Measuring the Performance of Multithreaded Processors

Javier Vera, Francisco J. CazorlaAlex Pajueld, Oliverio J. Santarfa Enrique Fernandéz Mateo Valerd:?
!Barcelona Supercomputing Center, Spdijavier.vera,francisco.cazoji@bsc.es
2DAC, Universitat Politecnica de Catalunya, Spajmpajuelo,matep@ac.upc.edu.
3Universidad de Las Palmas de Gran Canaria, Sqaijsantana,efernandg@dis.ulpgc.es

Abstract— Nowadays, multithreaded architectures are be-
coming more and more popular. In fact, many processor
vendors have already shipped processors with multithreads®
features. Regardless of this push on multithreaded processs,
still today there is not a clear procedure that defines how to
measure the behavior of a multithreaded processor.

This paper presents FAME, a new evaluation methodology
aimed to fairly measure the performance of multithreaded
processors. FAME can be used in conjunction with any of
the metrics proposed for multithreaded processors like IPC
throughput, weighted speedup, etc. The idea behind FAME
is to reexecute all threads in a multithreaded workload untl
all of them are fairly represented in the final measurements
taken from the workload. Then these measurements will be
combined with the corresponding metric to obtain a final
value that quantifies the performance of the processor under
consideration.

|. INTRODUCTION

is ran until completion. However, it is not so easy in a
multithreaded processor running a workload composed by
several programs. Applications in a workload can execute
at different speeds due to the different features of each
one, as well as the availability of the shared resources in
the processor. Therefore, the usual case is that they do not
complete execution at the same time.

We will explain this fact with an example. Let us
assume an M-context multithreaded processor executing
a 2-program workload (being M greater than or equal to
2). The execution of this workload occurs as depicted in
Figure 1. Both applications execute at different speeds
and thus they do not have to finish at the same time.
Therefore, we can divide the execution of the workload
into two phases. Firstly, there israultithreaded period in

Thread-level parallelism has become a common strategfpich both applications are being executed. Secondly; afte
for improving processor performance. Since it is difficolt tthe first application finishes (Application 0 in Figure 1),

extract more instruction-level parallelism from a singfep

there is asingle-threaded period in which the remaining

gram, multithreaded processors rely on using the additiorapplication executes alone until completion. If the mul-
transistors to obtain more parallelism by simultaneoustithreaded period is too short, then the potential of the
executing several programs. This strategy has led tonaltithreaded processor is only exploited during a small
wide range of multithreaded processor architectures likaterval of time. As a consequence, thaal execution
SMT [4][8], CMP, or combinations of both. Currently,time may become an inaccurate metric for multithreaded
many of the main processor vendors have some mulgirocessors. For instance, in an Intel Pentium 4 processor
threaded processor. Some examples are the Intel Pentiwnning all 2-thread combinations from SPEC2000 (see
4 [3] that is a dual-threaded SMT, the IBM Power5 [5petails in Section 4), the single-threaded periods reptese
that is a dual core processor where each core is a 2-contektaverage, 40% of the total execution time.

SMT, and the Sun Niagara T1 [11] that has eight 4-context

fine-grain multithreaded cores.

A. The problem of evaluating multithreaded processors

In spite of the increasing trend to use truly parallel appli- 1
cations, they are still less common in current multithrehde
machines than single-threaded applications like SPEC
CPU [12]. Therefore, computer architecture researchers

App0 ends its

/ execution

Applic. 1 @ L
fom o o

Multithreaded Singlethreaded
period (MTp) period (STp)

time

Applic. 0 .—.

frequently evaluate their proposals for multithreaded afig- 1. Example of the execution of a 2-program workload in a

chitectures using workloads composed by single-thread'g
applications, i.e. SPECrate consists on executing simeHta

pontext multithreaded processaii(> 2).

ously several copies of the same benchmark. Furthermoreln general, the execution of an N-program workload
it is interesting to notice that for fully evaluating a wideinvolves N periods of N, N-1, N-2,...and 1 program
range of scenarios, workloads composed by benchmarkspectively. A common characteristic of all the evaluatio

with different behaviors should be used.

methodologies we have analyzed is that only measurements

Working with several different programs running simulebtained from the period with N running applications are

taneously involves an important decision, that is, to deteepresentative. Periods having less running applications
mine when the execution of the multi-program workloathan the maximum available should not be taken into ac-
will finish. In a single-threaded processor, the full pragra count since the results could be inaccurate and misleading.

