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Abstract

The ability to resolve closely spaced frequencies of two high-resolution AR spectral methods, the
Burg’s and Marple’s approaches, is examined by using time series of coastal currents measured in
waters of Canary Islands. We emphasise their usefulness to resolve tidal harmonic components
with close frequencies and low frequency components.

1 Introduction

In physical oceanography, like in many other branches of science and
engineering, it is very common to handle time series data from field
observations. A basic procedure for extracting information from experimental
records is to transform the sequences into the frequency domain and make use of
the resultant spectrum, to search for hidden periodicities in time series and to
investigate the physics of the underlying phenomena generating the observed
data.

The widespread application of spectral analysis has given rise to several
spectral estimation methods. Each one of these methods has its own advantages,
drawbacks and uncertainties, in terms of various properties of the spectrum
estimator, such as the consistency (variance and bias) and the ability to resolve
closely spaced frequency components (spectral resolution), among others.
Furthermore, each basic procedure has various different specific techniques.

Thus, an important question arises: What is the best spectral estimation
procedure we can select for a given application? The answer is not easy and is
often provided by experience. The spectral estimates of a given process are
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usually computed by using the well known conventional, or non-parametric,
techniques. That is, by applying the Blackman-Tukey, or the Fast Fourier
Transform methods. However, due to the inherent variance of the raw spectral
density function computed by these methods, it is often prescribed to smooth the
resulting spectral estimates by applying some arbitrarily chosen spectral window
or averaging procedure. The frequency resolution of the resulting spectral density
function is thus drastically reduced. On the other hand, the frequency resolution
of these methods is critically dependent on the time duration of the measured
time series.

Coastal currents often result from the effect of various physical forces, which
set the sea in motion. These forces cover a very broad band of the frequency
spectrum and may be divided in two main groups. One, including terms which
often produce non-oscillatory motions, such as the drag of the wind on the sea
surface, changes in atmospheric pressure, and density gradients due to non-
uniform salinity or temperature distributions. In contrast, another set of physical
phenomena produces oscillatory motions. This second group includes
gravitational tides, caused by the regular movements of the Earth-Moon-Sun
system, the meteorological tides, also named as radiational tides because their
periods are directly related to the solar day, and the shallow water tides,
generated by non-linear hydrodynamic effects in waters of finite depth.
Nevertheless, currents in most coastal regions are dominated by astronomical
tides, which energy is split among several frequencies but is usually dominated
by diurnal and semidiurnal periods in a relative proportion varying with the local
tidal and meteorological conditions.

So, in analysing coastal current records, an important problem emerges when
it result necessary to extract with high accuracy some spectral components close
in frequency, such as in the case of some tidal components which can be very
close in frequency. Furthermore, as stated above, this problem is enhanced when
the observed time series are extended over short periods of time, which is the
normal case when working with the available records of coastal currents from a
given location for practical objectives. This fact is particularly important in the
low frequency band, which is normally of great interest in coastal engineering.

Due to the above mentioned drawbacks the Blackman-Tukey and FFT
methods often result impractical for this and many other applications. To
overcome these restrictions presented by the non-parametric spectral methods,
many parametric methods have been proposed, which are very effective for
extracting frequency components from relatively short time series, without zero
padding techniques, and eliminate the need of windowing or smoothing
procedures to stabilize the spectral density estimates. However, these methods
have also its own advantages and disadvantages. The parametric methods can be
classified as autoregressive (AR), moving average (MA) and autoregressive
moving average (ARMA), in terms of the linear model used to represent the time
series being studied. Among these the AR spectral methods, sometimes
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referenced as maximum entropy spectral methods or high-frequency resolution
estimators, are the most used in practice.

2 Autoregressive Spectral Methods

The main step in developing an AR model for a given time series is the
determination of the AR parameters. Various techniques have been proposed to
reach this goal, giving rise to different AR spectral methods. In this study, we
investigate the effectiveness of two parametric (AR) approaches to obtain highly
resolved and stable spectral estimates from short time series of coastal currents.
These are the Burg method, (Burg, [1]) which is, probably, the most popular one
among the AR procedures, and the Marple approach, (Marple, [2]). Both
methods are based on the assumption that an AR model may be adequately fitted
to data. The spectrum of this AR model is considered as the spectrum of the data.

