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Abstract

The Hartley transform, a real valued alternative to the complex Fourier transform,
is presented as an efficient tool for data analysis in physical oceanography. Basic
theoretical properties of this real-valued transform are briefly reviewed. Similari-
ties and differences between Fourier and Hartley integral transforms and their dis-
crete versions, as well as computational benefits or disadvantages between nume-
rical algorithms used to evaluate their discrete versions are presented. The Hartley
transform is used to estimate the spectral density fhnction of ocean surface waves
and coastal current time series.

1 Introduction

In physical oceanography, as in many other areas of science and engineering, the
spectral analysis of time series is an standard procedure to investigate the physics
underlying the observed dynamical processes. The basic idea of spectral analy-
sis rests on the method of Fourier series, which states that any periodic function
satisfying certain conditions, chiefly those of convergence, maybe represented by
a series of complex exponential functions. The generalization of this idea to non-
periodic functions implies the substitution of Fourier series by the Fourier integral,
leading to the concepts of Fourier transform and spectral analysis.

The Fourier transform utility lies in its ability to transform a time signal into the
frequency domain to analize its frequency content in terms of amplitude and phase.
This capability is due to the fact that the Fourier coefficients of the transformed
function represent the contribution of each sine and cosine function at a given
frequency,
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320 Coastal Environment

Spectral analysis has its roots in the early 1800s, with the Joseph Fourier works.
However, it has a history filled of controversy, discoveries, and rediscoveries. Well
documented analyses of this fascinating history have been given by various authors
[1, 2,3, 4]. The frequency spectrum concept was introduced in the field of oceano-
graphic time series analysis during the period from the late 1940s to the early
1950s. It was first used in the study of ocean wind waves around 1950 [5, 6]. Over
the last five decades, its use has developed and generalised quickly after the disco-
very of the Wiener-Kintchine theorem, establishing a relation between covariance
and power spectrum [7], and also with the increasing availability of powerful di-
gital computers and the development of fast algorithms [8], to become the most
widely used data analysis method by oceanic scientists.

Nevertheless, the practical use of Fourier methods presents some drawbacks in
the analysis of time series observed in nature. Particularly, while signals observed
in most real-word applications are real-valued the Fourier transform uses com-
plex arithmetic, transforming a sequence of real data from the time domain into
a sequence of complex numbers in the frequency domain. Half of the numbers
in the frequency domain corresponds to the information in the negative frequen-
cies and repeat the information contained in the positive frequencies, Furthermore,
the multiplication of two complex numbers require four real multiplications and
to two real additions. Consequently, due to the amount of memory required, the
redundant information, and the number of computations needed, it seems obvious
that the Fourier transform is not the most efficient method to transform real time
series into the frequency domain.

Hartley in 1942 [9] proposed an alternative transform to avoid the time and
memory computation shortcomings related to the Fourier transform of real data.
This transform was expressed in a more symmetrical form between the fi.mction
of the real variable and its transform. However, while this transform works only
with real numbers and is easy to compute, it remained little known among signal
analysts. To understand this fact is necessary to take into account that the Hartley’s
work was published at about the same time as the massive use of spectral methods
based on the complex Fourier transform was starting up. It was not until its redis-
covery in 1983 by Bracewell [1O]that the algorithm began to gain some attention.
Bracewell contributions [10, 11] revived the interest in the Hartley transform and
a large number of articles, over two hundred, have been published during the last
ten years, mainly in the signal processing specialized literature. Nevertheless, the
Hartley transform still has not gained the attention of the oceanographic data ana-
lysis community, even though it has been applied during the last decade in closely
related areas such as geophysics[12, 13].

The fundamental purpose of the present work is to introduce the Hartley trans-
form as an efficient tool for time series analysis in physical oceanography, The
remainder of the paper is organized as follows. A brief introduction to the dis-
crete Fourier transform and an overview of some basic properties of the discrete
Hartley transform are provided in section 2. Relations between the Fourier and
Hartley transforms and the corresponding fast algorithms are analysed in section
3. Section 4 presents some examples of spectral analysis of oceanic physical pro-
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cesses by exploting the advantages of the Hartley transform. These are followed
by a summary of conclusions and suggestions for practical analysis of time series
in physical oceanography in section 5.

2 Discrete Fourier and Hartley Transforms

To examine the properties of the Fourier and Hartley transforms let us consider
a real-valued time series z(t) of length T and digitized with a constant sampling
period At,

x(t) = z(7-LAt)= {z(0), z(At),z(2At),. .. ,Z(N – I)} (1)

where N is the number of samples and T = NAt.

