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ABSTRACT

We successfully synthesized an efficient photoactive pyrophyllite/TiO2 heterostructures using 

a sol-gel route at ambient temperature. The samples were prepared by exfoliation of a 

pyrophyllite layered-type clay by TiO2. The prepared samples exhibited strong photocatalytic 

activity for the degradation of phenol. The heterostructure PTi750 (SBET = 16.58 m2/g) 

calcined at 750°C, in which the mixed phases of anatase and rutile exist (52.2% 

anatase/10.7% rutile), showed the highest photocatalytic activity against commercial TiO2 

Aeroxide P25. The methanol washed PTi750 was 5 times faster than the corresponding 

unwashed sample; phenol was totally degraded with a TOC reduction of 89.2%. The materials 

have been characterized by: X-ray diffraction (XRD), Diffuse reflectance UV-vis 

spectrophotometry (UV-Vis DRS), scanning electron microscopy (SEM) and BET specific 

surface area.
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1. Introduction

The water pollution becomes a serious environmental problem in over the world because of 

quick industrialization and urbanization which prompt a continuous release of toxic pollutants 

from industrial, agricultural and sewage waste into the encompassed water bodies which 

oftentimes cause water pollution. The majority of the water polluted by industrial effluents 

containing toxic pollutants is discharged in natural water bodies without appropriate 

treatment. The advanced oxidation processes (AOPs) are conventional methods for the 

removal of toxic pollutants from aqueous solutions. AOPs are concern all the processes based 

on generation of strong oxidation radicals (usually, hydroxyl radicals) able to degrade and 

eliminate contaminants of waters [1, 2]. Among them are ozonation, sonolysis, Fenton 

oxidation and photocatalysis as well as combinations. Photocatalysis is one of AOPs that has 

attracted great attention of researchers in the last years. It is extensively used for 

decomposition of organic contaminants and gases in waters and air [3, 4]. In this sense, our 

research group has reported the photodegradation of some toxic organics substances in liquid 

medium, such as phenolic compounds [5], acids [6], herbicides [7] and fungicides [8], and 

NOx in gas medium [9]. Titanium dioxide (TiO2) is a typical photocatalyst utilized for 

environmental treatment, mainly because of its UV light-responsive properties, ability to 

catalyze the oxidation of toxic organic pollutants to nontoxic products, such as CO2 and H2O, 

low cost, chemical inertness, photostability, non-toxicity, non-corrosion and recyclability [10, 

11].

Using porous materials for assembling or immobilizing nanostructured semiconductors 

may be an alternative to design porous photocatalysts with higher adsorption properties, while 

maintaining electronic and structural properties appropriate for application in water treatment. 

The process consists in fixing semiconductors onto several supports, like zeolites [12], 

activated carbon [13] or clay minerals [14, 15]. Various layered clay-based materials have 

been used in photocatalysis such as acid-modified clays, modified organoclays, 

semiconductor-clay heterojunctions, pillared clays (PILCs) [16-18] or the so-called Porous 

Clay Heterostructures (PCHs), described by a higher porous properties [19] and Delaminated 

Porous Clay Heterostructures (DPCHs), described by the exfoliation of the clay layers 

producing more developed porous materials [20-24]. 

Pyrophyllite, a relatively rare mineral, is a layered hydroxy-aluminosilicate with 

dioctahedral 2:1 structure (Fig. 1). Its crystal structure is described in terms of Al-O(OH) 

octahedral sheets sandwiched between two tetrahedral SiO4 sheets, with each octahedral Al 



bonded with the tetrahedral Si by an apical O and with an adjacent Al by two OH groups [25]. 

