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Abstract. Here we present monthly, basin-wide maps of the for several applications such as the monitoring of basin-wide
partial pressure of carbon dioxide@») for the North At-  air-sea CQ fluxes or improvement of seasonal and interan-
lantic on a 2 latitude by I longitude grid for years 2004 nual marine C® cycles in future model predictions. The
through 2006 inclusive. The maps have been computed usinmethod itself is a valuable alternative to traditional statistical
a neural network technique which reconstructs the non-lineamodelling techniques used in geosciences.

relationships between three biogeochemical parameters and
marine pCO,. A self organizing map (SOM) neural net-
work has been trained using 389 000 triplets of the SeaWiFS1  |ntroduction

MODIS chlorophyll-a concentration, the NCEP/NCAR re-

analysis sea surface temperature, and the FOAM mixed layeg|obally, the oceans have absorbed around 30 per cent of the
depth. The trained SOM was labelled with 137 000 Under-tota| anthropogenic carbon dioxide (g@Qemissions to the
way pCO, measurements collected in situ during 2004, 2005atmosphere since the beginning of the industrial era (Sabine
and 2006 in the North Atlantic, spanning the range of 208et al., 2004). This natural buffer slows the effects of anthro-
to 437uatm. The root mean square error (RMSE) of the pogenic interference with the global carbon cycle. The North
neural network fit to the data is 1L&tm, which equals  Atlantic Ocean, being a highly biogeochemically dynamic
to just above 3 per cent of an avergg€0, value in the in  pasin and one of the strongest sinks of carbon in the world’s
situ dataset. The seasonalO; cycle as well as estimates oceans (Takahashi et al., 2002), plays an important role in the
of the interannual variability in the major biogeochemical world’s carbon cycle. Understanding the future behaviour of
provinces are presented and discussed. High resolution comhe global carbon sinks and sources, as well as related effects
bined with basin-wide coverage makes the maps a useful toayn the planet's climate, can only be obtained given a robust
understanding of the current distribution of carbon sink and
source regions.

Correspondence tavl. Telszewski The magnitude of the ocean sink can be determined us-
BY (m.telszewski@uea.ac.uk) ing air-sea flux estimates based on in situ measurements of
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the sea surface partial pressure of OQ@CO,). However, processing algorithms are well understood and may be used
while atmospherigpCO, shows relative homogeneity, ma- in parallel with traditional statistical tools. Among the nu-
rine pCO, varies strongly both temporarily and spatially merous NN types, the Self Organizing Map (SOM) seems to
(Sarmiento and Gruber, 2002). Monitoring the mam&0O, gain the most attention as being well suited to study empir-
distribution on monthly to interannual time-scales is thus cru-ical relationships in geosciences. It is a particularly power-
cial for further understanding of the global carbon cycle in ful tool for the extraction and classification of features, such
the context of current climate dynamics. Due to technical asas trends, in (and between) input variables. The SOM is a
well as financial restrictions, in situ measurements of marine‘black-box” type of model. While its restrictions and limi-
pCO, are sparse even in the relatively well sampled Northtations need to be considered, it has an essential advantage
Atlantic Ocean. However, over the last decade, technical im-over more commonly used knowledge-based models which
provements and cooperation with the shipping industry haveare based on equations describing the physical, chemical and
allowed for the installation of several autonomous underwaybiological phenomena that control the quantity to be mod-
systems on board commercial vessels routinely crossing thelled. As opposed to the latter, the SOM technique is based
ocean basin. Those instruments perform quasicontinuousolely on observations. The SOM uses an unsupervised (no
measurements, offering temporal and spatial coverage whicheed for a priori, empirical or theoretical description of the
allows for regional analysis of the highly variable spatial input — output relationships) learning algorithm, enabling us
and temporal distribution gfCO; (e.g. Cooper et al., 1998; to identify relationships among the state variables of the phe-
Lefevre et al., 2004; tiger et al., 2004 and 2006; Cogbé et  nomena under analysis, where our understanding of these is
al,. 2007; Schuster and Watson, 2007; Olsen et al., 2004 anihsufficient to be fully described using mathematical equa-
2008; Schuster et al., 2009). Most of these authors suggesions, and where applications of knowledge-based models are
that the strength of the North Atlantic sink has decreased ovetherefore limited.
the last decade, with the decline especially significant (up to The SOM technigque has been successfully used to synthe-
50%) in the northern part of the basin. This change indicatesise regional maringCO, maps from in situ measurements.
that an increasing fraction of the anthropogenic emissions reLefevre et al. (2005) have constructed a monthly climatology
mains in the atmosphere, which is consistent with some refor years 1995-1997 using the reanalyzed SST fields as the
cent modelling results. For instance, Canadell et al. (2007)50M input. Their estimates cover the North Atlantic sub-
suggest that around 10 per cent of the recent (2000—2006)olar gyre (50N to 70° N and 10 W to 60° W). Lefévre et
rise in the atmospheric GQroncentrations can be attributed al. were able to capture a more complex distribution in the
to the weakening of the ocean sink. northern North Atlantic using SOM than they could using
Despite the huge community effort to increase the net-multiple linear regressions. Also the residuals determined
work of in situ pCO, measurements in the North Atlantic, through the validation against an independent subset of the
the coverage still remains unevenly distributed in time anddata were smaller for the SOM.
space. The regional character of the existing estimates poses In this study, we construct basin-wide (19Mto 75.5 N
difficulties for extrapolation to the entire basin; therefore aand 9.5 E to 75.8 W), monthly pCO, maps for three con-
robust and reliable method to spatially and temporarily in-secutive years with acllatitude by P longitude resolu-
terpolate available measurements of mam@O, has been  tion. We use 137 000 in sitpCO, measurements collected
long sought (e.g. L&vre et al., 1999 and 2005; Takahashi in the North Atlantic throughout 2004, 2005 and 2006 as
et al., 2002 and 2009; Olsen et al., 2003; Jamet et al., 2007art of CarboOcean (http://www.carboocean.org/), an EU-
Chierici et al., 2009). funded Integrated Project, and parallel US projects. The
In the work presented here, we seek to map ocep8i0,  pCO, data are combined with 389 000 satellite, reanalysis
in the North Atlantic at a monthly timescale. We use an arti- and assimilation data of chlorophyll-sea surface tempera-
ficial neural network (NN), a powerful non-linear modelling ture, and mixed layer depth, which allows basin-wide, con-
tool for mapping performance (Dreyfus, 2005). Neural net-tinuous mapping over extended periods of time.
works were first used extensively by the pattern recognition \We show the capacity of the method to synthesize co-
community 20-30 years ago (Kohonen, 2001). Since therherent, spatial and temporal distribution patterns of marine
NN have made their way into geosciences and over the lashCO; fields in the North Atlantic, and propose the method

decade there has been a significant increase in their applicao be used in conjunction with in situ data collection during
tion to environmental problems. They are now commonly future oceanippCO, monitoring programs.

used in atmospheric science (Cavazos, 1999; Hewitson et al.,
2002; Niang et al., 2006), oceanography (Richardson et al.,
2003; Liu et al., 2005 and 2006a; Reusch et al., 2007) an@® Data and methods
meteorology (e.g. Ali et al., 2007).