2.1 Discrete Fourier Transform

The well known integral Fourier transform of a continuous fhnction of time z(t)

and its inverse transforms are given respectively by

cm

F.(f) =
/

x(t)e– ihftdt (2)

–m

cc

z(t) = ; I Fz(f)e iz~f t df (3)

-CKJ

where the kernel transform finction is

In practice, the evaluation of equations (2) and (3) must be done using discrete
samplings of the data over a finite range. Consequently, a discrete approximation
of these equations must be used. The corresponding discrete versions are the well
known discrete Fourier transform (DFT) and the inverse discrete Fourier transform
(IDFT). The DFT can be expressed as

N–1

F.(f) = Fz(kAf) = ~ z(nA.t)e-22=kAf nAtAt k= O,., N–1 (5)
n=Q

whereas the original time series can be recovered by using the IDFT
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x(nAt) = & ’51 Fm (kAf )ei2”kAfnAtA f n= O,. ... l–l (6)
k=O

It is worthy of note that the DFT and IDFT expressions seem almost identical,
except for the scale factor and the reversed sing in the exponent.

2.2 Discrete Hartley Transform

The Hartley transform of a real-valued t?mction z(t) and its inverse are defined
respectively as [1O]

03

Hz(f) =
/

z(t) cas(27rft)dt (7)

—m

m

z(t) = &
/

Hz(~) cas(2m~t)o!~

—cc

where the kernel transform function is

(8)

cas(z) = cos(z) + sin(z)

The name caa( ) stands for “cosine-and-sine”, It is interesting to note that the
sum of the sine and cosine functions is just another sine fimction shifted by n/4.
However, this is the key for the symmetry between the transform and its inverse
exhibited by the Hartley transform.

As in the case of the Fourier transform, the practical evaluation of the Hartley
transform pair (eqs. 7 and 8) from the real valued time series z(t) requires the use
of discrete approximations. The discrete Hartley transform (DHT) is given by

N-1

Hz (kA~) = ~ z(nAt) cas(2~kAfnAt)At k= O,...,l–l (9)
nao

and the corresponding inverse discrete Hartley transform (IDHT) can be written as

N-1

z(nAt) = ~ ~ Hz(kAf) cas(2rkAjnAt) n = O, ~~~, N -1 (10)
k=O

Note that equations (7-8), as well as their discrete counterpatis (9-10), present
the same form. There are no sign changes as in the traditional Fourier transform.
Furthermore, while the Fourier transform of a real signal is a complex function,
the Hartley transform of a real finction is also real.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com  Email witpress@witpress.com
Paper from: Coastal Environment, CA Brebbia (Editor).
ISBN 1-85312-921-6



Coastal Environment 323

3 Relations between the Fourier and Hartley transforms

In this section some relations between the Hartley and Fourier transform are pre-
sented. The analysis will be made based on the continuous time version of these
transforms, although the discussion is obviously valid for the discrete time case
too. A detailed study of both transforms can be found in [14].

Expanding the complex exponential in the Fourier transform relations by using
the Euler formulas and comparing the result to the Hartley transform relations,
it is easy to obtain the following interesting results. The even part of the Hartley
transform E [H,(f)] is the real part of the Fourier transform

Similarly, the odd part of the Hartley transform O [Hz (f)] is the imaginary part of
the Fourier transform

Thus, the Fourier transform of z(t) can be readily extracted from Hz (f) by simple
reflections and additions

$’.(f) = E [H.(f)] - iO [H.(f)] (13)

Conversely, given the Fourier transform F,(~), it is possible to obtain IIt (j) by
noting that

Hz(f) = !R(Fz(f)) – S(Fz(f)) (14)

It should be noted that Fourier and Hartley transforms are very similar. They are
related to one another by equations (13) and (14).Also, it can be observed that both
transforms may be expressed as combinations of the sine and cosine transforms.
Another important fact is that Hartley and Fourier transform are invertible and
consequently they carry the whole information about the original signal but in a
different way.

3.1 Fast Fourier and Hartley transform algorithms

It is a well known fact that the practical evaluation of the Fourier integrals for
a time series of N sample points through direct implementation of the DFT and
IDFT is not an efficient procedure because it requires about N 2 arithmetic opera-
tions. Consequently, a large number of fast algorithms, generally named as fast
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Fourier transform (FFT) algorithms, have been developed over the years for the
efficient computation of the DFT. The first major breakthrough was the Cooley
& Tukey algorithm [8], which reduced the complexity of a DFT from OIN 2] to
O[fv log N].

The implementation of the DHT requires a lower number of arithmetic opera-
tions than the DFT for the same record lenght. Nevertheless, it is also necessary the
development of fast algorithms to improve its efficiency. A number of fast Hartley
transform (FHT) algorithms have been developed to compute de DHT in just the
same way as the FFT algorithms, by taking into account the similarity between
both tranforms [11, 15, 16, 17]. The authors of the different FHT algorithms claim
it to be computationally more efficient than the FFT, in terms of faster comput-
ing, simpler programming and identical direct and inverse transforms, This is evi-
dent in the comparison of the FHT with the complex-valued FFT. However, these
assertions have caused controversy, but have also given rise to the development of
a substantial number of efficient real valued fast Fourier transforms, specifically
suited for the DFT computation of real signals.

To judge by the results reported by comparative studies, e.g. [18], it seems that
the various real valued FFT and the FHT algorithms show a considerable similarity
in terms of computational efficiency, An efficient real FFT algorithm or a FHT
algorithm gives an increase in speed by approximately a factor of two. However,
the main advantages of the FHT lie in its inherently real valued nature and equi-
valence of the forward and inverse transformations, making possible to apply just
exactly the same algorithm to compute any of them.