B. Proposed Solutions that only one program in the workload is executed until

In order to quantify the behavior of multithreade(fomp'etiony and thus it cannot be engured that the r_emain-
processors, severahethodologies and metrics have been iNg programs execute completely, losing representatisity
proposed. Metrics for measuring the performance of the final result. o _ _
processor compute a value (result) for each workload thatThe Last methodology finalizes workload simulation
quantifies the performance of that processor when runniépen all the programs have been run until completion.
the workload. This value is based on two inputs. On th&/hen any program ends, excluding the last one, it is
one hand, the IPC achieved by each program in the worieexecuted [10] while the other programs are still execut-
load, which we call (PCy1,, IPChir,, ... IPChrry) for - ING. The main drawback of this methodology is that the
a workload of N applications. On the other hand, thiotal nqmber of evaluated |_nstruct|ons can vary from an
IPC of each program when it is run in isolation, Whic@yaluatlon to another one. Since the execution speed of the
we call (PCaione,s IPCaioness - - - IPCatoney). Thus, a dlfferent_ programs depends on the processor parameters,
metric is a functionf (IPCyr,, IPCuione,) Where(0 < @ny variation can cause all programs to be executed at
i < N. For example, the IPC throughput is definedifferent speeds. As a consequence, it cannot be ensured
as SN IPCyr,, the weighted speedup [6] is de-that the amount of executed instructions is the same for
fined as% Zf-vzl (IPCarr, /IPCaione.), and the harmonic different 5|mylat|ons with different paramgter valuesdan

N -1 thus comparisons between them may be inaccurate.

mean [2] asV x (Zi:l IPCalonei/IPCMTi) : The Fixed Instructions methodology is based on the idea

A methodology defines when the measurements foro executing the same amount of instructions in every
given workload execution are taken. In this paper, Wemulation. The simulation finalizes whenever the total
analyze several methodologies that have been used dutifignber of executed instructions reaches a fixed threshold.
the last years to measure the performance of both re@lis threshold is usually determined per program, that is,
multithreaded processors and simulated multithreaded ptRe simulation of a workload with N programs will finalize
cessors. The main task of a methodology is to determipgen the total number of executed instructions is N times
when the programs in a workload have to finish. We withe threshold. However, the Fixed Instructions methodplog
show that previous methodologies cannot ensure that eve§\also unable to ensure that a representative part of every
benchmark is fully represented, and thus it is not possitignchmark is being executed, since workload simulation
to assure that the measurements obtained are representaiis in an arbitrary point (whenever the total number of
of the whole program. executed instructions is reached). Even worse, despite the

To face this problem, we present FAME, a new simtal number of instructions is the same, the mix of executed
ulation methodology for the evaluation of multithreadeghstructions may change.
processors. Our methodology aims to ensure that everyro show the behavior of current evaluation methodolo-
program in a workload is executed, allowing to do faigjes, we analyze these three methodologies. Without lost
comparisons between different techniques and procesgerigenerality, we have used a multithreaded simulator to
setups. As a case study, we have selected to apply FAMEilect information about these methodologies. Our simu-
to a real SMT processor (Intel Pentium 4). Howevefator is a fairly parametrized 2-thread SMT processor. We
FAME can be applied also to simulation environmenigplemented the methodologies First (F), Last (L), and
and any other multithreaded processors. Our results shpied Instructions (I). We analyze three versions of the
that FAME provides more accurate measurements thgjfiter: 200-million fixed instructions (12), 400-milliorxiéd

previously used methodologies. instructions (14), and 800-million fixed instructions (18)
Figure 2 shows the obtained results for these methodolo-
Il. CURRENTMETHODOLOGIES gies using our SMT simulator setup and a 2-thread work-

