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Abstract— In this paper, inequalities of integer hull
polyhedrons are used in mixed integer linear programming
(MILP) to model the behavior of combinational subsys-
tems, introducing a new solution for the satisfiability (SAT)
problem at register transfer level (RTL). Since in these
models the vertexes are located at integer positions, they
can be used with linear programming (LP) to solve SAT
problems. Unfortunately, when combining together several
models to make up a compound RTL description, internal
vertexes may appear forcing to declare one or more vari-
ables as integer. However, the use of these models inside an
RTL SAT problem reduces the number of branches needed
to solve the whole integer problem. Results show a CPU
solution time reduction greater than one order of magni-
tude, growing with the size of the problem.

Keywords— Register transfer level (RTL), satisfiabil-
ity (SAT), design verification, linear programming, cutting
planes

I. Introduction

The satisfiability (SAT) problem is the central prob-
lem of inference in propositional logic, and it has many
direct applications in the electronic design automation
(EDA) arena. In particular, its applications include for-
mal verification, placement and routing, automated rea-
soning, computer–aided design, computer–aided manufac-
turing, machine vision, databases, robotics, computer ar-
chitecture design, and computer network design, among
others.

Boolean SAT solvers are widely studied from several per-
spectives. There have been many efficient SAT solvers in
the last decade. The classical approach (the DPLL algo-
rithm) was established by Davis and Putnam [1], [2], and
even recent procedures are different variations over this ba-
sis. Such algorithms [3], [4], [5] include advanced features
such as learning techniques, chronological backtrack–based
search, and conflict analysis procedures to prune the search
space.

The main bottleneck of the design cycle of VLSI systems
is functional verification. Register transfer level (RTL)
hardware description languages (HDLs) are widely used for
the hardware specification; however, the majority of indus-
trial hardware verification tools operate at gate level, and
are based on bit–level decision procedures, such as Boolean
satisfiability or binary decision diagram (BDD)–based tech-
niques.

Recent works are addressed to extend formal verifica-
tion [6] and test generation [7], [8] to RTL specifications.

The formal verification of a RTL description can be formu-
lated as a hybrid SAT problem that combines Boolean logic
with word–level arithmetic operators. Although the tradi-
tional way to face this problem is to apply a logic synthesis
and then a Boolean SAT solver, there have been many con-
tributions to solve hybrid SAT problems in a more efficient
way.

Fallah et at. proposed HSAT [9], this is an approach for
functional vector generation from HDL models. From the
RTL description, it translates Boolean logic and arithmetic
blocks into conjunctive normal form (CNF) clauses and
linear arithmetic constraints (LACs), respectively. Then,
independent solvers are applied for each part. Obviously,
backtracks between two solvers are inevitable.

To avoid this drawback, Zeng et al. proposed LP-
SAT [10], where arithmetic operators and Boolean logic
are combined together into a unified mixed integer linear
programming (MILP) problem with Boolean and integer
variables.

The rapid progress in the capacity and speed of modern
DPLL–based Boolean satisfiability (SAT) solvers has lead
to satisfiability modulo theories (SMT) [11]. SMT solvers
integrate a combined decision procedure for both, the
Boolean and the integer domain. Ario [12] and Yices [13],
[14] are different examples of SMT solvers.

In this paper, we use of a special kind of polyhedrons
for RTL SAT problems in MILP. In these polyhedrons,
vertexes are located only at integer positions. Therefore,
integer solutions can be obtained just solving the linear
programming (LP) relaxation of the integer problem. This
feature is extremely important, due to the fact that LP
problems can be solved in polynomial time, while integer
linear programming (ILP) problems require an exponential
time for the worst case.

This paper is organized as follows. The adopted method-
ology to obtain the models is explained in Section II. Mod-
els for different subsystems and conditions for the inser-
tion of these models into RTL satisfiability problems, are
presented in Section III. Section IV shows experimental
results and compares them against the main alternatives.
The conclusions and the future work on the use integer hull
polyhedrons for RTL satisfiability problems are presented
in Sections V and VI, respectively.

II. Methodology

Given a polyhedron P ∈ R
n
+ and a vector c ∈ R

n
+, the LP

problem can be seen as the problem of finding the extreme
point x ∈ P that maximizes the linear function c · x.
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Fig. 1. Integer hull polyhedron that models an XOR2 logic gate.

Note that if all extreme points of the polyhedron P are
located at integer coordinates, then the solution vector of
the LP problem, x is also integer.

Given a Boolean network with I inputs and O outputs,
it can be represented as a bounded polyhedron P ∈ R

n
+,

where the dimension of the space is n = I + O. As the
domain for each Boolean variable is {0, 1}, the bounded
polyhedron (also called polytope) belongs to the domain
[0, 1]n, so P ∈ [0, 1]n.

The coordinates of the extreme points of P are deter-
mined by the truth table of the Boolean network. There-
fore, the polyhedron P will have exactly 2I extreme points.
As an example, Figure 1 shows the integer hull polyhedron,
P ∈ R

3
+ for an XOR2 logic gate.