Pyrophyllite exhibits good physico-chemical characteristics such as low electrical and thermal 

conductivity, low expansion coefficient, low thermal expansion, low reversible and excellent 

reheating stability [26]. It has been widely used in many industries, particularly in ceramics, 

rubbers paints fiber glasses, plastic, paper, fire-brick, cosmetic manufacture of refractories 

insulating materials and porous materials. Most of these applications are due to its good 

technological properties following thermal treatment [26]. Moreover, several researches have 

been performed on the use of pyrophyllite as an adsorbent of some contaminants as like 

cyanide [27], boron ions [28] and heavy metals [29-31]. In this paper, we report on the 

pyrophyllite/TiO2 heterostructures, which belong to DPCHs materials. They have been 

synthesized by a sol-gel route hydrolyzing the titanium tetrabutoxide (IV) precursor with the 

pyrophyllite layered-type clay, at ambient temperature, followed by the calcination at 

different temperatures. The activity of resulting photocatalysts was tested in the 

photodegradation of phenol under UV irradiation and it proved promising results, compared 

to the commercial TiO2 Aeroxide P25.

2. Experimental

2.1. Products

The natural clay used in this work comes from the south of Morocco, mainly pyrophyllite, 

was already investigated by our group [32-36]. Its composition (wt%) is: SiO2 (57.9%), Al2O3 

(25.5%), Fe2O3 (2.71%), K2O (1.6%), Na2O (1.53%), MgO (0.83%), TiO2 (0.64%) and CaO 

(0.12%). It was used in this work after decarbonation with 0.5 M hydrochloric acid under 

stirring [32]. Aeroxide P25, which was used as reference photocatalyst, phenol (≥99.5%), 

titanium (IV) t-butoxide (97%), hydrochloric acid (37%), acetonitrile (≥99.8 %) and methanol 

(99.8%) were supplied by Sigma-Aldrich; ethanol (≥99.5 %) was supplied by Panreac. All 

reagents were directly used without further purification. All solutions were prepared using 

dionized water prepared from a Milli-Q Millipore system.

2.2. Synthesis of the photocatalysts

The synthesis of the pyrophyllite/TiO2 heterostructures followed a sol-gel technique that 

consists on reacting layered pyrophyllite clay with TiO2, which comes from the titanium 

tetrabutoxide hydrolysis. Firstly, adding dropwise a solution made of 8.5 mL of titanium (IV) 

tetrabutoxide (TiTB) and 20 mL of ethanol to a solution consisting in 10 mL of ethanol in 



which 1 g of decarbonated clay (PT), sieved with a 63 µm mesh, is dispersed, under magnetic 

agitation. After continuous agitation (15 min), a solution of 15 mL of ethanol diluted with 10 

mL of distilled water was added drop by drop until a spontaneous gelation, giving then place 

to a dense gel, which was leaved to age for 24 h. After a washing series with water, this gel 

was dried at 100 °C for 24 h, this will be symbolized there below “TiTB-PT”. The dried solid 

was sieved with a 63 µm mesh and then calcined at various temperatures between 450 and 

850 °C for 4 h. The prepared heterostructures are symbolized “PTiX” where X represents 

calcination temperature. The methanol washed PTi750 (hereinafter noted Wsh-PTi750), 

which methanol washing has been done before calcination step, was also tested.  

2.3. Characterizations techniques 

X-ray diffraction (XRD) analyzes were performed using a Siemens D-500 difractometer 

(λCuKα = 1.5418 Å) in the range of 10°-80°. Phase crystalline sizes in the different samples 

were estimated from the line broadening of the corresponding XRD peaks by using the 

Debye-Scherrer (Eq. 1) [37]:

                                                       (1)D =
Kλ

β Cos(ϴ)                                                                                  

where D is the average crystallite size (nm), λ the X-ray wavelength of Cu Kα radiation (λ = 

0.15432 nm), K the shape factor (K = 0.89), β the full-width at half maximum (FWHM) 

intensity of the (101) plane and ϴ is the Bragg angle.

The relative percentage to anatase and rutile in TiO2 proportion was estimated using Spurr-

Myers (Eq. 2) [38] as follows:

                                                                         (2)A(%) = 100 - R(%) =  
100 IA

IA +  1.265 IR
                 

where A (%) and R (%) are the relative percentages to anatase and rutile, respectively, IA and 

IR are the intensities of the anatase (101) peak at 2ϴ = 25.3° and the rutile (101) peak at 2ϴ = 

27.2°.