The termartificial neural networkreflects a mechanistic We hypothesise that sea surfap€0, can be estimated
connection to the processes found in the human brain anthrough the SOM based multiple non-linear regression with
therefore generates some confusion. At present their datahree parameters (Eg. 1): sea surface temperature (SST),
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wind-mixed layer depth (MLD) and the abundance of photo-data enough for extracting characteristic patterns. Too few
synthesizing organisms in the surface ocean represented yeurons do not provide sufficient representation of patterns
the chlorophyll-aconcentration (CHL). underlying the in situ observations. A flat sheet map shape
(60x 37) with a hexagonal regional lattice structure was cho-
pCOz = SOM(SSTMLD, CHL) (1) sen. Each neuron is represented by a three-dimensional

Lefévre et al. (2005) and Friedrich and Oschlies (2009) used"€ight vectory;, with one component for each input variable
position and time as additional training parameters for their(SST' MLD and CHL). All the values are linearly normalized

SOM-based mapping. The different training scheme (com-to acquire an even weight distribution between the input vari-

pared to that used by Friedrich and Oschlies, 2009) applie@?!€S- Additionally CHL and MLD values are lggnormal-
in this study allows for improved determination of the sta- ized to minimize the influence which their spread throughout

tistical structure of the basin-wide input data (discussed infour and three orders of magnitude, respectively, would oth-

Sect. 3.1). However, the patterns found are more stronglf'wise have on the weight distribution. Linear initialization
implemented in the resulting maps. The maps obtained usingserformgd in this study) of the components of weight vec-
position and time are unrealistic (not shown), as also reported©rs applied prior to the training process decreases the com-
by Jamet et al. (2007) who compared three different combiPuting time required for the SOM to converge with the input
nations of parameters needed to genepi€®, maps in the data (Kohonen, 2001).

North Atlantic. Using latitude or longitude causes concen-
tration of similar values along east-west or north-south lines,

:/ZTS:;:tilxeIgtcgzlsn%v?t?gucra?iz?: |C|ueStig?gig{;gﬁbﬁweeghe training data set consists of three subsets, one for each
P ’ P gy eq arameter. Basin-scale SST data were obtained from the

one another. Finally, using time increases the influence o . .
seasonality on th@goz magps. Thus, whereas using posi- CEP/NCAR Reanalys!s Project (http://www.cdc.noaa.gov/
tion and time can be sufficient to wc')rk with small regions cdc/data.ncep.reanalysis.html) at daily frequency and 2.5
o . latitude x2.5° longitude resolution. The SST data (used
(e.g. Lekvre et al., 2005), they are definitely not applicable . . . ) .
as a basin-wide training parameters in this study) contain the values as described in Kalnay et
gp ’ al. (1996). As such, over open water the temperature is fixed

During our SOM analysis three steps are taken in or-_ .~ =" " . . .
der to estimate basin-widgCO; fields: first, an unsuper- at its mma! weekly value and linearly interpolated to daily
y ' frequency in the NCEP data product.

vised training takes place withopCO; data; second, in situ Basin-wide MLD estimates were obtained from the Fore-

CO;, data is used to label the preconditioned SOM neurons; . o .
tlilird the trained and labelled pSOM neurons are used to ascaound Ocean Assimilation Model (FOAM, Meteorological

. . . . Office, Exeter, UK; http://www.nerc-essc.ac.uk/godiva) at
illng{)it(l)azn\t/iilues to the (geographical) grid points of the daily frequency and“latitude x P longitude resolution. The

FOAM model assimilates both in situ and remotely sensed
2.1 An overview of the SOM setup ocean observations in near real-time including: vertical tem-

perature and salinity profiles from sea stations and research
The SOM, introduced by Kohonen (2001), is a competitive vessels, Argo profiling floats and PIRATA moored arrays,
learning method in which an algorithm learns to classify theas well as sea surface temperature from Voluntary Observ-
samples by recognizing and extracting patterns from the staing Ships (VOS), buoys, and the satellite mounted Advanced
tistical structure of the multivariate dataset. It performs aVery High Resolution Radiometer (AVHRR). The mixed
non-linear projection from the highly dimensional input data layer depth used in this study is determined by the FOAM
onto a usually two-dimensional (2-D) grid, as described bymodel using the density based criterion as the depth where
Niang et al. (2003). The SOM analysis was carried out us-a density increase of 0.05 kgThfrom the surface value oc-
ing the SOM Toolbox Version 2 (Vesanto, 2000) for Matlab, curs (Chunlei Liu, Environmental Systems Science Centre of
developed by the Laboratory of Information and Computerthe UK National Environmental Research Council, personal
Science at the Helsinki University of Technology and freely communication, 2007).
available from http://www.cis.hut.fi/projects/somtoolbox (vi- CHL data were obtained from Aqua-MODIS/SeaWiFS
sualizations of the resulting North AtlantigCO, maps were  merged  Level-3 ~ Standard maps  provided by
done using additional procedures in Matlab). For gen-NASA/GFSC/DAAC at weekly frequency and 9km
eral SOM procedures and parameter settings consult Liu etesolution (http://oceancolor.gsfc.nasa.gov). The use of the
al. (2006b) and Vesanto et al. (2000). The SOM procedurenerged product was dictated by considerable improvement
adopted in this study is outlined below. in coverage in relation to the single mission products

Our SOM-map consists of 2220 units (often referred (20% and 24% for SeaWiFS and MODIS 8-daily product,

to as neurons) organized on a regular 2D grid. Moderatelyrespectively).
sized maps (in relation to the training data set) are found to All three products (SST, MLD, CHL) offer almost full
be the most efficient. Too many neurons do not reduce thdasin-wide coverage for the years 2004 to 2006. All

2.2 Training data set (SST, MLD, CHL)

www.biogeosciences.net/6/1405/2009/ Biogeosciences, 6, 1405-1421, 2009
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2.3 The self organizing process — training the SOM