Fukuda’s tool cdd+ [15] was used to obtain a linear in-
equality representation of a polyhedron described by its
extreme points. Models are expanded to an arbitrary num-
ber of inputs by obtaining, grouping and classifying linear
inequalities for 1 bit, 2 bits, 3 bits, and so on.

In many cases, a combinatorial set of linear inequalities
is obtained. In these cases, the number of faces of the
integer hull polyhedron grows exponentially with n. For-
tunately, the same Boolean network can be also modelled
using polyhedrons of a higher dimension space. The set of
inequalities needed to represent one of these polyhedrons
may be smaller. This is, for example, the case of the n–
input XOR gate.

III. Integer Hull Polyhedra Models

For logic gates, the set of inequalities proposed in LP-
SAT [10] is valid for the AND, OR and NOT gates. These
models come from the Tseitin transformation [16]. Assum-
ing that all variables are bounded to [0, 1]. Equations 1, 2
and 3 show the inequalities for the inverter gate, the n–
input and gate, and the n–input or gate, respectively.

q =inv (a)
q = 1 − a (1)

q =and (a0, a1, a2, . . . , an−1)

q ≤ ai ∀i : 0 ≤ i ≤ n − 1

q ≥

n−1∑

i=0

ai − (n − 1) (2)

q =or (a0, a1, a2, . . . , an−1)

q ≥ ai ∀i : 0 ≤ i ≤ n − 1

q ≤

n−1∑

i=0

ai (3)

Equations 4 and 5 show inequalities for the XOR2 and
XOR3 logic gates, respectively. The integer hull polyhe-
dron for an n–input XOR gate has 2n inequalities. How-
ever, XOR2 and XOR3 primitives can be connected in cas-
cade to create an n–input XOR gate. The result is an
integer hull polyhedron with the same functionality of the
n–input XOR gate, but with additional variables. In this
case, the total number of inequalities is 4(n − 1), and the
number of additional variables is given by ⌈n−3

2
⌉.

q =xor (a0, a1) −a0 + a1 + q ≥ 0

a0 − a1 + q ≥ 0

a0 + a1 − q ≥ 0

a0 + a1 + q ≤ 2 (4)

q =xor (a0, a1, a2)

0 ≤ −a0 + a1 + a2 + q ≤ 2

0 ≤ a0 − a1 + a2 + q ≤ 2

0 ≤ a0 + a1 − a2 + q ≤ 2

0 ≤ a0 + a1 + a2 − q ≤ 2 (5)

Equation 6 shows the inequalities set for the 2–input
multiplexer of 1–bit, where sel is the control signal (when
sel = 0 the output q = a0, otherwise q = a1).

q =mux (sel, a0, a1)

a0 + a1 − 1 ≤ q ≤ a0 + b0

a0 − sel ≤ q ≤ a0 + sel

a1 − (1 − sel) ≤ q ≤ a1 + (1 − sel) (6)

Finally, the proposed model for an n–bit adder is pre-
sented in Equations 7, 8 and 9. In this model, a and b are
n–bit inputs, and q is an output of (n+1) bits. The model
consists of one equality, four inequalities for the least signif-
icant bit (XOR2), and four pairs of inequalities that must
be repeated for the remaining bits. This model may include
a carry input bit by replacing Equations 8 by the set of an
XOR3 gate, and updating Equations 7 and 9 accordingly.

Main equation:

n−1∑

i=0

2iai +

n−1∑

i=0

2ibi −

n∑

i=0

2iqi = 0 (7)

First bit: −a0 + b0 + q0 ≥ 0

a0 − b0 + q0 ≥ 0

a0 + b0 − q0 ≥ 0

a0 + b0 + q0 ≤ 2 (8)
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Other bits: (∀j : 1 ≤ j ≤ n − 1)

0 ≤

j∑

i=0

2iai +

j∑

i=0

2ibi −

j∑

i=0

2iqi ≤ 2j+1

0 ≤ −2jaj +

j−1∑

i=0

2iai +

j∑

i=0

2ibi + 2jqj −

j−1∑

i=0

2iqi ≤ 2j+1

0 ≤

j∑

i=0

2iai − 2jbj +

j−1∑

i=0

2ibi + 2jqj −

j−1∑

i=0

2iqi ≤ 2j+1

0 ≤ 2jaj −

j−1∑

i=0

2iai + 2jbj −

j−1∑

i=0

2ibi +

j∑

i=0

2iqi ≤ 2j+1

(9)

When these models are combined together in an RTL de-
scription, polyhedrons are intersected each other and inter-
nal vertexes may arise. These vertexes appear when there
are loops over the data dependency graph at bit–level. In-
teger variables are removed from this graph, so the study
of these loops indicates the minimum set of variables that
must be declared as integers.

