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by a p44/42 Mitogen-Activated Protein Kinase-

Dependent Mechanism

Victoria Morales,* 1. Gonzalez-Robayna,* M. Pino Santana, Inmaculada Hernandez, and Luisa F. Fanjul

Departamento de Bioquimica y Fisiologia, Facultad de Medicina, Universidad de Las Palmas de Gran Canaria, Las

Palmas de Gran Canaria 35016, Spain

The proinflammatory cytokine TNFa has important actions at
the level of the ovary, including inhibition of P450 aromatase
(P450,gom) activity and the secretion of inhibin, two proteins
that are markers of the granulosa cell’s differentiated status.
Because the transcription of both P450,zoy and inhibin
a-subunit can be suppressed in the ovary by the inducible
repressor isoform of cAMP-responsive element binding mod-
ulator (ICER), we have investigated whether TNF« and its
intracellular messenger ceramide can induce ICER expres-
sion and the mechanisms whereby the induction is accom-
plished. ICER mRNA levels were assessed by RT-PCR in gran-
ulosa cells treated with TNFq, the ceramide-mobilizing
enzyme sphingomyelinase (SMase), or C6-cer, a cell-permeant
ceramide analog. Rapid (3 h) yet transient increases in the
four isoforms of ICER were observed in response to all treat-

ments. Likewise, ICER protein measured by immunoprecipi-
tation with a specific antibody increases after TNF«, SMase,
or C6-cer treatment. The mandatory phosphorylation of
cAMP-responsive element binding was also observed in re-
sponse to TNF«, SMase, or C6-cer and shown to be prevented
by the p44/42 MAPK-specific inhibitor PD098059 but no other
kinase blockers. Activation of p44/42 MAPK by the cytokine
and its messenger was subsequently demonstrated as well as
the inhibition of ICER expression by PD098059. Finally, the
blocking of p44/42 MAPK activation prevented TNF« inhibi-
tion of FSH-dependent increases in P450,ioy and inhibin
a-subunit mRNA levels, thus indicating that p44/42 MAPK-
mediated ICER expression may be accountable for the effects
of TNFa on the expression of both proteins. (Endocrinology
147: 5932-5939, 2006)

HE BEST CHARACTERIZED effect of TNFa is the abil-
ity to induce signals that trigger cell death (1-3), but
this proinflammatory cytokine has pleiotropic effects in
mammalian cells (4—6). TNFa is primarily secreted by mono-
cytes and macrophages in response to bacterial lipopolysac-
charide, and although resident or infiltrating macrophages
secrete TNFa in the ovary (7), secretion by granulosa-luteal
cells has also been reported (8, 9), and TNFa mRNA has been
detected in ovarian tissue (10). Whatever is the source for the
TNFa acting in the ovary, the cytokine has multiple and
important effects in this organ that may be summarized as
inhibition of FSH-dependent differentiation of granulosa
cells (11, 12) and induction of apoptosis (13).
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Two of the more prominent specific actions of TNFa in the
ovary are the inhibition of FSH-stimulated P450 aromatase
(P450 oron) catalytic activity and inhibin secretion by gran-
ulosa cells (14, 15). The acquisition of the ability to synthesize
estrogens and inhibin is a hallmark of the granulosa cell
preovulatory phenotype, because follicle development, ovu-
lation, and cyclic secretion of pituitary hormones all rely to
some extent on the production of adequate amounts of es-
trogens and inhibin at the different phases of the ovarian
cycle (reviewed in Refs. 16-19).

The transcription of P450,ronm and inhibin a-subunit is
tightly regulated by pituitary hormones. Upon binding to
its G protein-coupled receptor in granulosa cells, FSH
induces cAMP production, protein kinase A (PKA) cata-
lytic subunit activation (20) and cAMP-responsive element
binding protein (CREB) phosphorylation (21), resulting in
the transcription of, among others, aromatase and inhibin
a-subunit genes (22-25). Likewise, LH receptor is coupled
to cAMP generation and CREB phosphorylation (21), al-
though during the preovulatory surge of this hormone,
both aromatase and inhibin a-subunit expression are
down-regulated (26, 27). In response to LH, the cAMP-
inducible repressor isoform of cAMP-responsive element
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binding modulator (CREM) (ICER) (28) is expressed in the
rat ovarian granulosa cells, where it possibly participates
in the mechanism underlying the LH-triggered down-
regulation of aromatase and a-inhibin genes (29-31).