During the self-organizing process, 389 000 training vectors
x;, are presented to the SOM (Fig. 1a). The activation of each
neuron’s weight vectory;, is computed for the presented
training vector. For a given training vector, the “winning”
neuron (the one with the highest activation) is the one whose
weight vector is the closest to the presented training vector
in Euclidean distanc® (x;, y;), defined as:

D(x;, yi)= [(xiSST_yiSST)2+(xiMLD —yiMLD )2+
,105
(XiCHL —YicHL) ] 2

The weight vector of the winning neuron is updated by ad-
justing it towards the training vector by a certain fraction
of the difference between the two, as indicated by a lin-
ear, monotonically time-decreasing learning rate function
Thus the winner’s activation will be even higher the next
time a similar input vector is presented. In addition to the
winning-neuron, the weight vectors of neurons in the neigh-
bourhood of the winner are also stretched towards the input
vector, according to a neighbourhood functidh,which de-
creases with each neuron away from the winner:

Hei () = a(t) x exp(d? /2(o (1))?) @)

whereo (¢) is the neighbourhood radius at timeandd,; is

the distance between map unitéwinner) andi on the map
grid. The neighbourhood radiug?) decreases as a function

of time along with the learning rate(z). The neighbour-
hood radius and also the shape of the neighbourhood func-
tion have to be decided before the training starts. In this study
the neighbourhood radius decreases from 8 to 2 neurons dur-

pervised training takes place, and p80, data is used: secorid) ing the rough training and fgrther to 0 during the fing—tuning
preconditioned neurons are labelled wjttO, data measured in Phase. The shape of the neighbourhood function dictates the

situ; third (d) the trained and labelled SOM is used to assign pCO €xtent to which the neighbours of the winning-neuron are
values to the geographical map for the whole basin. updated, and how it changes with increasing distance from
the winning-neuron. A Gaussian shape has been used in this
study. The learning rule which incorporates such a neigh-
parameters were re-gridded onto a 8-daily frequency &nd 1bourhood function leads to a topologically ordered mapping
latitudex 1° longitude resolution. The study area stretchesof the input vectors and distinguishes the SOM from other
from 10.5 N to 75.8 N and from 9.8E to 75.83W and is  vector quantization algorithms (Kohonen, 2001). By virtue
hereafter called the North Atlantic. of the neighbourhood function, the winning-neuron is not a
We have excluded coastal (water colura®00m) and  mean of the data it accounts for, but rather an expression of
ice covered (SST—1.8°C) waters from the training data the local ordination of patterns extracted from the input data
set, which consists of 389 000 pixels (training vectors) eachset (Dreyfus et al., 2005). Similar patterns are mapped onto
containing normalized SST, MLD and CHL values (used in neighbouring regions on the SOM-map, while dissimilar pat-
training) as well as additional information such as month andterns are mapped further apart.
year, position, bottom-depth and other ancillary information  After the training, each neuron becomes a synthetic sam-
which is used during mapping and analysis of the results.  ple with an associated weight vector (Fig. 1b). Every weight
Seasons are as follows: winter includes December, Janvector has a different combination of components, therefore
uary and February, spring includes March, April and May, the SOM estimates are based on 2220 relationships between
summer includes June, July and August and fall includeghe three training parameters. To account for strong non-
September, October and November. linearities in the real system it is important that the frequency

Fig. 1. Visualization of the procedures for the self organizing map
(SOM). Three main steps are necessary: fiasarfdb), an unsu-
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Fig. 2. The frequency distribution of each training parameter in the input data and the SOM neurons. Note that scales in the(g)axes in
and(c) are not increasing monotonically.

distribution of each parameter in the input data is well repre-ranges of input parameters captured in the labelling data set
sented by the SOM neurons (Fig. 2). Mean values of pa{pCOy, SST, MLD, CHL) are more relevant for SOM esti-
rameters (SSdom=18.1, SSTnpuT=19.4; MLDsoM=63.6, mates than their temporal and spatial distribution. This is one
MLD npuT=66.3; CHLsom=0.37, CHLnpuT=0.27) and of the advantages that the SOM has over the other interpola-
their ranges are also similar in the training data and SOMtion techniques. However, the variability in the labelling data
neurons. More importantly, neurons follow highly non-linear set should not be significantly smaller than that of the train-
relationships between each pair of components in the training set in order for the SOM to give optimal mapping results
ing data set (Fig. 3a—c) visualizing how well the SOM is (Kohonen, 2001).

equipped for such a complicated setup. The distribution of The training data set (as introduced in Sect. 2.2) offers
neurons generally follows the training data diStribUtion, evenyide ranges for all parameters’ providing sufficient informa-
in such an extreme case as MLD versus SST (Fig. 3b).  tjon about their variability as summarized in Table 1. The
SST varies between-1.8C and 30C, the depth of the
mixed layer ranges from-10 m to more than 1000 m (in
In order to estimateyCOy fields in the North Atlantic, the total, 0.15% of data has MI.‘D values greater than 12$O m)
trained SOM neurons need to be labelled with #&0, val- and chlorophylla concentrations vary from 0 t& 10 mg/
(0.04% of data has CHL values greater than 10 nig/fihe

ues. In the labelling set, in sitpCO, measurements are ; S .
used, all accompanied by corresponding SST, MLD and Cl_”_!abelllng data set captures most of the variability in the train

values (according to their time and space coordinates). Fop'd data set (Table 1). The temperature ranges aRCAa

the purpose of this work, we used a subset of the North At- ._2°C_smaller t_han those in the training data set. M.OSt .Of
! . ; this difference is due to the fact that there are few in situ
lantic data set compiled under auspices of CarboOcean, an X .
. ) measurements from ice-melting zones, where water temper-
EU-funded Integrated Projechifp://www.carboocean.oyg ature drops below. Those regions are negligible in terms
A total of 137 000pCO, data points were collected on sev- P ' 9 919

. . : of the area covered, and the number of bel6@ easure-
eral vessels routinely crossing the North Atlantic between .
ments accounts for less than 1% of the training data. Hence
June 2004 and October 2006.

the lack of the lowest temperature labels in the labelling data
set is unlikely to have a significant effect on the basin-wide
pCO maps.
The data in the labelling set is not evenly distributed in time  The mixed layer depth is well represented in the labelling
and space (Fig. 4). More measurements are available imlata set. In winter however, the maximum mixed layer depth
spring and summer than in fall and winter (Fig. 5) as a resultin the labelling set is substantially lower than that in the train-
of difficulties related to sampling in stormy winter waters. ing set. This has two causes, firstly commercial vessels avoid
For the three years there are less than 3500 measuremergtorm regions and therefore measurements in deep vertical
between November and January. Few data are available fanixing areas are rare, especially in winter when the ocean
2004: a major contribution in June, 2 days in July and 7 dayss generally under-sampled (Fig. 5); secondly, the highest
in October make that year's input rather imbalanced. MLD's in the training data occur in two very specific regions
Such an uneven distribution would make this data very(Labrador Sea and the Greenland-Norwegian Sea), where
difficult to analyse using traditional statistical techniques. deep water formation takes place. Those two relatively small
Most linear methods would be biased towards summer wabasins are not extensively sampled, and the deepest MLDs
ters, and the exceptionally high volume of data from Juneare not measured. As a result the SOM output is potentially
2004 would create mapping discrepancies. In contrast, théiased towards shallower mixed layer depths in all regions