In order to fairly evaluate the performance of an SMToad composed by the benchmargses|bmk and gap. The
processor, measurements should be obtained while sithulation ends when both programs have executed at least
programs in a given workload are running. However, thvice. We provide data for two well-known fetch policies:
programs in a workload can be executed at different speetsunt [8] and stall [9]. Icount, in Figure 2(a), prioritizes
and thus they do not have to finish at the same time. Consleese programs with fewer instructions in the processor
guently, the evaluation methodology should determine whgipeline. The stall fetch policy, in Figure 2(b), uses the
to do whenever any program finalizes its execution. Curresame heuristic, but it also detects when a program has a
simulation methodologies can be classified as follows: pending long-latency memory access. When this situation

The First methodology finalizes the simulation of ais detected, stall prevents the program from fetching more
workload when any program of the workload ends itgstructions until the memory access is resolved, avoiding
execution [1]. The main drawback of this methodology isnnecessary over-pressure over the shared resources.

T11 TO-1 T1-2 TO0-2

' ‘ gap M perlbmk ==AvgThroughput(x)

o o N ©
o o N o
L L L \

IPC
~

o
: : M ll w m 'l‘
2 2 - ' PR
1 [1 gap M perlbmk ==AvgThroughput(x)
| TR |

0 T S — 0 T T

o N [se} ™ el [se} ™ el el o a2l o o 2] a2l [se} 2] a2l [se} o a2l [se}

o o

¥ T+ ¥ ¥ ¥ ¥ ¥ F ¥ + + T ¥ + + ¥ T F ¥ T + ¥

w w

o o o n S} [} S} [} S} o] o Q o 0 =] n Q 0 o 0 =]

— wn — — o~ (3] ™ ™ < < wn - n -~ - o~ o~ ™ ™ < < n

Time (cycles) Time (cycles)
(a) Results with icount (b) Results with stall

Fig. 2. IPC ofgap and perlbmk when executed together on the SMT simulator.
TABLE |

In Figure 2, the y-axis shows processor performance
BEHAVIOR OF CURRENT METHODOLOGIES

(IPC) and the x-axis represents execution time. The light-

gray bars show the i_nstant IPC gédip. Likewise, the_dark- | Methodology — T2 [[F L8]
gray bars show the instant IPC pérlbmk (To obtain the IPC Throughput | icount || 32 | 35 | 35 | 24 | 26
instant IPC we use a sampling period of 15K cycles). In | 1PCgap + IPCpe | stall || 37 | 40 | 41 | 34 | 39
every sample, the sum of both bars represents the instant stall Improvement(%)- 131 | 151 | 182 | 41.8 | 53.0
throughputj.e, the sum of the instant IPC of both programs. (a) Improvement of stall over icount using different metblodjies.
The black horizontal line represents the average instant Th. Methodology
throughput until a time instant, that is, the average value o R FJL]B

the instant throughput for every cycle from the beginning of Number of full Tojjojojoj1]1

the workload execution until the current time instant. The Oe/:ch”i:‘:ricﬁons Ié 206 é’l 812 é 610

white circles over the black line show the fln_al throggh_put (current execution)| T1 [[36 [75 | 0 | 63 | 77
reported by every methodology and the vertical solid lines (b) number of full executions and percentage
show the cycle in which the workload simulation ends of instructions executed of the current execution