TNFa effects initiate after the interaction with two 55- and
75-kDa receptors that are coexpressed in virtually all cell
types (32). The sequence of events that immediately follow
TNFa binding to its receptor is not completely understood
but includes, in some instances, the activation of MAPKs
(33-35).

Although CREB is the best characterized substrate of PKA
(36, 37), CREB Ser133 phosphorylation may also be per-
formed by Ca®" /calmodulin-dependent protein kinases and
MAPKs (38, 39). That TNFa could induce CREB phosphor-
ylation and ICER expression in granulosa cells seems rea-
sonable in the light of the above mentioned observations and
will possibly contribute to understanding the mechanism
underlying TNFa effects on FSH-induced expression of
P450 Arom and inhibin a-subunit.

To test this hypothesis, granulosa cells were stimulated
with TNFea or with its intracellular messenger ceramide, and
CREB phosphorylation and ICER expression were assessed
and shown to be induced by the cytokine. Both ICER ex-
pression and the inhibitory effects of TNFa on FSH-induced
increase in aromatase and inhibin a-subunit mRNA levels
were shown to depend on p44/42 MAPK activation, because
TNFa effects were counteracted by PD098059 (40), the spe-
cific inhibitor of the dual kinase.

Materials and Methods
Reagents and hormones

All culture media and Trizol were from Invitrogen (San Diego, CA).
Recombinant human FSH was obtained from Serono Laboratories
(Rockland, MA). TNFa, bacterial sphingomyelinase (SMase; from Staph-
ylococcus aureus), Cé-cer, H89, GF109203X, SB203580, PD098059, and
annexin V fluorescein isothiocyanate/propidium iodine (PI) apoptosis
detection system were purchased from Calbiochem (Barcelona, Spain).
[*>S]Methionine and [**S]cysteine (Translabel) were from ICN (Costa
Mesa, CA). Antibodies were from Santa Cruz Biotechnology (Santa
Cruz, CA) (anti-CREM and anti-CREB) or Cell Signaling Technology-
New England Biolabs (Beverly, MA) (anti-pCREB, anti-p42 MAPK, and
anti-p-p44/42 MAPK). Avian myeloblastosis virus reverse transcriptase
(M519), RNAsin ribonuclease inhibitor (N211), and Taqg DNA polymer-
ase were from Promega (Madison WI). Diethylstylbestrol, pregnant
mare serum gonadotropin (PMSG), protease, and phosphatase inhibi-
tors and all other reagents were from Sigma Chemical Co. (Madrid,
Spain).

Animals and cell culture

Immature 19- to 21-d-old female Sprague Dawley rats were pur-
chased from Charles River Laboratories (Barcelona, Spain) and kept on
12-h light, 12-h dark cycles with free access to food and water. Both
housing conditions and experimental procedures were approved by the
University of Las Palmas Committee on Animal Care that enforces
European Union rule 86/609. Granulosa cells were obtained by follicle
puncture from the ovaries of rats implanted with diethylstilbestrol for
3 d or with a single injection of PMSG (10 IU) and cultured for the time
periods indicated for each experiment in McCoy’s 5a medium (modified,
without serum).