2.4 Labelling the trained SOM with the pCO, data

2.4.1 Distribution of the in situ measurements

www.biogeosciences.net/6/1405/2009/ Biogeosciences, 6, 14032009
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Fig. 3. (a—c)property — property plots for MLD, CHL and SST. The distribution of the density of the 389 000 training data points within
each two-dimensional data space is shown in grey. Overlaid in red is the distribution of 2220 SOM neurons after the {diing.
property — property plots fgpCO» and CHL, SST and MLD. The distribution of the density of the 137 000 labelling data points within each
2-dimensional data space is shown in grey. Overlaid in red is the distribution of 2220 SOM neurons after the training.

Table 1. Ranges of sea surface temperature, mixed layer depth and chloraghyte training (T) and labelling (L) data sets by season.
Percentage of the training data within the range of the labelling data set is given for each parameter (L cover).

Season Data Temperatufed) Mixed Layer Depth (m) Chlorophy# (mg/nP)
Min Max L cover(%f} Min Max L cover(%f Min Max L cover(%}

WINTER T —-1.80 29.2 99.7 10.0 >1000 98.2 0.04 >10° 985

(Dec-Feb) L 0.45 28.5 179 571.9 0.05 20

SPRING T —-1.80 29.7 97.8 10.0 >100 99.2 0.02 >10° 99.8

(Mar-May) L 0.17 28.9 10.0 834.5 0.03 9.6

SUMMER T —-1.80 30.3 957 84 3875 99.5 0.02>10° 99.6

(Jun—Aug) L 1.92 29.1 10.0 337.7 0.03 127

FALL T -1.80 30.7 97.9 9.0 484.9 99.6 0.02>10° 99.1

(Sep—Nov) L 5.85 30.1 12.0 3604 0.04 26.8

@ Percentage of the training data within the range of the labelling data set.
b 0.15% of the training data has MLD values greater than 1000 m.
€ 0.04% of the training data has CHL values greater than 10 fhg/m

and seasons where the actual depth of the mixed layer isimilar relationship was found for the subtropical North At-
greater than~850 m. This affects a small fraction (be- lantic in our labelling data set (not shown) with a threshold
tween 0.4% and 1.8%) of the training data as indicated in Tavalue of 200 m.
ble 1. The exponential character of the relationship between
sea surface@CO, and MLD in the subpolar North Atlantic The chlorophylla concentrations in the labelling data cap-
(Olsen et al., 2008) suggests that MLDs deeper than 500 nture most of the variability between 2004 and 2006. The sea-
have little influence on sea surfap€0; (their Fig. 9a). A sonal maxima between 2mgthin winter and 27 mgm?

in fall suggest that even the strongest blooms are represented.

Biogeosciences, 6, 1405421 2009 www.biogeosciences.net/6/1405/2009/
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JFM 2004 AMJ 2004 JAS 2004 OND 2004

JFM 2005 AMJ 2005 JAS 2005 OND 2005

JFM 2006 AMJ 2006 JAS 2006 OND 2006
40°w  20°W Tod0'w 20°W Toa0tw 20"W T T

Fig. 4. The spatial distribution of the CO, measurements used in this study. Data constitute the subset of the CarboOcean dataset for
2004 through 2006. Quarterly plots show data for January to March (JFM), April to June (AMJ), July to September (JAS) and October to
December (OND).

More than 99% of the training data falls within the range of =000
the labelling data (Table 1), meaning that the SOM is labelled , | m 2004 m 2005 m 2006
with a sufficient fraction of the observed variability. Addi-

tionally, chlorophylla data in both data sets are affected by
the lack of satellite coverage north o#45° N in December
and January.

20000 -

15000 -

10000 -

Number of measurements

5000 -

2.4.2 The labelling procedure

Each data point from the labelling set is presented to the al- Month

ready trained SOM as an input vector (Fig. 1c). The winning

neuron is found according to Eq. (2). Instead of updating theFig. 5. Number of in situpCO, measurements in the North Atlantic
winning neuron and its neighbourhood, such input vector la-used for labelling the preconditioned SOM versus month for 2004,
bels the winning neuron with itsCO, value. Consequently 2005 and 2006.

eachpCO, measurement is assigned to one of the neurons.

Most of the neurons are labelled more than once and the ulti, . . .
. rey colour) not accounted for during the labelling (red dia-
matepCO; value of the neuron is an average of all the Iabels(g y ) g 9(

. : X 20 monds), meaning that SOM produces a highly discriminative
I accoun;ts for.dReIa';:().n(sjhu_c()js b(latween the '? 2'2?_2 ﬂiaD- epresentation of the data. Neurons outside the data cloud
sureéments and each Individual componen ( i’ aN%ean that for a certain value of the property (x axis) the SOM
CHL) of the associated vectors are strongly non-linear fromWiII estimate apCO; value other than that measured (y axis)
the basin-wide, year-long perspective. Figure 3d—f shows]_h. | h itional h -
how the density distribution of the SOM neurons follows the is could suggest that parameters additional to those con

o sidered in this study control the distribution p€O; in the
density distribution of thegCO, data. Neurons concentrate North Atlantic.

where data density is highest and there is little data space

www.biogeosciences.net/6/1405/2009/ Biogeosciences, 6, 14032009
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Fig. 6. Comparison of the SOM estimates with the measyr€®, for 2004, 2005 and 2006 as data density contours.