As an example, consider the multiplexer model shown in
Equation 6. It can be connected in cascade or in parallel
to build an n–input multiplexer, or a 2–input multiplexer
of n–bit wide. But, when connected in cascade and in
parallel simultaneously to build an m–input, n–bit multi-
plexer, non–integer vertexes arise because of loops in the
data dependency graph. To avoid this loops, at least con-
trol variables must be declared as integers.

IV. Experimental Results

In order to compare the proposed methodology against
existing solutions, two sets of tests have been made. All
tests were executed on an Intel Xeon X7350 CPU running
at 3, 00 GHz, with 24 GB. of DRAM, and executing a 32–
bit Linux operating system, version 2.6.22. CPLEX [17]
was used as MILP solver for both, integer hull polyhedra
model and LPSAT [10] MILP model, (labeled as ihp and
lpsat respectively, in the graphs). MINISAT [5] was used
to solve Boolean SAT problems in standard 3SAT/CNF
format (minisat), and YICES [13] for solving SMT de-
scriptions (yices). CPU runtime was limited to 3600 sec-
onds.

The first set of experiments checks the efficiency of the
model for the adder, in an ideal case, as the complexity of
the problem grows. It is shown in Figure 2, and consists of
16–bit adders with some input and output ports assigned
to random 0–1 values (bit level constraints). The param-
eter α determines the relationship between the number of
assignments and the total number of ports. All problems
have at least one solution.

Figure 3 shows the solution runtime versus the SAT con-
straint probability, α for problems with n = 1000 adders.
This figure shows that the proposed model in LP (ihp) is
less sensible to the problem complexity than the Boolean
solver (minisat). The basic operations of the Boolean SAT

A[15:0] B[15:0]

+

16 16

Q[15:0]

16

1

Cin

1

Cout

SAT conditions (    =33% ) :

Cout   = 1
Q[2]   = 0
Q[7]   = 1
Q[11] = 0
Q[14] = 1
Q[15] = 1

B[0]   = 0
B[5]   = 1
B[12] = 0
B[15] = 1

Cin     = 1
A[3]   = 0
A[4]   = 1
A[6]   = 0
A[8]   = 0
A[12] = 0
A[15] = 0

α

Fig. 2. Adder circuit used for the first set of experiments

Fig. 3. Solution runtime versus percentage of SAT conditions

solver are decisions, propagations and conflicts. The
SAT solver make a decision about the state of a variable (an
hypothesis). The Boolean equations are simplified (prop-
agations) to a reduced set of equations (constraints); oth-
erwise, one conflict occurs. In the event of a conflict, the
analysis techniques help in determining which of the deci-
sions taken were wrong. The SAT solver (minisat) speci-
fies how many propagations are done, and how many con-
flicts arises when the decisions are wrong. Boolean solver
performs faster when decisions and propagations are in
majority, but slows down when conflicts appear. The
other solutions (lpsat and yices) were too slow, as can
be observed in Figure 4.

Figure 4 plots the solution runtime versus the number
of adders n for a fixed value of the constraint probability
of α = 33%. This is an ideal case where adders are in-
dependent of each other, so all signals can be declared as
reals instead of integers. CPU time reduction is about two
orders of magnitude for large problems.

The second set of experiments is focused on obtaining a
realistic measurement of the speedup for a particular RTL
SAT problem. To this end, the multiplier circuit shown in
Figure 5 was considered. This circuit consists of several

Fig. 4. Solution runtime time versus problem size for the adder
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Fig. 5. Multiplier circuit used for the second set of experiments

Fig. 6. Solution runtime versus problem size for the multiplier

adders and multiplexors. The output of the multiplier is
fixed at a value such that the system will only have one
feasible solution. Only the input bus A[3:0] was declared
as integer on each multiplexer.

Figure 6 shows the CPU runtime comparison for solving
the SAT problem versus the number of multipliers. In this
case, the CPU time reduction is near one order of magni-
tude for large problems. Similar results are obtained for
the proposed model if internal variables are also declared
as integers.

V. Conclusions

In this paper, we have proposed a new solution for RTL
SAT problems, based on modeling RTL subsystems as in-
teger hull polyhedrons. We have analyzed and discussed
about its usefulness to RTL descriptions. Finally, we have
presented experimental results that show the growth of so-
lution runtime versus the problem complexity.

Although integer hull models for RTL subsystems are
larger in size than integer ones, they provide a representa-
tion of the SAT problem with a lesser degree of complex-
ity. Redundant inequalities are constraints in the model
that help to reduce the search by increasing the number
of discarded non–integer solutions that would otherwise be
solutions of the continuous relaxation. Therefore, the ex-
plicit enumeration of these cuts should reduce the number
of branches needed to solve the integer problem.

VI. Future Work

Work is in progress to develop an algorithm that gen-
erates automatically the integer hull for a given Boolean
network, or more generally, any Boolean SAT problem ex-
pressed in 3SAT. This algorithm will analyze the matrix A

of the polyhedron P = {x ∈ R
n
+ : Ax ≤ b } directly, and

will identify those intersections that need to be cancelled
with cutting planes.
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