Immunoprecipitation and Western blot analysis

To measure the cellular content of ICER protein, granulosa cells were
incubated for 6 h in methionine- and cysteine-free McCoy’s 5a modified
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medium, with 250 uCi/ml [**S]methionine and [**S]cysteine. The cells
were thereafter washed in PBS and incubated with TNFa« (10 ng/ml),
SMase (1 U/ml), or Cé-cer (1 um) for the times indicated in McCoy’s 5a
medium supplemented with 4 mm methionine and 4 mM cysteine. To
terminate the experiment, the cells were washed twice in ice-cold PBS
and lysed for 30 min in 200 ul PBS containing 1% Triton X-100, 0.5%
deoxycholate, 0.1% SDS, 0.2% NaNj3, and a mix of protease and phos-
phatase inhibitors (1 mm orthovanadate, 1 mm phenylmethylsulfonyl
fluoride, 10 pug/ml leupeptin, 15 mm iodoacetamide, and 5 ug/ml apro-
tinin). After centrifugation at 14,000 X g for 15 min, aliquots from the
supernatant containing the same amount of [**S]methionine- and
[*°S]cysteine-labeled proteins (1-2 mg) were immunoprecipitated over-
night at 4 C with anti-CREM antibody preabsorbed to protein A-
Sepharose and used at twice the manufacturer’s recommendations to
circumvent the low specificity for the ICER isoform. The labeled im-
munocomplexes were collected and subjected to SDS-PAGE. The dried
gels were thereafter recorded as autoradiographs by photostimulatable-
storage imaging followed by laser scanning in a Molecular Dynamics
400A Phospholmager (Molecular Dynamics, Sunnyvale, CA).

Cell lysates were prepared with 1% Triton X-100, 10% glycerol in a
buffer containing 150 mm NaCl, 1.5 mm MgCl,, 5 mm EDTA, 50 mm
HEPES, and 1 mM phenylmethylsulfonyl fluoride. Proteins were re-
solved using 12% SDS-PAGE, transferred onto nitrocellulose mem-
branes, and immunoblotted with the appropriate specific antibody. The
membranes were thereafter developed with a peroxidase-conjugated
goat antirabbit second antibody and the ELC Western blot analysis kit
(Amersham Biosciences Europe GmbH, Barcelona, Spain). To serve as
controls of protein loading, membranes were routinely stripped out of
the antibodies using Restore Western Blot (Pierce Biotechnology, Rock-
ford, IL) and reprobed with a new antibody against the nonphospho-
rylated forms of CREB and p42MAPK, at twice the concentration rec-
ommended by the manufacturer. Recording and visualizing were
performed in an imaging system with cooled CCD capture system for
chemiluminescence (Diana III from Raytest, Straubenhardt, Germany)
using the software provided by the manufacturer (AIDA, 1D, 2D).

PCR

Total RNA was extracted from triplicate granulosa cell cultures for
each treatment using a modified guanidinium isothiocyanate method,
and samples were stored frozen (—70 C) in diethylpyrocarbamate-
treated water until use. After drying and OD determination, RT was
performed by standard protocols. Briefly, equal amounts of RNA (1 ug)
were incubated for 75 min at 42 C in 20 ul (final volume) of 1X PCR
buffer (10 mm Tris-HCl, 50 mm KCl, 5 mm MgCl,, and 0.1% Triton X-100,
pH 9), 500 ng polydeoxythymidine primers, 1 mm dNTP, 5 U avian
myeloblastosis virus reverse transcriptase, and 20 U RNAsin ribonu-
clease inhibitor. Each cDNA was amplified using specific oligonucleo-
tides in 25 ul of 1X PCR buffer containing (final concentrations) 2.5 um
digoxigenin-dUTP, 0.625 U Taqg DNA polymerase, and 125 ng (10-15
pmol each) of the appropriate specific primers for P450 ,gon, AROM-
5'-TGCACAGGCTCGAGTATTTCC and AROM-3'-ATTTCCACAAT-
GGG GCTGTCC; a-inhibin, INHIB-5'-GAGGATGTCTCCCAGGCCAT
and INHIB-3'-CAGGTCT ATTCTGTGGA; or ICER, ICER-5"-ACTTAG-
GATCCACTGTGTACGGCCAAC and ICER-3'-GTTAAATAGAAT-
TCACTAATCTGTTTTGGG. PCR products were detected by chemilu-
minescence, and because of the method’s high sensitivity, the thermal
profile had to be adjusted as follows: 94 C for 1 min for denaturation and
1.5 min at 58 C and 72 C for annealing and elongation, respectively.
Under these conditions, nonspecific background signals were reduced
to undetectable levels and linearity ensured for up to 20 cycles for
aromatase and a-inhibin, 29 cycles for ICER, and 16 cycles for the
ribosomal protein L19 that was used as internal amplification control.
The amplified products were resolved by 1.8% agarose gel electrophore-
sis and transferred to positively charged nylon membranes. Detection
was performed with a commercially available digoxigenin luminescent
detection kit (Roche Diagnostic SL, Barcelona, Spain) following the in-
structions of the manufacturer. The same system as in Western blot was
used to visualize membranes.