Diffuse reflectance UV-vis spectroscopy measurements (UV-vis DRS) were recorded in 

the region 250-800 nm with a Varian Cary 5 UV-NIR spectrometer. Surface morphology of 

the photocatalysts was measured by scanning electron microscopy (SEM) using a Jeol JSM-

5400 microscope. BET specific surface area was measured by a Micromeritics ASAP 2420 



accelerated surface area and porosimetry system, with liquid nitrogen cooling bath (-195.78 

°C). 

2.4. Oxidation experiments and analytical techniques

The photocatalysis experiments were carried out in 500 mL cylindrical reactor of Pyrex. 

Aqueous suspensions containing 200 mL of 50 mg. L-1 phenol and 1 g.L-1 photocatalyst 

amount were stirred and air-bubbled continuously (400 mL.min-1). UV illumination was 

carried out outside of reactor. The withdrawn samples were filtered using a filter Millipore 

(0.45 μm) before being HPLC-analyzed. 

The residual phenol concentrations at different reaction times were HPLC-measured using 

a Supelco Discovery C18 (25 cm×4.6 mm ID, 5 µm particles) column, an acetonitrile-water 

(30:70) as mobile phase and a UV detector (λ = 270 nm). Total organic carbon (TOC) was 

measured with a TOC-VSCN analyzer (Shimadzu).

3. Results and discussion

3.1. Characterization studies

3.1.1. Crystallographic and surface area 

Fig. 2 shows the XRD patterns of the clay PT, PTiX photocatalysts calcined at temperatures 

ranging from 450 °C to 850 °C, and Wsh-PTi750. The PT sample exhibits typical peaks of the 

pyrophyllite (Al2(Si4O10)(OH)2) and supplementary ones assigned to quartz as impurity, as 

reported in the literature [39-41]. From PTiX photocatalysts XRD patterns, the transformation 

of the TiTB precursor to the TiO2 phase starts at all selected calcination temperatures. The 

anatase TiO2 appears in all photocatalysts at 2ϴ = 25.3°, 37.9°, 48.1°, 53.9°, 55.1°, 62.7° and 

63.2°, 68.8° [42-45] while the rutile TiO2 appears only in samples PTi750 and PTi850 at 2ϴ = 

27.4°, 36.1°, 54.3° and 56.6° [46]. The results show that the washing with methanol has no 

effect on crystalline phases of PTi750. The peaks ascribed to the pyrophyllite material were 

observed in XRD patterns of all photocatalysts, which implied that pyrophyllite retained its 

phase in their structures.  

Table 1 shows the surface areas and distribution of anatase and rutile phases in terms of 

weight composition and particle size of synthesized photocatalysts. All heterostructures show 

a high value of surface area in comparison with the starting clay, due to the exfoliation of clay 

layers caused by TiO2 nanoparticles which favors the accessibility to the internal surface of 



the layers [47]. It can also be seen that the calcination temperature increases with increase of 

particle size of both anatase and rutile and decrease of surface area [5]. The synthesis of the 

heterostructures implies the creation of mesopores as an important issue confirmed by a 

significant contribution of mesoporosity according to the values of the external (non-

microporous) surface area (Table 1). These mesopores are mainly distributed within a pore 

diameter range of 3-4 nm (Fig. 3a). The porous structure of the heterostructures, as a result of 

the presence of clay layers [47], was also confirmed based on the corresponding nitrogen 

adsorption-desorption isotherms (Fig. 3b). All samples show a type II isotherm (IUPAC 

classification) with a H3 hysteresis loop [48, 49], except PTi450 which shows a combination 

of both types I and II [49]. These kinds of isotherms have been described for several layered 

materials, characterized by porous aggregates due to the “house of cards” structure formed by 

the plate-like particles [50, 51]. 