according to each experimental methodology. Finally, the i)) _))
vertical dashed lines show the time instant at which everyAS discussed in previous sections, this problem is due
instance of a program finishes. Above each line we add® the fact that current methodologies cannot ensure fully
legend in the forn’z — y, wherez indicates the program "épresentativity Qf every program of the vyorkload, which
andy the number of times a programhas been executed.can lead to unfair comparisons between different processor
setups. For example, if we want to compare the effect of the
The main observation that can be drawn from Figure 22 cache, which can be deactivated through the BIOS, in a
is that every methodology provides different throughpdtentium 4 or if we want to determine the real performance
values. It is summarized in the second (icount) and thitprovement of the SMT capability of the Pentium 4.
(stall) rows of Table I(a). It should be taken into account Table I(b) summarizes these drawbacks by showing the
that researchers use simulation to evaluate the performnangmber of times every program is completely executed and
of a design enhancement relative to a baseline design.the percentage of instructions executed in the last réetit
the experiment of Figure 2, we measure the performaniss each methodology when using the stall fetch policy
improvement of stall with icount as baseline (shown ifresults for icount are similar). The number of executed
the last row of Table I(a)). Although stall improves thénstructions varies from one evaluation methodology to
performance of icount for all methodologies, the speed@mother one. For example, in the case of themethodol-
varies depending on the methodology used. If tfie ogy, TO executes once completely and then executes 60%
methodology is used, stall only achieves 13% performanigstructions from a second repetition. The same happens
improvement. But if measurements are taken using/the with T1, but in this case the percentage of instructions
methodology, the performance improvement arises to 53@xecuted in the second repetition is 77%. Another example
That is, depending on the evaluation methodology the stifl the L methodology: TO executes once and T1 execute
improvement over icount varies up to 40%. Such a widence and 63% of the second repetition. This data clearly
range of variation makes difficult to estimate the impact gfhows that the mix of instructions in every case is different
any proposal and may cause misleading conclusions whatd thus, any comparison done may be misleading.
a multithreaded processor enhancement is evaluated. We made a similar experiment on our real processor

TO-1T1-1 TO-2 T1-2

mode remains similar to the behavior in single-thread mode
because the code signatures do not change. Notice, that if
this assumption does not hold incurred errors will be high.
Depending on the particular methodology features, the
execution of each program in a workload may be stopped
at any point and the IPC value provided by the methodology
will be the average IPC value until that point. This average
IPC would be fully representative of the program execution

| = Total Throughput ~AvgThroughput() | if it is similar to the final IPC value, that is, the average IPC
\ |; “ Y L value at the end of the whole program execution. Hence,
&8¢ 88 88§88 8§ g T &g 8 § FAME forces each program to be executed enough times so

—
Time (seconds)

that the difference between the obtained average IPC and
Fig. 3. IPC ofgap andgcc when run together on an Intel Pentium 4 the final IPC is below a particular threshold.

The basis of FAME can be better explained using a
synthetic example. Light-grey bars in Figure 4(a) show the
instant IPC of our synthetic application, that is, the IPC
on each particular cycle of its entire execution when run in

TABLE Il
NUMBER OF FULL EXECUTIONS AND PERCENTAGE OF INSTRUCTIONS
EXECUTED OF THE CURRENT EXECUTION

ZLorgLiT " |MeFth°|d°|'_°g’|’ " isolation. The black line shows the evolution of the average
g = ST IPC of the application along its execution. The average
executions 1 o T o 111 IPC value for a given execution cycle is calculated as the
% of current | TO 56 | 0 | 19 | 24 average value of the instant IPC from the beginning of
execution T1 48 | 84| 0 | 4 the program execution until that particular cycle. Thus, th

_ . _ final IPC would be equal to the average IPC value at the
environment, obtaining the same trends. Figure 3 showgq of program execution. It is clear that the average IPC

the performance throughput of tigec andgap benchmarks converges towards the final IPC value.

when they are executed together on a Pentium 4 processoigure 4(b) shows the instant IPC and the average IPC
The light-grey bars show instant throughput, that is, th Suyyring three reexecutions of the application. In addition,
of the inst_ant IPCs of t_)oth benchmarks. The real throughgtqbure 4(c) shows the difference between the average IPC
value varies depending on the used methodology. TB@q the final IPC during the three reexecutions. It is clear
lowest value is 0.8 [and 14 methodologies) and the that the average IPC converges towards the final IPC
highest value is 0.85/¢ methodology), which shows thatygjye. Even if that difference is a decreasing functions it i
using different methodologies involves obtaining différe jmportant to note that it is not monotone. This means that
results. Table ll(b) summarizes the drawbacks of currefie gifference would be very small in a given cycle, but it
evaluation methodologies for the Pentium 4 environmenhay increase again in the subsequent cycles. Therefore, if
It shows the number of times each program has begk goal is to obtain representative measurements, program
completely executed and the percentage of instructioggecution cannot be stopped at any point.