2.5 Estimating basin-widepCO; fields from 8.1uatm in 2004 to 12.atm in 2005 and 12.gsatm

in 2006. The distribution of the data density in all three years
In order to estimate the geographical distributionp@0,  indicates that no systematic bias exists in the method. The
for a certain time period, the training input data are used.values are scattered around the identity line for which the
Each of the 389 000 input vectors has a time coordinate an@orrelation coefficient is 1.
two space coordinates. June 2005 has been chosen to Vvisu-|n 5 recent study, Friedrich and Oschlies (2009) derived
alize this step, and is shown in Fig. 1d. All the input vectors ihe pasin-wide monthly maps @iCO; in the North Atlantic
from June 2005 are presented to the preconditioned (traineghy 2005 from modelledpCO; distribution using the SOM
and labelled) SOM. Each input vector is labelled with the appr0ach (they call it KFM). These authors report the basin-
pCO; label of the winning-neuron. Using the space coordi-\yjge RMSE of 21.Juatm. Such a relatively high error results
nates of the input vector, thigCO; value is then associated mainly from the employed SOM training procedure, which
with the appropriate pixel on the geographical map. As ajs fundamentally different to that used in our study. As de-
final result, each pixel used as SOM input data has an estiscriped in Sect. 2.3 we use three years of the whole grid data
matedpCQO, value assigned to it. In this study we produce (SST, MLD and CHL) to train the SOM. This way the SOM
36 monthly, basin-wideyCO, maps between January 2004 «sees” the relationships between the training parameters in
and December 2006. every grid point in the North Atlantic, with weekly frequency
for the three years. This enables maximum SOM efficiency,
regardless of the spatio-temporal cover of the in situ mea-
surements used for labelling, and ensures that the SOM has
3.1 Uncertainty estimate been preconditioned with comprehensive, basin-wide train-

ing knowledge with regards to the relevant biogeochemical
For each in sitpyCO» measurement, the corresponding SOM processes. Friedrich and Oschlies (2009) decided to train
pCO, estimate was found based on spatidllfhgitude<1°  the SOM only with values (SST, CHL) collected along the
latitude grid) and temporal (8 day intervals between 1 JanVOS lines in 2005 (2005 VOS coverage metadata was used
uary 2004 and 31 December 2006) coordinates. The residudP extract the values from the model output). Such a small
r value was calculated as a difference between the two. Théata set carries limited training knowledge, despite the very

Root mean-square error (RMSE) of the residuals calculateguccessful data gathering campaign in 2005. Processes oc-
as: curring in the vast extent of the basin are never sampled (and

therefore not included in the training), and when they are
sampled, it very often happens only a few times during the
year (Friedrich and Oschlies, 2009; their Fig. 2 for monthly
4) cover and Fig. 6 for seasonal cover). It is not surprising that
such trained SOM produces poor estimates for regions bio-
for the whole datasen, provides an estimate of the uncer- geochemically different than those sampled for the training
tainty of the method in reproducing the available in situ mea-data (their Fig. 6).
surements, and equals 11L.&tm, or 3.2% of averageCO» Moreover, our RMSE of 11.6atm relates the SOM es-
in the in situ dataset. timates to data points along theCO, sampling network
Contour plots (one for each year) of estimated values, ver{VOS lines), whereas in Friedrich and Oschlies (2009), the
sus measure@gCO, are shown in Fig. 6. The RMSE varies basin-widepCO, distribution in the North Atlantic is known

3 Results and discussion

RMSE =

Biogeosciences, 6, 1405421 2009 www.biogeosciences.net/6/1405/2009/



M. Telszewski et al. : Estimating the monthiC Oy distribution in the North Atlantic using neural network 1413

a) b) ©)
d) e) f)
g) h) i)
i) k) )

1 1 1 1
280 300 320 340 360 380 400 420 440

Sea Surface pCO2 [uatm]

Fig. 7. Seasonal (in columns) and interannual (in rows) variability of the sea sysfag in the North Atlantic for years 2004 to 2006.

(since it is coming from the model) and therefore, they canOschlies (2009) tested. This shows that the SOM can be ap-
report a basin-wide RMSE. Their equivalent of our “along plied to the data in at least two very different ways and care-
the lines” RMSE equals 6/3atm from which they conclude ful choice of the training procedure is crucial for successful
that “along the VOS lines” RMSE is not representative of the application.

basin-wide error (their basin-wide error is around three times

higher than “along the lines” error). We suggest that the two3.2 Monthly pCO, maps

RMSE estimates (along the VOS lines and basin-wide) are

much more closely related if the training scheme employedOut of the 36 monthlypCO, maps, one representing
in this study is used. The SOM, by definition, cannot reli- each season for the three years is shown in Fig. 7.
ably estimate output values for input values from outside thein the columns are three seasonal cycles and in the
training data range, and this is essentially what Friedrich andows maps for 2004, 2005 and 2006 showing SOM

www.biogeosciences.net/6/1405/2009/ Biogeosciences, 6, 14032009
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Fig. 8. Monthly meanpCOyversus month in 2006 estimated by SOM for two regions where independent (not used in SOM labelling) data
from MV Santa Mariaare available. The regions are well within two biogeochemical provin@ghe tropical North Atlantic (15N to

25° N and 50 W to 60° W) and(b) the western subtropical North Atlantic (2Bl to 38° N and 35 W to 6C° W). For comparison, monthly
means ofpCO, from the labelling data in 2006 are also shown. The vertical bars extend+tino +1o of the area weighted distribution

for the given region and month.

estimates of the interannual variability. For the full set of SOM could be used to fill the gaps in the northern North

monthly maps see Supplemehmitp://www.biogeosciences. Atlantic with coherent values during fall and winter.

net/6/1405/2009/bg-6-1405-2009-supplement.pdf The influence of seasonally changing oceanographic fea-
Signatures of physical and biological medium-to-large tures on thepCO; variability in the North Atlantic can also

scale processes can be identified in the basin-wide contexhe distinguished from the maps. Intense upwelling of cold

In the subtropical gyre~20-40 N), high pCO, values are  waters along the coast off northwest Africa serves as an ex-

found during spring and summer (Fig. 7d—i), while values areample. The main upwelling centre follows the seasonal cycle

around 2Quatm lower during fall and winter (Fig. 7a—c and of the belt of northeast trade winds (Hagen, 2001), reaching

j=I), confirming the mainly temperature driven variability of its northern-most position in summer and its southern-most

pCO; in this region (Takahashi et al., 2002; Santana-Casiangoosition in winter. The increase @fCO, values in this re-

et al., 2007). gion induced by this upwelling (Pelegri et al., 2005) is rec-
In the subpolar gyre<40-60 N), massive biological C® ognized by.hlghoC_Oz estimates at around 20! to_ 25 _N in

drawdown (Takahashi et al., 2002) is reflected in jo@0, ~ Summer (Fig. 7g-i), and at around°10 to 15’ N in winter

levels during spring and summer (Fig. 7d—i). Mixing in the (Fig. 7a—C).