3.1.2. UV-vis DRS characterization

Diffuse reflectance spectra (Fig. 4) of photocatalysts have been carried out, from which band-

gap values have been determined (Table 1). From the obtained band gaps, all photocatalysts 

absorb in the UV region, at a wavelength varying between 385 nm and 398 nm. Remarquably, 

the PTiX band gaps decrease when rising of calcination temperature. Rising the calcination 

temperature increased the size of the particles and improved their crystallinity (Table 1). As a 

result, the defects are reduced and consequently the e-/h+ recombination is reduced. On the 

other hand, when the crystalline particles are very small, the well-known "quantum size 

effect" is produced, which leads to an increase in the band gap [52]. This effect has also been 

mentioned in other studies, in which increased band gap was correlated with decreased 

particle size caused by faster e-/h+ recombination [5, 53, 54].

3.1.3. SEM characterization

To ensure that the TiO2 particles are well dispersed on the clay´s surface, a SEM analysis was 

performed of PT and PTiX heterostructures (Fig. 5). SEM image of PT illustrates that it 

possesses a layered structure (Fig. 5a), while those of the PTiX heterostructures (Fig. 5b-f) 

show that TiO2 particles are assembled and incorporated to the clay layers.

3.2. Photodegradation of phenol

3.2.1. Photoactivity of PTiX heterostructures 



Before testing the photocatalysts, an adsorption preliminary test was carried out for 1 h 

without irradiation (Fig. 6). The results show that the time needed to reach equilibrium varies 

between 25 min and 30 min. Aeroxide P25 has a low adsorption percentage (0.9%) and 

PTi650 has the highest adsorption percentage (16.3%) which can be explained by the 

proportion of contained clay (37.3%). In addition, blank experiments showed that the 

degradation of phenol was low in the absence of photocatalysts or UV light irradiation. The 

adsorption phenomenon was eliminated after 30 min for all photocatalysts and then UV light 

irradiation was started, indicating the start of photocatalytic degradation reaction (t = 0).

Fig.7 shows the evolution of phenol degradation and mineralization in terms of 

photocatalyst type. In the case of heterostructures, it is found that their photoactivity increases 

with the calcination temperature, up to 850 °C at which it begins to decrease. PTi750 is the 

most active among the studied photocatalysts, with degradation and mineralization rates (%) 

of 91 and 80, respectively. 

Figs. 8a and 8b depict the plot of Ln(C/Co) vs. irradiation time and reaction apparent first 

order rate constants kapp estimated for photocatalytic degradation of phenol with the different 

photocatalysts, respectively. The results show that PTi750 has the best reactivity justified by 

the higher value of kapp (0.019 min-1); 1.38 times faster than that of Aeroxide P25 (kapp = 

0.014 min-1).

3.2.2. Methanol washing effect

Before using Wsh-PTi750, it was tested in adsorption for 1 h. This photocatalyst shows 17 % 

of removal at equilibrium time of 20 min (Fig. 9a). Just after this period, UV irradiation was 

activated, Fig. 9b. illustrates the obtained results. The phenol was totally degraded with 89.2% 

of TOC reduction after 2 h of irradiation. The plot of Ln (C/C0) vs. time revealed an apparent 

first order rate constant of 0.097 min-1. This value, 5 times higher than that obtained without 

methanol washing, implies the positive effect of this step. The specific surface area of Wsh-

PTi750 is 56.39 m2.g-1, it is big larger compared to 16.58 m2.g-1 from the unwashed PTi750 

(Table 1). Park et al. studied the ethanol washing effect on textural properties of the sodium 

silicate-derived silica xerogel and got similar results [55]. Increasing PTi750’s surface area 

caused by methanol washing improved its photoactivity. In fact that increasing in surface area 

means the creation of a greater number of adsorption sites which are beneficial to the 

photoactivity [5]. Furthermore, the difference of mechanical properties between PTi750 and 

Wsh-PTi750 also affected the photoactivity. Once dispersed in the liquid, the methanol 

molecules had to diffuse in order to access the anatase and rutile crystals contained in 



photocatalyst particles. Consequently, the larger pore size of Wsh-PTi750 (Fig. 3a), promotes 

the diffusion of methanol molecules as well. 