executed in the current repetition. As in the previous casepne could think that the solution is to finalize program
the total amount of executed instructions varies from ongecution when a full application repetition has been ex-
evaluation methodology to a different one and the mix Qfcyted, since the average IPC is always equal to the final

instructions is different. IPC at the end of any repetition. However, a multithreaded
processor is able to execute more than one application at
. THE FAME METHODOLOGY once. Although execution can be stopped at the end of a

Current simulation methodologies do not ensure that a#petition for one of the programs, it is likely that this
programs in a workload are faithfully represented in thgoint is not the end of a repetition for the other programs,
simulation results. To alleviate this problem, we proposand thus the other programs could be not accurately rep-
a new methodology called FAME. The main objective ofesented. The actual solution comes from the observation
our methodology is to obtain representative measuremetitat, although the difference between the average and the
of the actual processor behavior. In doing so, FAME déinal IPC does not decreases monotonically, the maximum
termines how many times a program in a workload shoutlifference in a reexecution is lower for each new executed
be reexecuted for being faithfully represented. In order tepetition. That is, it is a decreasing monotone function.
determine it, FAME analyzes the behavior of every tracthus, if we execute enough repetitions of a program, the
in isolation. In this paper we assume that the behaviaraximum difference will reach a value small enough to
of each program in a workload executed in multithreacbnsider that the average IPC is representative of the full

6 Repetition 1 Repetition 2 Repetition 3
51 m m °]
4 +|lnstant IPC, IPC(x) o 4 4) .
0 L a0 3
| Instant Average IPC, IAI(X)|| | o a3 =
’ -) 230 E (iycMa)(2 .
- 1 =z A cMax.
2 H"i'l" 1 <>'<20 L =i DiffMaxs
11 TFinal IPC Value (FAV)| 111l mrcm] 0 RN £
o+ B LB L BB BB O o ol e R ook F O PR e e o e
1 2 3 4 5 6 7 8 9 10 .) N . \ , .
time (cycles) Cycles in each repetition/Repetitions Cycles in each repetition/Repetitions
(@) IPC (x) (b) IPC during repetitions (c) Diff (%) during refitions

Fig. 4. Instant IPC, average IPC, adifference between both of a synthetic program during 3 repetitions.

TABLE Il
NUMBER OF REPETITIONS REQUIRED FOR EVERBPEC2K
BENCHMARK ON THE INTEL PENTIUM 4.

benchmark behavior. For this reason, our methodology
reexecutes all programs several times, until the diffezenc
is upper-bounded by a given threshold.

[Bench. | MAIV(%) | [Bench. MAIV/(%) |

Figure 4(c) shows the difference between the averagétame + m T w51 7T 7] [Feme | T 015 [Z]
and the final IPC as our synthetic program is reexecuted. > g T
The highest difference values are obtained in the first en apsi

gap art

repetition due to the cold-start IPC calculation of the| o« equake

gzip facerec

program. The difference decreases along with the programm« fmadd

parser galgel

execution, reaching zero when the first repetition finishes| e lucas

twolf mesa

The difference is always zero at the end of every program vorex marid

vpr sixtrck
repetition, since the average IPC is always equal to the final) e
IPC at those points. It can be observed in Figure 4(c) that (a) Spec CPU INT (b) Spec CPU F
the IPC behavior of the first repetition is not represengativ

of the IPC behavior in following repetitions due to the cold- V. ANALYSIS OF EVALUATION METHODOLOGIES
start effect. For this reason, we discard the first repetitio To evaluate FAME in a real processor we use a 3GHz

It can also be observed that the difference between t : . :
average and the final IPC presents similar behavior for qflﬁel Pentium 4 processor (model 531) with Hyperthreading