Analysis of apoptosis by flow cytometry

Granulosa cells (1 X 10° per tube) were obtained from the ovaries of
immature rats that were injected 2 d before the experiment with 10 IU
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PMSG to induce aromatase expression and prevent apoptosis. The cells
were incubated in McCoy’s 5a medium (modified, without serum),
supplemented with FSH (0.002 IU/ml) and testosterone (10 ng/ml) to
ensure the continuity of aromatase activation and provide aromatase
substrate, respectively. The experiments were carried out for 6 h, and
thereafter the cells were washed twice at 1000 X g with cold PBS and
resuspended in 0.5 ml cold binding buffer. Annexin V-fluorescein iso-
thiocyanate and PI were then added following the instructions provided
by the manufacturer. The tubes were kept in the dark, and cytometric
analysis (Epics XL; Coulter, Hialeah, FL) was conducted right after the
end of incubations.

Results

TNF« inhibits P4504op, and inhibin a-subunit mRNA
levels

We and others have previously reported that TNFa de-
creases the FSH-induced activity of P450,zon and the se-
cretion of the inhibin a-8 dimer (15, 41). Although the
changes in the catalytic activity of P450,zon and the rate of
secretion of inhibin A should correlate with changes in the
transcriptional rate of the enzyme and the inhibin a-subunit,
we first wanted to test whether TNF« and its intracellular
messenger ceramide did in fact inhibit FSH-induced in-
creases in P450 ,zop and inhibin a-subunit mRNA. For that
purpose, granulosa cells were cultured with FSH for 48 h,
and TNFa (10 ng/ml), SMase (1 U/ml), or Co-cer (1 um) was
added 6 h before the completion of the experiment. As shown
in Fig. 1, the cotreatment of granulosa cell cultures with
TNFa«, as well as with bacterial SMase that mobilizes cer-
amide or with the membrane-permeable analog of ceramide
Cé6-cer, inhibits the FSH-induced increases in P450 sgons and
inhibin a-subunit mRNA levels. As can also be seen in Fig.
1, addition of cycloheximide counteracts TNFa and its in-
tracellular messenger action, indicating that the effect is pro-
tein synthesis dependent.

TNFa, SMase, and ceramide induce ICER expression

To test whether the protein synthesis-dependent effects of
TNFa on P450,r0opm and inhibin a-subunit mRNA levels
might be attributed to the repressor isoform of CREM (ICER),
ICER mRNA and protein levels were assessed after 3, 6, and
12 h of treatment of granulosa cells with the cytokine or its
intracellular messenger. Increases in ICER mRNA as deter-
mined by RT-PCR with the ICER gene-specific primers were
found at 3 and 6 h after TNFa« (Fig. 2A), SMase (Fig. 2B), or
Cé6-cer (Fig. 2C) addition to cultured granulosa cells. After
12 h of treatment, ICER mRNA had already returned to basal,
almost undetectable levels. ICER protein levels were also
measured in extracts of granulosa cells labeled with [3°S]me-
thionine after immunoprecipitation with an anti-CREM an-
tibody. A band with an apparent molecular mass of 14 Kda,
presumably corresponding to ICER-II, was observed to in-
crease at all the times tested, suggesting that in fact ICER is
being synthesized in response to TNF«, ceramide mobiliza-
tion, and the ceramide analog (bottom of Fig. 2, A-C).

TNFa and ceramide induce CREB phosphorylation by a
P44/42 MAPK-dependent mechanism

Because of the presence of four CRE-like sequences in a
second CREM gene intronic promoter that directs ICER tran-
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Fic. 1. TNFainhibits P450 ,gon and a-inhibin subunit expression in
granulosa cells. Granulosa cells (106 viable cells per well) were cul-
tured with or without FSH (0.002 IU/ml) for 48 h in McCoy’s 5a
medium. TNFa (10 ng/ml) (A), SMase (1 U/ml) (B), or C6-cer (1 uMm)
(C) were added 6 h before the completion of the experiment. Cyclo-
heximide (CHX) (1 uM) was also added 3 h before the end of the
experiment where indicated. P450 g0y, @-inhibin subunit, and mi-
crosomal protein L-19 mRNA levels were assessed by RT-PCR as
described in Materials and Methods. Triplicate dishes were used in
each experiment, and the results of one of at least three different
experiments are shown.