The porous structure of Wsh-PTi750 is affected by the surface tension of the methanol. 

During drying procedure, as the liquid evaporated, the gas/liquid surface within pores was 

curved and then presented a surface tension which withdrawn the porous wall closer. The 

higher surface tension results in larger decrease in pore size. The decreasing of pore size 

favored by the surface tension of water was more significant than that of methanol during the 

drying step might be explained by the fact that the surface tension of water is greater than that 

of methanol at room temperature. Therefore, the Wsh-PTi750 had a larger specific surface 

area and pore size, and showed high activity. 

3.2.3. Stability of PTi750 and Wsh-PTi750

After photocatalytic test, the photocatalysts PTi750 and Wsh-PTi750 have been reused after 

filtration, water washing and drying. Fig. 10 illustrates the results obtained after five cycles of 

reuse. It is noted that the activity is not significantly lost; the degradation efficiency is about 

88.7% for PTi750 and 97.8% for Wsh-PTi750 after five cycles of reuse. This result indicates 

that these photocatalysts were stable and allowed for possible reuse.

4. Conclusions

Novel pyrophyllite/TiO2 heterostructures were successfully synthesized, at ambient 

temperature, via a sol-gel method. The layer structure of decarbonated pyrophyllite was 

destroyed to some extent and a new dual mesoporous structure was formed by embedding the 

TiO2 particles in the clay layers. The heterostructure PTi750 with mixed phases of anatase and 

rutile showed the higher photocatalytic activity under UV light than that of the commercial 

Aeroxide P25 in photodegradation of phenol. Meanwhile, the methanol washed PTi750, 

which is successfully prepared by methanol washing before calcination, showed excellent 

photocatalytic activity for the degradation of phenol. 2 h of UV photocatalytic reaction with 1 

g.L-1 amount of this photocatalyst is favorable for total degradation of 200 mL of phenol at 50 

mg.L-1 concentration and its mineralization over 89 %. The results suggested that PTi750 

heterostructure is promising for water purification applications for its good photocatalytic 

properties.
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Fig. 1. Structure of pyrophyllite.
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Fig. 2. XRD pattern of (a) PT and (b) photocatalysts.
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Fig. 3. (a) Pore size distribution and (b) N2 adsorption-desorption isotherms of photocatalysts.
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Fig. 4. UV-Vis DRS spectra of different photocatalysts.



Fig. 5. SEM images: (a) PT, (b) PTi450, (c) PTi550, (d) PTi650, (e) PTi750, (f) PTi850.
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Fig. 6. Evolution of adsorption rate of phenol by PTiX and Aeroxide P25 photocatalysts.
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Fig. 7. Evolution of (a) degradation and (b) TOC reduction of phenol rates with PTiX and Aeroxide P25 

photocatalysts.
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Fig. 9. (a) Evolution of adsorption efficiency and (b) degradation and TOC reduction rates of phenol with Wsh- 

PTi750.
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Table 1

Percentage of anatase-rutile phases, crystalline size, surface area and band-gap of the different photocatalysts.

Cristalline size 
(nm)

Surface area 
(m2/g)

Samples Anatase (A)/Rutile (R) ratio

Anatase Rutile SBET SEXT

Band 
gap (eV)

PT - - - 9.14 7.35 -
TiTB-PT - - - 82.21 80.36 -
P25 80% A/20% R 22.1 24.8 52 51.22 3.19
PTi450 61.8% A/0% R 13.7 - 49.12 48 3.23
PTi550 62.2% A/0% R 19.1 - 27.08 24.54 3.21
PTi650 62.7% A/0% R 25.5 - 18.45 17.27 3.21
PTi750 52.2% A/10.7% R 35.5 60.8 16.58 15,74 3.17
PTi850 51.8% A/10.9% R 35.8 62.8 12.74 11.85 3.15
Wsh-PTi750 52.3% A/10.5% R 35.1 60.5 56.39 55,96 3.17
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