The principle of AR methods is to fit the observed time series {x,} toalP

order AR model, AR (p), represented by

14
x,=—2amx,_m +w, O
m=1

where a,, are the AR coefficients and w, is the input to the AR linear model,
generally a white noise with variance o2 . Multiplying each term of eq. (1) by
x,, and taking expectations of each term we may write

Elxx]= -3 anElr, nx o ]+ Elwx] @

m=1
Thus, assuming that {x,} has a zero mean value, we obtain the following
relationship between the autocorrelation sequence and the AR parameters
R(k)+ ia,,ﬂ(k—m):a&,é’k 3)
m=1
where &, is the Kronecker delta. This equation is often termed the extended AR
Yule-Walker equation and can be expressed in matrix form as.
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The most obvious procedure to estimate the parameters a, and o-fv is to

substitute the true unknown autocovariances by their biased estimates. This
approach, referenced as the Yule-Walker (YW) estimation method or as the
autocorrelation method, results very appealing due to the Toeplitz form of the
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autocovariance matrix, which makes possible the efficient estimation of the AR
parameters by using the Levinson’s algorithm. Unfortunately, the use of the
biased or unbiased autocorrelation estimates gives rise to problems. Thus,
unbiased autocorrelations may produce non positive definite covariance matrices
so that the matrix inversion can not be done. On the another hand, biased
autocorrelations eliminate this risk, but at expenses of a degradation of the AR
spectral resolution and a shifting of spectral peaks from their true location
(Marple, [3]). Furthermore, this method assumes a zero value for the data outside
of the observed sample. Then, the spectral resolution is drastically reduced for
short data records. Besides, spectral estimations obtained through this approach
can produce spectral line splitting (Kay and Marple, [4]). These drawbacks have
induced the development of alternative techniques to estimate the AR
parameters.

2.1 Burg’s method

The most popular procedure to estimate the AR parameter is that introduced by
Burg [1]. This method is often named as the maximum entropy (ME) method
because it makes use of the maximum entropy principle to extrapolate the
autocorrelation function for lags m>p. In other words, given a finite sample of a
random process, the extrapolated autocorrelation function is consistent with the
observed data and maximizes the randomness of the process. Thus, the Burg’s
method do not consider the time series information to be zero outside the interval
in which it was measured, such as is done in conventional and YW methods. As
a consequence, this approach provides a much higher spectral resolution. In fact,
the ME procedure has no limit on spectral resolution other than that imposed by
the signal/noise constraints, Marple [3].

Using the Yule-Walker equation (4) carries out extrapolation but in contrast
to the YW method, the AR coefficients are not estimated directly from the data.
Burg assumed that x, can be estimated by a weighted sum of m previous
observations and a weighted sum of m future observations, using the same
weights a,, in both directions. That is, he considers the following forward and
backward linear predictors

i,:ﬁ:&mx,_m t=m+1,m+2, --- N

m=1

)_ctziimx,m t=12, -+ ,N-m
m=1

Then, the AR parameters are estimated by minimizing the sum of squares of
the forward and backward prediction errors with the constraint that the entropy in
the data is maximum (see, e.g., Ulrych and Bishop [5]). The solution to this
constrained maximization problem is a spectrum, which correspond to the most
random time series whose autocorrelation function is consistent with the
observed values.
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The ME method produces more spectral estimations with higher frequency
resolution than the conventional and the YW approaches. However, various
authors (see, e.g., Kay and Marple [4]) have observed shortcomings such as
frequency shifts of the spectral peaks and spectral line splitting.

2.2 Marple’s method

Another method to estimate the AR parameters was proposed, independently, by
Ulrych and Clayton [6] and Nutall [7]. This approach, often known as the least
squares (LS) algorithm, may be considered as an improvement of the Burg’s
method, which seems to remove the above commented drawbacks.