4 Applications

As stated previously, when sampled data are in the real domain the FHT may
be applied instead of the more commonly used FFT, designed for complex data,
in virtually any application. In particular, the Fourier spectrum can be efficiently
calculated via the FHT. The benefits of calculating the power spectra using the
FHT are about 50% less data memory required, because there are no imaginary
data, and about 40% faster program execution, since no complex operations are
required, at no loss in accuracy,

It has been shown that for real signals the even and odd parts of the Hartley
spectrum are the real and imaginary parts of the Fourier spectrum, respectively.
Thus, the power spectrum in terms of the Hartley transform can be expressed as

P.(f) = l!R(F’z(f)){2+ [9(Fz(f))12= (E [Hz(f)])’ + (0 [IL(f)])’

(15)

_ [Hz(f)+ Hz(-j)]’+ [H=(f) - E/.(-f)]’ = H:(f)+ IT&(-f)—
4 4 2

It is also straightforward to compute the phase spectrum from
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(16)

[

Hz(–f) - Hz(j)
= arctan

H.(f) + Hz(–f) 1
Two examples of spectral density estimation via FHT in physical oceanography

are presented below. Firstly, a synthetic record of wind waves is used to check
the comectness of the FHT based methodology. Note that spectral density function
is usually estimated form samples of an unknown function. In this case the true
spectrum associated to the analysed time series is also unknown and uncertainty
about the results exist. The use of numerical y simulated time series from a known
parent spectrum removes this uncertainty, The procedure applied to simulate the
analysed wave record, shown in Fig. 1a, assures that the vertical displacement of
the sea surface at a given point is due to the linear superposition of a finite but large

4

-4 3

0 128 256 384 512 640 768 896 1024
time (s)

50 I I

— Target spectrum
o FHT spectrum
x FFT spectrum

0 0.05 0.1 0.15 0,2 0,25 0.3
frequency (Hz)

Figure 1: Simulated wave record (a), target spectrum and spectral density function
estimated via FHT and FFT (b).
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326 Coastal Environment

number of Fourier components with fixed Ilequencies and random phases uni-
formly distributed over the range (O– 27r),whereas the amplitudes are related to
the spectral density function in a deterministic way. This procedure ensures that
the spectrum estimated from the simulated time series will reproduce the specified
target spectrum,

The spectral density function of the numerically simulated wave record esti-
mated via FHT is shown in Fig. 1b. Results obtained by using the FFT algorithm
are also represented for comparison. It can be observed that both methods repro-
duce almost exactly the target spectrum. Thus, spectral densities computed through
the FFT and FHT are equivalent, such as expected.

Figure 2 represents the spectral densities of the zonal (E-W) and meridional (N-
S) components of a coastal current velocities record measured at the East coast
of Gran Canaria island [19]. The examined time series is shown in Fig. 2a, as a
vector stick diagram, and the spectra corresponding to the zonal and meridional
components are represented in Fig. 2b. It can be observed that semidiumal tidal
motions strongly prevail, while diurnal currents are considerably weak, mainly in
the zonal direction. It is also possible to detect some higher frequency tidal compo-

40 1 I

4 I I
.
23-jun 26-jun 29-jun 2-jul 6-jul 9-jul 12-jul 15-jul

! (b)
\

— zonal component
160 . meridional component

Figure 2: Measured coastal currents record (a) and spectral density fimctions esti-
mated via FHT for the zonal and meridional velocity components (b),
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nents, such as the third-diurnal and fourth-diurnal constituents. Spectral densities
represented in Fig. 2b have been obtained by averaging each five adjacent raw
spectral estimations, to reduce the variability of the periodogram estimates.

5 Discussion

It has been shown that the fast Hartley transform represents an efficient alternative
to the commonly used complex-valued FFT algorithms for the analysis of real-
valued time series, avoichg redundant arithmetic operations and inefficient me-
mory allocation. Furthermore, due to its real-valued nature, the transform of a real
signal is also a single real signaI that includes amplitude and phase information.
A particularly remarkable property is the equivalence of the forward and inverse
Hartley transforms.

Both, Fourier and Hartley transforms, satisfi similar theorems and can therefore
be applied in an analogous manner. These facts ensure that FFT can be replaced
by the FHT in virtually any oceanographic application, including estimation of the
spectral density fi,mctionand any other fimction or parameter that can be calculated
by means of the Fourier transform.

For most oceanographic applications sampled data are limited to real-valued
time series and procedures of frequency analysis of large data volumes, as for
example wind-wave data bases, require large memory space and long computation
times. As a consequence of the above commented properties, the fast Hartley trans-
form may be considered as a computational tool specially suitable for processing
large data bases of time series in physical oceanography. In particular, it has been
shown that spectral analysis of oceanographic time series can be efficiently per-
formed. Finally, it is worth emphasizing that the computational improvements are
obtained without loss in accuracy.
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