scription, ICER is a unique, cAMP-inducible member of the
CREM family (28). Therefore, we next investigated whether
the treatment of granulosa cells with TNFa, SMase, or C6-cer
resulted in the phosphorylation of CREB. Figure 3A shows
that, as expected, CREB phosphorylation occurs in granulosa
cells 15-30 min after the treatment with TNF«, SMase, or
Cé-cer, thus providing the grounds to explain the increasing
levels of ICER mRNA in response to the cytokine. Because no
coupling to cAMP production has been attributed to any TNF
receptor, we next used a set of different kinase inhibitors to
explore the nature of the kinase involved in the observed
phosphorylation of CREB. Figure 3B shows that the inhibi-
tors of PKA (H89) and PKC (GF109203X) did not affect
TNFa-induced CREB phosphorylation. SB203580 (43), an an-
tagonist of p38 MAPK slightly decreased TNFa effects,
whereas PD098059 (40), a specific inhibitor of p44/42
MAPKSs, almost completely blocked the phosphorylation of
CREB in response to TNFa, suggesting that the effect of
TNFa on CREB phosphorylation is mediated by this kinase.

To prove that in fact TNFa activates p44/42 MAPK in
granulosa cells, triplicate cultures were stimulated with the
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Fia. 2. TNFaincreases ICER mRNA and protein levels in granulosa
cells. Triplicate cultures of granulosa cells (10° viable cells per well)
were treated with TNFa (10 ng/ml) (A), SMase (1 U/ml) (B), or C6-cer
(1 um) (C) for the times indicated in the figure. ICER mRNA levels
were assessed by RT-PCR as described in Materials and Methods.
ICER protein was determined after immunoprecipitation of protein
extracts prepared from granulosa cells labeled with [>*S]methionine.
Similar results were obtained in three other experiments.

cytokine, bacterial SMase, or C6-cer, and p44/42 MAPK ac-
tivation was assessed using immunoblot with an antibody
that specifically recognizes dually phosphorylated ERK1 and
ERK2. Figure 4 shows that TNFa (10 ng/ml) induces a rapid
(5-min) phosphorylation of both kinases that reaches its max-
imum at 30 min after the treatment with the cytokine. Like-
wise, SMase (1 U/ml) and Cé6-cer (1 um) activate both
MAPKSs during the first 30 min after they are added to the
cells. Despite the discrete effect of SB203580 on TNFa-
induced CREB phosphorylation, neither TNFa nor SMase or
Cé6-cer were able to induce the activation of p38 MAPK (data
not shown).
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Fia. 3. TNFa promotes CREB phosphorylation in granulosa cells.
Granulosa cells were treated with TNFa (10 ng/ml), SMase (1 U/ml),
or C6-cer (1 uM) for the times indicated (A) or for 30 min (B) with TNFa
(10 ng/ml) alone or in combination with a pretreatment (60 min) with
H89 (10 pum), GF109203X (1 um), SB20203580 (20 um), or PD098059
(10 uM). Phosphorylated levels of CREB, as well as unphosphorylated
CREB used as total protein control, were assessed by immunoblot as
described in Materials and Methods. Densitometric analysis of four
experiments (mean * SEM) was performed, and a representative im-
munoblot is shown.