I . , . . Technology and 512 MBytes of DDRAM at 400 Mhz. The
repetitions excluding the first one. Indeed, the instrurctio : . . .
olperatlng system is a Fedora Core 3 with gnu Linux kernel

and the cycle in which the dn‘ference. gchleves Its h'gh%.G.ll patched with perfctr-2.6.18 to allow the access¢o th
value is always the same for all repetitions. e -
erformance monitoring counters from any privilege level
The first step to apply FAME is to run two repetitions 0bf execution. The operating system is booted at runlevel 1
every program in isolation. Periodically, we sample the IPfg reduce as much as possible the interferences generated by
of the application obtaining the IPC during execution. Frofytiuser-multitasking processing. Video, audio and com-
this information we obtairC'ycleMax2 and InstMaxzs, munication hardware capabilities are disabled. Gee 3.4.2
and compute the number of re-executidis required to and the Intel Fortran Compiler 9.0 were used to compile the
satisfy a given MAIV. Table IIl shows the minimal numberyhole SPEC2000 benchmark suite with all optimizations
of repetitions required per benchmark with MAIV valuegnabled. Benchmarks are executed until completion with
ranging from 20% to 1%. Once the minimal number ofhe standard reference input set. The SMT workloads were
repetitions are obtained, workload simulations can beg"’generated with all the possible combinations of 2 applica-
Workload simulation will not finalize until every programtions from SPEC2K, leading to 351 2-thread combinations.
in the workload has been executed, at least, as many time$n order to correctly measure the performance of a
as the minimal number of repetitions required for accurareultithreaded processor, it would be desirable that the
representativity. If any program reaches this minimal nunbbaseline performance is obtained with the measurements
ber of repetitions before the rest of the programs, it withken when the processor reachesteady state because,
reexecute once and again until all programs fulfill thein this state, the variation of performance is negligible.
requirements. This is not a problem for representativityye measured that the steady state is reached when every
since the maximum difference between the average apubgram is reexecuted, at least, 20 times in a workload.
the final IPC can only decrease. When all programs hakellowing reexecutions do not affect the results.
been reexecuted at least the corresponding minimal numbewWe measure per-thread IPC. If per-thread IPC is accurate,
of times, workload execution can be stopped at any poimtir FAME methodology can be used to study any metric,
since we can ensure that the results are representative.like throughput, weighted speedup or harmonic mean, since

RPRRPRRPRRERRPRREPE R
RPRRRERRRRPRRP R
GRRPAPORWNERN
Brrorow~Ngr R w||H

NRPRPWORNRNREP P

PRRERRRPRRRERRRRRRER
e el e e e e e e
RPRRERRPRRRERREBNR R
PRREPRPRRREPRARR R NN
RPRERPRPRRERPRRENREPE R R

sl ® ; could allow evaluating the Power5 processor using any
> 60| w o arbitrary workload, since it is a more general methodology.
“ ;‘Z a4 Another evaluation of a real SMT processor is presented
S | i in [7], where heterogeneous workloads are executed 12
£ s gy a7 9 ® times to guarantee, at least, 3 complete executions of a
30l 7 g thread of every job. It is not explained how the number of
20 | w0 [20w [0w | o [o [o repetitions are obtained and, since this number depends on
P [oy | T e e pevaraion both the simulator setup and the number and mix of threads

Methodology

in every workload, this methodology cannot be extrapolated
Fig. 5. Error of the different methodologies for the Pentidrprocessor {0 other environments. The point of FAME is that we can fix
a priori the minimal number of repetitions per benchmark

per-thread IPC is the only variable parameter used o
in a workload to ensure the correctness of measurements.

compute these metrics. We calculate the error of eVeIYLAME achieves better accuracy than oreviouslv oro-
thread in a workload for every methodology using the next y P yp

