature and complexity and the relative
performance obtained between synchronous and asynchronous
approaches.

V. ACKNOWLEDGMENT

This work has been partially supported by European Re-
gional Development Fund (ERDF/FEDER) and Agencia Ca-
naria de Investigacin, Innovacin y Sociedad de la Informacin
(ACIISI) of Canary Islands Autonomic Government through
the project whose reference is SolSub200801000137, and also
through the ACIISI PhD grant funding to José Évora with
reference TESIS20100095.

REFERENCES

[1] AMES Market Package, http://www2.econ.iastate.edu/tesfatsi/
AMESMarketHome.htm

[2] DCOPFJ Package, http://www.econ.iastate.edu/tesfatsi/DCOPFJHome.
htm

[3] OpenDSS, http://sourceforge.net/projects/electricdss/
[4] Pylon, Power system and energy market analysis with Python, http:

//pylon.eee.strath.ac.uk/pylon
[5] TSAT - Transient Security Assessment Tool, http://www.powertechlabs.

com/software-modeling/dynamic-security-assessment-software/
transient-security-assessment-tool

[6] Tefts program, university of waterloo (2000), http://www.power.
uwaterloo.ca

[7] Anderson, D., Zhao, C., Hauser, C.H., Venkatasubramanian, V., Bakken,
D.E., Bose, A.: A virtual Smart Grid. IEEE Power and Energy Magazine
(2012)

[8] Cañizares, C., Alvarado, F.: UWPFLOW Program, University of Water-
loo (2000)

[9] Evora, J., Kremers, E., Morales, S., Hernandez, M., Hernandez, J.J.,
Viejo, P.: Agent-Based Modelling of Electrical Load at Household Level.
In: ECAL 2011: CoSMoS - Proceedings of the 2011 Workshop on
Complex Systems Modelling and Simulation. p. 12 (2011)

[10] Gabaldon, A., Molina, A., Roldan, C., Fuentes, J., Gomez, E., Ramirez-
Rosado, I., Lara, P., Dominguez, J., Garcia-Garrido, E., Tarancon, E.:
Assessment and simulation of demand-side management potential in
urban power distribution networks. In: Power Tech Conference Proceed-
ings, 2003 IEEE Bologna. vol. 4. IEEE (2003)

[11] Ghosh, J.B.: Asynchronous simulation of some discrete time models. In:
Proceedings of the 16th conference on Winter simulation. pp. 466–469.
WSC ’84, IEEE Press, Piscataway, NJ, USA (1984)

[12] Kaudel, F.J.: A literature survey on distributed discrete event simulation.
SIGSIM Simul. Dig. 18(2), 11–21 (1987)

[13] Milano, F.: An Open Source Power System Analysis Toolbox. IEEE
Transaction on Power System, vol. 20, no.3 (2005)

[14] Misra, J.: Distributed discrete-event simulation. ACM Comput. Surv.
18(1), 39–65 (1986)

[15] Nwankpa, C.: Voltage Stability Toolbox, version 2, Center for Electric
Power Engineering, Drexel University (2002)

[16] Pooley, R.J.: An introduction to programming in SIMULA. Blackwell
Scientific Publications, Ltd., Oxford, UK, UK (1987)

[17] Zhou, M.: InterPSS, http://www.interpss.org
[18] Zimmerman, R., Gan, D.: Matpower, Documentation for Version 2,

Power System Engineering Research Center, Cornell University (1997)

View publication statsView publication stats

https://www.researchgate.net/publication/261070605