TNF a-induced ICER expression and P450 s inhibition
depends on p44/42 MAPK activation

To add support to the role of ERK1/ERK2 as mediators of
TNFa effects, ICER, P450 Agon, and inhibin a-subunit mRNA
levels were assessed in granulosa cells pretreated for 48 h
with FSH (0.002 IU/ml) and cotreated for the last 6 h of the
experiment with TNFa (10 ng/ml) alone or with the different
kinase inhibitors (added 1 h before TNF«). Neither PKA nor
PKC or p38 MAPK inhibitors prevented TNFa-induced ICER
expression (Fig. 5A). However, PD098059, the well known
specific inhibitor of p44/42 MAPK, completely abolished the
increases in ICER mRNA levels induced by TNFa. Likewise,
PKA, PKC, or p38 MAPK inhibitors did not affect TNFa
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Fic. 4. TNFa, SMase, and C6-cer activate p44/42 MAPK. Granulosa
cells were treated with TNFa (10 ng/ml), SMase (1 U/ml), or C6-cer
(1 um) for the times indicated. Activation (phosphorylation) of p44/42
MAPK as well as total p42 MAPK were assessed by immunoblot with
an antibody against p-Thr and p-Tyr sites and anti p42 MAPK, re-
spectively. One of three other experiments is shown.

effects on P450,z0p and inhibin a-subunit mRNA levels,
whereas the expression of both genes was restored to the
levels of control, TNFa-untreated cells, when the MAP dual
kinase was inhibited, indicating the involvement of ERK1
and ERK2 in the TNF« effect.

Effects of p44/42 MAPK inhibitors on TNFa-induced
apoptosis

To prove a MAPK role on TNFa-induced apoptosis in
granulose cells, flow cytometric analyses were performed
with double-labeled (PI/annexin V) cells. Annexin V binds
specifically to phosphatidylserine, which in live cells is lo-
cated in the inner part of the cellular membrane. However,
in the early phases of apoptosis, phosphatidylserine is ex-
posed to the exterior, thus binding annexin V whose fluo-
rescent signal (Fig. 6, lower right quadrants) provides a mea-
sure of the percentage of a cell population entering apoptosis.
Live cells are also impermeable to PI, although in the late
stages of apoptosis, cell membrane disruption allows for PI
to enter the cell and bind DNA. The signal generated (Fig. 6,
upper right quadrants) serves as an indicator of cells in the
latter stages of apoptosis. As may be observed in Fig. 6, at
time 0 of incubation, most (~99.7%) of the granulosa cells are
live (lower right quadrant), whereas at the end of the exper-
iment, a small number (~15%) of the cells undergoes spon-
taneous apoptosis, despite the presence of both FSH and
testosterone.

After 6 h of incubation with TNF«, more than 60% of the
cells are entering apoptosis and an additional 23% are at the
terminal phase of the apoptotic process. The addition of
PD098059 reduced to 34 and 12% the number of cells expe-
riencing early and late apoptosis, respectively, thus demon-
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Fic. 5. TNFa induction of ICER expression and aromatase and in-
hibin a-subunit down-regulation depends on p44/42 MAPK activa-
tion. Granulosa cells were cultured 48 h with FSH (0.002 IU/ml) alone
or with TNFa (10 ng/ml) that was added 6 h before the end of the
experiment. H-89 (10 uM), GF109203X (1 um), SB20203580 (20 um),
or PD098059 (10 uM) were added 60 min before TNFa. Levels of ICER
(A), P450 ,g0m (B, bottom) and inhibin a-subunit (B, top) mRNA were
determined by RT-PCR. Densitometric analysis (mean * SEM of OD
arbitrary units is represented) was performed on the results of four
different aromatase and inhibin a-subunit experiments. A represen-
tative RT-PCR is shown.

strating that p44/42 MAPK is part of the mechanism impli-
cated in TNFa induction of apoptosis in granulosa cells.

Discussion

We herein present experimental data that shows for the
first time the induction of ICER expression in granulosa cells
by TNFa and its intracellular messenger ceramide. To our
knowledge, this is also the first time ICER induction in re-
sponse to this cytokine has been reported in any cell or tissue.

We have also observed that in granulosa cells, phosphor-
ylation of CREB in response to the cytokine and its messenger
is achieved by a MAPK-dependent mechanism. Although
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CREB phosphorylation at the Ser133 residue (44) is prefer-
entially performed by PKA (36, 37), the phosphorylation of
CREB by Ca**/calmodulin-dependent protein kinases and
MAPKSs has been also extensively documented (38, 39). Thus,
p44/42-MAPK- or p38-MAPK-dependent CREB phosphor-
ylation has been shown in vitro and in vivo in several cell
types (45—-47) and is supposed to be achieved both through
independent (46) or confluent pathways, these latter involv-
ing the phosphorylation of mitogen- and stress-activated
kinases, which serve as substrates for p44 /42 and p38 MAPK
(47).