In a similar way to the ME technique, in the LS method the AR parameters
are estimated by means of a least squares minimization procedure which
considers a criterion involving both forward and backward prediction errors
minimization. However, in contrast with ME, the minimization procedure is not
subjected to the constraint imposed by the Levinson’s recursion, which is
equivalent to impose a Toeplitz structure for the autocovariance matrix.

Since in the LS procedure the autocovariance matrix adopts a non Toepltiz
form the Levinson’s algorithm is not valid. Marple [2] derived a recursive
algorithm by taking into account the special symmetric structure of the
correlation matrix resulting in the LS approach, which can be decomposed into
products of Toeplitz matrices.

The computational efficiency of the Marple’s algorithm is comparable to that
of the Levinson’s algorithm. Furthermore, it has been observed that this method
have less frequency bias and slightly better frequency resolution than the ME
spectral method. Besides, it has not been observed evidence of spectral line
splitting.

Once we get the AR coefficients, by applying one of the above outlined
procedures, the power spectral density can be computed from

2
S(f) = 202At 1
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3 Coastal Current Time Series

Coastal current time series used in this study were recorder by using an Aanderaa
current meter anchored at 20 meters depth, in a place of 50 meters total depth, at
the East coast (27°59'20'N, 15721'30'W) of Gran Canaria island. The measu-
rement period extended from 23 June (12:45h) to 22 July (13:05h), with a
sampling period of 10 minutes. The complete time series for the study is shown
in Fig.1 as a vector stick diagram. It has been decomposed into E-W and N-S
directions, assuming the positive northward and eastward convention. The
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analysis has been developed by estimating the spectrum corresponding to each
one of the resulting sequences, denoted as u(z) and v(t), respectively.
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Fig.1. Vector stick diagram for the measured time series. The E-W and N-S components
are the stick projections on the x and y-axis, respectively.

4 Determination of the AR Model Order

The most important problem in AR spectral analysis is the determination of the
order of the model to be fitted to data. Many different order determination rules
based on the error prediction variance have been suggested. However, the
experimental results given by a host of authors indicate that the model order
criteria do not yield definitive results. In other words, there is not a single rule,
which works adequately under all conditions. So, it results apparent that in the
absence of any solid criteria one should try different model orders and different
criteria to look for the better criterion to select the order model in each case.

Criterion Author/s | Expression
Final prediction error Akaike, 1969 FPE(m) = MH'—I) 3!
N—(m+1)
Akaike }nfgrmatlon Akaike, 1974 AIC(m) = ln(SZ )+ 2m
criterion mo N
. . m — —
Criterion Parzen, 1974 | CAT(m) = Lzﬁ_’i-u
autoregressive transfer NS st ]\753l

Bayesian criterion Kashyap, 1977 | BC(m)= Nln (S,f‘ )+ mln(N)

Minimum description Schwartz, 1978

—1nl<? In(N)
length Rissanen, 1078 | MDLOm) =In(S7 }+ m N

Hannan & Quinn | Hannan and Quinn, (2, 4m
criterion 1979 HQC(m) =1n(s2 )+-171n(1n(N )

Table 1. Criteria used to estimate the order of the AR model fitted to the observed data.
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Thus, in this study, we check the ability of some commonly used criteria,
given in Table 1, to select the adequate order to fit an AR model to coastal

current time series. In the expressions given in table 1, S2 is the estimated

prediction error variance, N is the total number of data in the sample and m is the
number of parameters in the m-th order model. In these criteria, the order that
minimize the criterion is selected as adequate. Details on these criteria and
references can be found in Kay [8].

5 Results and Discussion

It was mentioned in the previous section that the selection of the AR model order
is a critical problem in AR modelling to estimate the spectrum of measured time
series. Several authors have used the AR spectral techniques for oceanographic
time series (see, e.g., Holm and Hovem [9]) and have concluded that the criteria
based on the prediction error variance underestimate the order. Our results,
shown in Figure 2, present the same drawbacks, but enhanced for various reasons
later discussed.