. :) posed evaluation methodologies, such as First, Last, and
]Eg:Thu;e:)’;geﬂsghgéﬁgﬁgadf;‘:ie 'Sitshﬁlzggfoﬁchtﬁ;: 4 Fixed Instructions. In addition, any metric can use the
: ' X methodotogy measurements obtained with FAME, since a methodology
i reported by the methodology under study. just dictates how to take measurements and not how to
use them. Even more, since the main difference among
multithreaded designs is the amount of shared resources,
) . all of them present the same evaluation problems, making
FAME is the methodology with the lowest error agane girectly applicable to SMT processors, CMP proces-
shown in Figure 5. The worst results come from the 20Q5 and even CMP/SMT processors in both real scenarios
billion instruction methodology (errors range from 95% t?as presented in this paper) and simulation scenarios (an

-39%). There is a clear trade-off between the number gf nitectural simulator is used instead of a real procgssor
instructions a methodology executes and the error it obtain

Ideally, we would like to have a methodology that requires ACKNOWLEDGEMENTS

executir_lg fevy iterqtions, while leading to a reduc_ed eITOr. This work has been supported by the Ministry of Science
Regarding this topic, lowest MAIV errors are achieved b¥nd Technology of Spain under contract TIN-2004-07739-
an affordable execution time increase. For instance, the> o1 the HIPEAC European Network of Excellence. The

execution time for MAIV 20% and 10% is the same thal;ihors would like to thank Jaume Abella and Beatriz Otero
in the Last methodology. MAIV 5%, 2% and 1% increasg,, iheir technical comments.

the execution time by 5.3%, 9.6% and 15,2% respectively. REFERENCES
Finally, note that the error of a methodology is inde-

; ; : :I4] F. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Dyically
per_1dent of the metric used. Even If_ some metrics, “k[é controlled resource allocation in SMT processdwCRO, 2004.
weighted speedup, are used to proviaieness, the results [2] K. Luo, J. Gummaraju, and M. Franklin. Balancing thropgh and

of these metrics depend on the accuracy of measurementsfairness in SMT processor$SPASS, 2001.

; D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Mer,
If measurements are wrong the results obtained by a metft and M. Upton. Hyper-threading technology architecture amicfoar-

are likely wrong. chitecture. Intel Technology Journal, 6(1), 2002.
[4] M. J. Serrano, R. Wood, and M. Nemirovsky, A Study on Multi

streamed Superscalar Processdeshnical Report 93-05, University
V. RELATED WORK AND CONCLUSIONS of California Santa Barbara, 1993.

Choosing an accurate evaluation methodologies is crudll B Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyand J. B.
f ing th f f ltith ded Joyner. POWERS5 system microarchitectuf®M Journal of Research
or measuring the performance of multithreaded processors ang pevelopment, 49(4/5):505-521, 2005.
For instance, The IBM Power5 (2 cores and 2-threads ger A. Snavely and D.M. Tullsen and G. Voelker. ~Symbiotic Job

core) was evaluated using 4A-thread workloads containing Scheduling with Priorities for a Simultaneous MultithreddProces-
h l . l df . Si all sor. SGMETRICS 2002.
the same application replicated four times [5]. Since tt~[7] N. Tuck and D. M. Tullsen Initial Observations of the Siltameous

threads in the workload are the same program, they finalize Multithreading Pentium 4 Processor PACT 2003
execution almost simultaneously, which means that tff@ D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm

. .. . Exploiting choice: Instruction fetch and issue on an impetable
error is negligible regardless the evaluation methodology gjmuitaneous multithreading processor. 28rd ISCA, 1996.

used. We have found that, when we execute workloa$ D. Tullsen and J. Brown. Handling long-latency loads isimulta-
containing a single program replicated several times, the neous multithreaded processor. MiCRO, 2001. _

d . fthe sinale-th ded iod i ligible. 9403 10] T. Y. Yeh and G. Reinman. Fast and fair: data-stream ityuaf
uration of the single-threaded period is negligible, d)_ service. Proceedings of CASES, 2005.

However, using just this type of workload limits the variety11] http://opensparc-t1.sunsource.net/

of the analysis and the evaluation that can be done. FAME] http://www.specbench.org/.

TiIPCsteady_state - EIPOmethodology

ErrorT; =
TiIPCsteady_state

(%)