fall counteracts the effect of biological carbon uptake on

pCO,, which is visible as strong local maxima and minima 3.3 Seasonal cycles in the main biogeochemical

in the subpolar waters with values of about&6tm apart provinces

(Fig. 7j-1). Relatively highpCO, values in the northern part

of the basin in winter (Fig. 7a—c) are attributed to wind driven In such a heterogeneous basin as the North Atlantic, a co-

deepening of the mixed layer (during storms) in fall and win- herent interpolation method ought to accurately extract the

ter, which brings C@-rich waters to the surface (Codlse et ~ seasonal cycle 0pCO; in its most prominent regions. We

al., 2007). first compare SOM estimates in two regions within two bio-
The lack of satellite measurements of chloroplytiuring ~ 9eochemical provinces (Longhurst, 2007) to an independent

late fall and winter in the northern-g0° N) North Atlantic I Situ data set. We then compare the SOM results to clima-

(Kaufman, 1989; Moulin et al., 2001) makes it impossible tologlcql results in five major biogeochemical provinces of

to estimate theyCO, distribution in those regions using the the basin.

current SOM set up (Fig. 7a—c and j—l). The phytoplankton

activity during late fall and winter in the northern part of the 3.3.1 Comparison to an independent data set

basin is low. In order to cover the region with the “missing”

pCO;, estimates, an additional SOM can be performed wherdg-ive months ofpCO;, data collected between the UK and the

only SST and MLD are used as the training data variablesCaribbean on board tHdV Santa Mariaduring 2006 were

The pCO,-SST/MLD relationship is strong in regions and not included in the labelling data set. Monthly means of this

periods where the productivity is low (Jamet et al., 2007),independent data for two regions are shown in Fig. 8. The

thereforepCO, estimates computed using SST/MLD trained data used for labelling the SOM for these regions in 2006 are

Biogeosciences, 6, 1405421 2009 www.biogeosciences.net/6/1405/2009/
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also plotted. SOM estimates are the area weighted means for
the regions.
In the tropical North Atlantic (15N to 25 N and 50 W
to 60° W, Fig. 8a), the RMSE between the SOM estimates
and the independent data equals /6adm, which relates
to RMSE of 7.9uatm for all the labelling data in the re-
gion. The independent data for one month (April) of the
five months falls outside the &-standard deviation of the
SOM-predicted values for the region. Given that, based on
Gaussian probability distribution, 68% of independent val-
ues should fall within such error bars, the SOM performs
well in this direct validation exercise. Interestingly, the la-
belling data for April is on average 2Batm lower than the
independent data. Both voyages (one in the labelling data set
and one in the independent data set) used for calculating av-
erages took place between 18 and 30 April 2006, within the
same 10longitude by 10 latitude region. The tracks crossed Fig. 9. The biogeochemical provinces of the North Atlantic pro-
(4 days apart) and measure@O; values differed by around  posed by Longhurst (2007) as used here for an analysis of SOM
20patm at the crossing point. Such high spatial and temporakstimates. nT and nL represent the number of data points available
variability complicates comparing a small number of in situ for training and labelling of the SOM respectively.
data from a specific sampling region and period to results ob-
tained with interpolation methods designed for a much larger
area. 35°W. The North Atlantic Tropical Gyre (NATR) stretches
In the western subtropical North Atlantic @8 to 38N from 10°N to 26’ N and from 20 W to 60° W (plus the re-
and 33 W to 60° W, Fig. 8b), the RMSE between the SOM 9ion from 20'N to 26’ N, between 60W and 75 W). For
estimates and the independent data equals 18t81. The each province we sho_vv the number of dgta points ava|_lable
RMSE for all the labelling data in this region is also rela- fOr training and labelling of the SOM (Fig. 9). The mid-
tively high (14.3.atm). The SOM tends to underestimate !atitude North Atlantic has the smallest number of in situ
the pCO, values with regards to the independent data set ifnéasurements, whereas the northern provinces were by far
late summer and fall and also fails to reproduce high April the most sampled. The RMS errors for provinces do not cor-
values for the region. The sparseness of the in situ data (nd€SPond to such sampling distributions. The RMSE for the
shown) in the box may introduce sampling bias and may exmost sampled SARCT/ARCT amounts to f&tm, whereas
plain some of these differences. In addition, we suggest thaIMost four times less sampled NAST(E) has an RMSE of
SOM based maps should be used with caution when anal-2#atm. In situ measurements are not used during the train-
lyzing fine scale features and processes. Additionally, thénd of the SOM and their spatial distribution is irrelevant to
RMSE for labelling and independent data in these regiondh® performance of the method. The number of points in
are similar to each other. This confirms our hypothesis thatD€ training data depends mainly on the size of the province.
the RMSE which relates the SOM estimates to data pointsl "€ chosen data sources offer year-round coverage except
used for labelling is representative of the basin-wide error,f0r the occasional lack of chlorophyll measurements in the

providing that sufficient data is available. SARC/ARCT region in winter.
In Fig. 10, we compare SOM estimates for a reference year
3.3.2 Comparison to the climatology 2005 (mean of the monthly SOM estimates for 2004 to 2006)

in these provinces, to a climatological distribution of sea sur-
The robustness of SOM estimates is further assessed fdacepCO, constructed for a reference year 2000 based on in
five biogeochemical regions similar to those proposed bysitu pCO, measurements obtained from 1970 to 2006 (Taka-
Longhurst (2007), as shown in Fig. 9. The subpolar Northhashi et al., 2009). For comparison purposes we adjust the
Atlantic is represented by two provinces: the first CombinesC"matmOgica.' distribution of Takahashi et al. (constructed
the western part of the sub-Arctic (SARC) and the east-for a reference year 2000) to a reference year 2005 assuming
ern part of the Arctic (ARCT) and stretches from°$8to ~ an annual rate of increase of 8tm as proposed in Taka-
66° N and from 10 W to 40 W; the second, the North At- hashi et al. (2009). The original and adjusted distributions
lantic Drift Region (NADR) ranges from 46\ to 58 N  are plotted.
and from 10W to 40 W. The North Atlantic Subtropi-
cal Gyre is divided into a western [NAST(W)] part, be-
tween 26 N and 38 N and 33 W and 70 W, and an east-
ern [NAST(E)] part between 26N and 42 N and 10 W and
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Fig. 11. Monthly, area weighted pCgfields during 2005 in the
subpolar North Atlantic (58N to 63’ N, 10° W to 40° W) esti-
mated by the SOM, compared to the multiple regression estimates
for 2005 in the same region after Chierici et al. (2009). Note that
this region does not extend as far north as the SARC/ARCT region.