The error prediction variance was estimated, for each one of the current
velocity components, by using the Burg and Marple approaches. It can be seen
that FPE, AIC and CAT criteria present a similar behaviour with a local
minimum close to 150, for both components. Thenceforth there is a slow but
progressive increase. In contrast, the another three criteria present a practically
monotonic increase with a small downward jump near to 150. Clearly, a model
order of 150 is a very large value. The explanation of these results is that to
identify spectral components in a process with very broad band characteristics, as
in this case, a very high model order is needed.

Unfortunately, such as expected, this order model do not give the desired
results. Thus, as shown in Figure 3, the ME and LS methods can only resolve the
more energetic tidal frequency bands, that is, the diurnal and semidiurnal bands,
denoted by 1 and 2, respectively, and some constituents of higher frequency, such
as the third-diurnal, M;, forth-diurnal, M,, etc. However, they are not able to split
off the different constituents included in the diurnal and semidiurnal bands and
the low frequency range appears as a broad band with a significant energy
content, but without resolving any spectral peak.

The low frequency resolution reached with this large model order, relatively
better but not too higher than that obtained with the non-parametric methods for
the used record length, may be explained by taking into account the following
considerations. First, if very closely spaced components are present in a given
process, a high model order is needed for its identification. Second, it is also
necessary to increase the model order to split off very low frequency spectral
components. These two troubles are always present in the spectra of coastal
currents, which have components of extremely low frequency. Furthermore, in
addition to the nearness of the tidal constituents in a given frequency band, some
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Figure 2. Criteria examined to determine the optimal order of the AR model
fitted to the coastal current time series analysed.

non-tidal components may be practically overlapped, as is the case of the diurnal
tidal constituents and the inertial period in the zone of study. Moreover, the low
frequency band holds a host of very closely spaced spectral components mainly
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caused by tidal and meteorological phenomena. All this gives rise to a very
complex spectral structure and makes necessary a very high order model to
characterise coastal currents by means of an autoregressive model.

In an attempt to obtain a better frequency resolution, we performed many
trials increasing the AR order model, taking care of possible line splitting, mainly
in the Burg’s method. Thus, we observed that more and more spectral
components could be identified as the order increases. We stopped this procedure
for order values near to one thousand. Naturally, this is an extremely large order
but only with a so high order was possible to identify clearly the lunar fortnightly
component, My, which can be guessed by observing the semi-monthly modulation
present in the amplitude of the stick vectors shown in Figure 1. This fact
becomes clearer by representing each velocity component independently. These
graphs (not shown) reflect an evident modulation, which is stronger for the u
component than for the v component. The reduction in the fourteen days
modulation for the u component is probably due to the alongshore trade wind,
which was blowing in the south and southwestward direction during the
measurement period. Then, the u component results less affected by the wind

induced stress on the sea surface, but similarly affected by the wind driven
pressure fluctuations.
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Figure 3. AR spectral estimates for the u component (a), and the v component (b)
of the current velocity. Dashed lines represent the ME and LS estimations with
AR models of order p=150. Solid line shows the ME estimations for p=1000,
and solid dotted line stands for the LS estimate with p=1000.

These facts seem to be the cause of the peak observed in the spectrum of the
u component with a period near to five days. This peak, and the M; constituent,
can not be resolved in the v component because, probably, they are masked
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together with the low frequency wind drag, resulting in the low frequency broad
band observed in figure 3 (b). It results interesting to indicate that for a very large
order model, around 500, both spectral, estimation methods are able to split off
the lunar, My, solar, S,, and lunar elliptic, N, constituents in the semidiurnal
band. This fact is also true for the diurnal band, which split up in two peaks
associated to the luni-solar, K;, and lunar, O,, diurnal constituents, and a third
peak likely due to an inertial oscillation. Besides, although both methods resolve
peaks successfully, by inspecting the low frequency spectral estimations for the u
component, it may be noted that the Marple’s method shows a slightly higher
frequency resolution.

6 Summary

It has been observed that the criteria for order model selection examined do not
give adequate results. This may be due to the high complexity of coastal current
time series, which includes very close spectral components and considerable
energy content in very low frequency ranges. On the another hand, the ME and
the LS spectral methods permit to obtain high frequency resolution estimates of
the coastal current sequences, particularly the second one, but very large order
models are needed to reach adequate results.
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