A p38-MAPK-dependent increase in the amount of phos-
phorylated CREB, after TNFa, SMase, or ceramide treatment
has been reported in MC/9 and U937 myeloid cells (48). Our
results in granulosa cells point to p44/42 as the kinase in-
volved in TNFa« effects because both CREB phosphorylation
in response to TNFa and TNFa-induced transcription of
ICER can be blocked by PD098059, a highly specific inhibitor
of this kinase (40). Despite the fact that c-Jun N-terminal
kinase, p38 MAPK, and other stress-activated kinases, were
initially thought to be the only MAPK family members ac-
tivated by cytokines (49), we have shown here, and others
elsewhere, that TNFa can phosphorylate ERK1/ERK2 (33,
34, 50). Likewise, phosphorylation of the dual kinase has
been reported in response to ceramide in cultured astrocytes
(51).

To act as a key regulator of cAMP-dependent genes that
are expressed in a rhythmic pattern was initially thought to
be ICER’s role (52), as a result of two distinctive features: 1)
ICER is a repressor of cAMP-driven transcription because it
competes with members of the bZIP superfamily of proteins
that bind the CRE 8-bp palindromic sequence, and 2) four

CRE-like elements in the CREM intronic promoter that di-
rects ICER transcription enable ICER to down-regulate its
own expression (28).

However, many other functions have been latter attributed
to ICER, including regulation of insulin secretion (53), hor-
mone receptor desensitization (54, 55), bone remodeling (56),
and influencing T-cell and macrophage function (57, 58) and
virus replication (59). ICER has also been proposed to be
involved in the control of cellular proliferation (60, 61) and
apoptosis in a limited number of cells and /or tissues (62—64).

Granulosa cells apoptosis is known to be determinant in
ovarian follicular atresia (65), a process that is likely to be
controlled by as many regulatory molecules as follicular
growth (66). Because of the fact that decreases in P450 sronm
levels have been shown to be tightly associated with apo-
ptosis in granulosa cells of atretic follicles and the death of
these cells is largely prevented by treatment with estrogens
(67, 68), estrogens have been proposed to be important pro-
moters of granulosa cell survival. Thus, it is more than pos-
sible that ICER would be mediating TNFa effects on gran-
ulosa cell apoptosis by inhibiting FSH-induced P450 5rom
expression.

Other and more direct contributions to the activation of the
apoptotic machinery by ICER could be subserving the TNFa
proapoptotic effects in granulosa cells. Both in neurons and
cardiomyocytes, the ICER proapoptotic role seems to be per-
formed by suppressing cAMP-dependent expression of bcl-2
(63, 64). In the ovary, the ablation of bcl-2 results in a di-
minished and abnormal number of follicles, whereas the
overexpression of this antiapoptotic gene leads to decreased
ovarian somatic cell apoptosis and enhanced folliculogenesis
(69, 70). These findings would suggest that granulosa cell
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survival and the rescue of follicles from atresia will be fa-
vored by an augmented bcl-2 expression. However, no in-
creases in bcl-2 expression have been encountered in gran-
ulosa cells in response to any of the antiapoptotic regulatory
molecules, including the major survival factor for these cells,
the gonadotropic hormone FSH, whose receptor is coupled
to cAMP generation (66). Therefore, it seems unlikely that
increases in bcl-2 expression would play a prominent role in
salvaging granulosa cells from apoptosis.

Nevertheless, it has been reported that TNFa induction of
granulosa cell apoptosis could by partly a result of the sup-
pression of constitutive bcl-2 expression (42); thus, the pos-
sibility exists, and may be deserving of future studies, that
in the ovary, as in neurons and cardiomyocytes, the ICER
synthesized in response to TNFa could be repressing con-
stitutive bcl-2 expression.

In conclusion, although it is more than likely that several
other pathways would be contributing to the signaling of
TNFa in granulosa cells, CREB phosphorylation by p44/42
MAPK followed by ICER induction and the repression of
FSH-driven aromatase transcription plays a significant role
in TNFa induction of apoptosis in these cells.
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