The SOM estimates for the region are consistent with
those of Chierici et al. (2009) (Fig. 11). These authors
estimated sea surfaceCO, for 2005 in a region with a
slightly smaller latitudinal extent than our SARC/ARCT re-
Fig. 10. Seasonal cycle of the sea surfge€0; in five biogeo-  gion (Fig. 11 shows SOM estimates for the region used by
chemical provinces of the North Atlantic. The vertical bars extend Chierici et al.). UsingpCO, measurements obtained on-
from —10 to +1o of the area weighted distribution for the given hoardMV Nuka Arcticatogether with remotely sensed data,
region and month. they applied algorithms based on multiple linear regression.
The in situ pCO, measurements used by Chierici and co-
) workers represent a fraction of the dataset used in this study.
3.3.3 SARC/ARCT region The resulting seasonal cycle for 2005 agrees well with the

. . ) SOM estimates for 2005. Neither method shgv@O, val-
In the SARC/ARCT region (Fig. 10a), the SOM estimates ues below 325.atm during the 2005 bloom. Both meth-

pCO; values of 330-34f.atm dl_Jring late spri_ng and sum- - ,4q 4150 produce an annual amplitudepi@O, of around
mer and of around. 37atm dl,mn,g fall and winter. Thesg 50patm. The similar results of the multiple linear regres-
estimates agree with earlier findings showing that the dise;,, (gesigned for regional, high-resolution estimates) and
quilibrium with the atmospheripCO, (not shown here) ex- o oM, increase our confidence in the basin-wide SOM

ists throughout most of the year in this region, with the,CO estimates, despite the fact that th€0, data used have a
air-sea flux directed into the ocean (Omar and Olsen, 2006farge overlap.

Olsen et al., 2008). Low summeCO, due to strong bi-

ological carbon uptake (Takahashi et al., 2002), and highe 3.4 NADR region

winter values (caused by deepening of the mixed layer sup-

plying CQ, rich waters to the surface) dominate the seasonaln the NADR (Fig. 10b), the SOM estimates a relatively
cycle. The SOM estimates resolve such a pattern for the reweak seasonghCO, cycle, with an amplitude of 2Gatm.
gion. SOM values for the summer months are around 20This is in line with results from Schuster and Watson (2007).
wnatm higher than the long term climatology (Fig. 10a). How- These authors report an average annual amplitude of around
ever, according to Corbie et al. (2007), who analyzed data 20u.atm in the eastern temperate region®(B&o 5 N and
from 1993 to 2003 in the western SARC, the seasonal ampli5® W to 3¢° W) for years 2002 to 2005, 50% smaller than the
tude can be as low as 2atm and as high as around g@tm, amplitude found for years 1994 to 1995 (Fig. 3b in Schuster
depending on the year. A variable intensity of the phyto-and Watson, 2007). This strong decrease in the amplitude
plankton bloom, generally occurring in June, is given as anover the last decade might also explain the difference in am-
explanation by Corlgire and co-workers. They also show plitude between the SOM estimates and the climatology in
that, at least for the mid-nineties, the climatological distribu- our region, which is shifted slightly to the northwest relative
tion proposed by Takahashi et al. (2002) may overestimateo that in Schuster and Watson (2007).

the strength of the biological carbon uptake and thus under-

estimate thepCO, values in summer.
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3.3.5 Subtropical North Atlantic

The seasonal cycle in the subtropical North Atlantic, rep-
resented here by two provinces (Fig. 10c—d), has an oppo-
site shape to that further north. SOMCO; estimates in
the NAST(W) are characterized by a strong summer maxi-
mum in August, which corresponds to the peak of the sea-
sonal temperature cycle in the region (Takahashi et al., 2002;
Phillips and Joyce, 2007). The annual amplitude ofidim
results from generally low primary production (Bates et al.,
2002) having a small counteracting effect on the thermo-
dynamically driven variability in surface watelCO, (Bates,
1998, 2001).

The SOM estimates for the NAST(E) have a relatively Fig. 12. SOM estimates of the interannual variability @0, dur-
low annual amplitude mainly due to an underestimation ofing 2004 (red), 2005 (green) and 2006 (blue) in the NADR province
the summer maximum in August by 10-1&tm. Santana- (46° Nto 58 N and 10 W to 40° W) compared to the variability of
Casiano et al. (2007) report summer maxima of 380 toSST, CHL and MLD.
400p.atm at the ESTOC station (280N, 1530 W) for
years 1995 to 2004. Also Schuster et al. (2009) report sum- ] .
mer maxima of 400 and 390atm (for years 2005 and 20086, reduce the e_fl‘ect of averaging on SOM estimates may help
respegtively) gl a Blatitudex5’ longitude grid box centred ©vercome this local “smoothing” effect of the SOM.
at27.5N, 17.5 W (Fig. 2 in Schuster et al., 2009) This is in .
line with the Takahashi climatology adjusted to 2005, which 3-3-6  NATR region

estimates a summer maximum of 388tm (Fig. 10d). The In the NATR (Fig. 10e) the SOM estimates a fairly flat sea-

SOM however, estimates a summer maximum of G&(m. sonal cycle coupled to temperature variability, which agrees
The SOM'’s inability to resolve the full annual amplitude \e|| with the climatology. These warm, relatively olig-

of the pCO, cycle in NAST(E) requires further investigation. otrophic waters do not support much primary production

Altering the shape of the neighbourhood function during the(Longhurst, 2007), and lack of strong winds reduces mixed

training phase, slightly increases the ability of the SOM to layer deepening as a control on the variability&0,. Val-

better mimic the extremgCO;, values. According to sen- es are relatively high throughout the year and vary between

sitivity studies on the choice of neighbourhood function in 355 gnd 38Qatm. The West African upwelling brings GO

extracting the known patterns, the Gaussian neighbourhoofich waters to the surface, thus increasing the sea surface

function (used in this study) returns the smoothest SOM pat-,COo, values, especially during summer.

terns, while the Epanechikov (ep) neighbourhood function' oyerall the SOM proves a robust method for reconstruct-

reproduces the most extreme values the most accurately (Lithg seasonapCO; cycles in a diverse suite of biogeochemi-
and Weisberg, 2005; Liu et al., 2006b). However, the realcy| provinces in the North Atlantic.

benefit of using “ep” neighbourhood function in the current

study, although not negligible, is relatively minor. Our sim- 3.4 SOM estimates and the interannual variability of
ulations suggest that the monthCO, values for July and the training data

August in the eastern subtropics increase by latn when

an “ep” neighbourhood function is used instead of the GausMedium-to-large scale processes and features of the seasonal
sian neighbourhood function. The SOM estimates are stillpCO, cycle are modified in terms of size, strength and loca-
more than 1Q.atm lower than other reports suggest for July tion, by interannual variability. The SOM’s basin-wide es-
through September in the NAST(E), and other causes fotimates of such variability for each season are presented in
the SOM to underestimate the highest values will be inves+ig. 7. Visual inspection of this three-year period reveals ap-
tigated. Adding sea surface salinity (SSS) as an additionaparent year-to-year changes. In the western subtropics Au-
variable in the training data matrix is suggested to improvegust values (Fig. 7g-i), are highest for 2005. Also the region
SOM estimates, especially in subtropical and tropical Northof high (~400natm) pCO, values covers a larger area than
Atlantic (J. Boutin and N. Lefvre, personal communication, in either 2004 or 2006. Similarly, in the North Atlantic Drift
2008). SSS could act as a water mass tracer and a proxigegion, OctobepCO, values (Fig. 7j-I) in 2006 are higher
for water parcel history, which would enable the SOM to ac- and more extensive than in the two previous years.

count for variability in sea surfaceCO» not determined by According to Eq. (1), the SOM predictions are entirely
changes in SST, MLD and CHL. Additionally, an increase data-based, and therefore the interannual variability in the
in the spatial and temporal resolution of the training data toSOM estimates can only be forced by the interannual
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with findings by Olsen et al. It is also worth noting that the
increase in the SST between May and August (almost uni-
form for 2005 and 2006 and .6 lower for 2004) does not
translate into a corresponding increase in estimated sea sur-
face pCO,. The biological CQ drawdown dominates the
thermodynamical effect opCO, during the bloom period
(Olsen et al., 2008), and SOM estimates follow this relation-
ship.

In the NAST(W) (Fig. 13), the estimated interannual vari-
ability in pCO;, for the years 2004 to 2006 appears to be
controlled by the variations in the MLD. The seasop@iO,
cycle in this region is controlled by the combination of SST
and MLD. However, for the years 2004—2006 the interannual
variability of SST is too weak to contribute to the interannual

Fig. 13. SOM estimates of the interannual variability pCO, variability in pCO,. For all three years, the MLD strongly
during 2004 (red), 2005 (green) and 2006 (blue) in the NAST(W) contributes to the parameterization in winter with the mean
province (26 N to 38 N and 35 W to 70° W) compared to the  regression coefficient 0£0.42. It is, however, remarkable
variability of SST, CHL and MLD. that the deep MLD in the winter of 2006 does not translate
into a relative change of SST. Also, the lowg€O, for the
variability of the three training parameters: SST, CHL and Nigher MLD in January-March 2006 is difficult to explain
MLD. Their variability affects thepCO; distribution in a  Without changes in temperature (despite the negative coef-
non-uniform manner, varying with the spatio-temporal de- ficient for MLD). The non—lmear_relatlonshlp between the
pendence opCO, on the given parameter in each region. sea_surface»COz and MLD found in the subpolar North At—_
Figures 12 and 13 show these relationships for the NADRI&ntc (Olsen et al., 2008), occurring between the deepening
and NAST(W) respectively. Monthly mean values of esti- ©f MLD in fall and the beginning of the bloom in spring,
matedpCO; in each province for 2004, 2005 and 2006 are 'S also apparent in the su_btroplc_al pa_rt of the basin. The
represented by red, green and blue curves, respectively. EROM estimates resolve this relationship, which can be ob-
ror bars represent the standard error of the mean calculatetf"ved especially during late winter and early spring, when

as: SST and CHL vary relatively little (Fig. 13). During the
o January—March period of 2004, the MLD was variable and
SEM= 7 (5)  shallow in the subtropics (a decrease from 96 m in January

to 41 m in March), and the SOM predicts variapl€0O, as

whereo represents the standard deviation of the sample, and result (an increase of 9;8atm). During February to April
n is the sample size. of 2005 the MLD was similarly shallow and variable (62m

In the NADR (Fig. 12), the interannual variability of CHL decrease), and the SOM predicts a }2a8m increase in the
controls the variability in the estimatgeCO; field during  pCO,. Contrary to that, much greater variability of the much
months with high mean CHL concentrations. High meandeeper MLD during the February—April period of 2006 trans-
CHL values (0.55-0.75mg/n during June—August 2004 lates to 1.5.atm variability in the predictegCO,. Changes
correspond tgpCO, values which are around 8atm lower  in deep MLDs result in lespCQy, variability than similar or
than during these months in later years; also a comparativelgmaller changes in the shallow MLDs.
high chlorophyll concentration in March 2005 has decreased
the pCO; by ~15uatm in comparison to other years. The
interannualpCO, variability in the pre- and post-bloom pe- 4 Summary and conclusions
riods appears to be controlled by variations in the MLD.
However, significantly higher MLD values during January— A self organizing neural network has been applied to con-
May 2006 are not translated into similarly substantial in- struct 36 basin-wide, monthlyCO, maps for the North At-
crease inpCOy. This may be explained by the non-linear lantic for 2004 to 2006. Estimates of three full seasonal cy-
relationship between sea surfgg€0, and MLD in the sub-  cles and interannual variability between 2004 and 2006 show
polar North Atlantic proposed by Olsen et al. (2008) and con-that the method can account for medium-to-large scale bio-
firmed by our data (not shown). Olsen et al. (2008) found thatiogical and physical processes. The choice of training param-
MLDs deeper than 500m have no or little influence on theeters has resulted in a powerful mapping performance. The
sea surfacggCO; (their Fig. 9a), whereas an MLD increase estimated seasonalCO, cycles in five major biogeochemi-
between 0 and 200m corresponds tp@O, increase of up  cal provinces mostly agree with other data analyses. The dis-
to 100natm. This relationship is influenced by the variabil- tribution of monthly sea surfaceCO, for a reference year
ity in SST and CHL, but the SOM estimates appear coheren2005 in the northern provinces of the North Atlantic suggests
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that currentpCO, values are 20 to 3@atm higher than the relationships simultaneously provides a good fit to the data
35-year climatology (Takahashi et al., 2009) indicates. Theand allows for basin-wide analysis over several years.
difference is especially profound in the June—-September phy- The continuation of large-scale in situ marip€0, mea-
toplankton bloom period. The lack of estimates in the north-surements will improve our understanding of the actual spa-
ern part of the basin in the winter months is a disadvantageial and temporal variability opCO; in the real ocean, and

of the current SOM set-up for several applications. How-allow us to assess the quality pCO, estimates with more
ever, this important issue can be resolved by combining twaconfidence. It is our strong recommendation that SOMs be
SOM runs, one with and one without CHL as training pa- used in conjunction with these measurements during the fu-

rameter, thus covering the missing regions with no-biologyture oceanigpCO, monitoring programs.
predictions.
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implementing a mathematical description of governing re-

lationships a priori, as long as sufficient data are available.
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