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Abstract

This paper presents the design of a highly efficient
CMOS level shifter qc–level shifter. Unlike many recent
level shifters, the proposed qc–level shifter does not use
bootstrap capacitors to minimize active area. When im-
plemented on a 65nm CMOS technology, under the large
capacitive loading condition (2pF), qc–level shifter has
a lower active area (94%), and energy–delay product
(21.4%) than the reference bootstrap level shifter circuit
(ts–level shifter). In comparison to a conventional shifter
(c–level shifter)the corresponding reductions are 9.5% and
55%, respectively. Also qc–level shifter has very small ef-
fective input capacitance in comparison with ts–level shifter
as it does not need a bootstrap capacitor connected to its
input.

1. Introduction

Energy and Energy–delay product have become two of
the most important design metrics in the current deep sub-
micron technologies for the System–on–chip (SoC) so-
lutions and multi–core computing architectures for many
common applications. Therefore, it is a common practice
to use separate supply voltages, in different parts of SoCs
and multi–core processors, in order to reduce the energy
consumption. It is necessary that the core processor that ex-
ecutes the time critical algorithm to run at a higher voltage
(Vddh), thus maximizing the performance, while all other
non–critical subsystems operate at a lower voltage (Vddl)
to improve the energy efficiency. Level shifters are also
suitable for block–level dynamic voltage scaling (DVS) en-
vironment [1]. Therefore, a level shifter to translate from
low to high–swing, to drive large capacitive loads, in an en-
ergy efficient fashion, is a key circuit component for SoC
environment.

The requirement for a level shifter is to fully turn–off the

PMOS of the gate that it drives and, in same cases, to ensure
that no gate oxide voltage exceeds the reliability limits set
by the technology node. The conventional level shifters,
[2], [3], using cross–coupled PMOS load have large delay
as they suffer from contention between the pull–down and
pull–up transistors, respectively.

In [4] a variety of existing level shifters were compared
in the context of up–converting subthreshold signals to su-
perthreshold levels. Since a level shifter circuit consumes
power and has a considerable delay, its optimization for
delay performance, low power and low area is important.
One way to improve energy efficiency is the use of low
supply voltage [5], [6]. However, inevitably this results in
the performance loss. To regain the performance loss in
the low–voltage circuits, bootstrap technique has been em-
ployed [7]–[12].

The work in [2] uses bootstrapped gate drive to minimize
voltage swing. This helps in reducing the switching power
consumption in the conventional level shifter and also helps
to increase the speed of the level shifter.

In this paper we present the design of a low power level
shifter circuit suitable for use with high capacitive load.
This voltage level shifter acts as interface between differ-
ent voltage domains and is able to efficiently convert a low
voltage level to a higher desired voltage level. The pro-
posed level shifter while reduce both energy–delay product,
and active area does not require bootstrap capacitors. The
advantage of the proposed level shifter is verified by simu-
lation results.

The paper is organized as follows. Section 2 proposes
the appropriate circuit structure for the CMOS level shifter
qc–level shifter. Simulation results are briefly described and
compared in Section 3. Finally, Section 4 presents the con-
clusions.

2. The Level Shifter Circuit Structure

Figure 1, shows the circuit diagram of the ts–level shifter
in [2]. This level shifter circuit uses bootstrapped gate driver
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to minimize the voltage swing. Two capacitors maintain
the voltage difference between the gates of pull–up PMOS
and pull–down NMOS transistors. The idea in the de-
sign of ts–level shifter is to drive the pull–up PMOS and
pull–down NMOS with two separate low swing signals to
reduce the power dissipation. The pull–down NMOS is
driven between 0 and Vddl, while the PMOS is driven from
(Vddh−Vddl) to Vddh.

Vddl out

CL

MP3

MN3

in

Vddh

D0

D1

C MP1 MP2
D3
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E

MP4/MN4
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Figure 1. Circuit structure of ts–level shifter.

The level shifter in [2] performs better and consumes less
power than the conventional one shown in Figure 2. How-
ever, it does not have a good performance in the presence of
high capacitive loads greater than 2pF.

We propose a new structure (termed qc–level shifter)
to reduce the energy consumption in the presence of large
loads. The criteria chosen for comparison are delay, energy
consumption, energy–delay product and active area.

Figure 3 presents the circuit for qc–level shifter. In the
proposed level shifter the bootstrap capacitor is eliminated,
resulting in a reduction in the input capacitance of the level
shifter circuit and an increase in the driving capability of the
previous stage.

The circuit is made of two parts; an input stage and an
output stage. The input stage is responsible for the gener-
ation of voltages for node 1 and 2 through the operation
of the inverter (MP1/MN1), transistors MN2 and MP2, and
diodes D1 and D2. The output stage uses a PMOS (MP3)
and NMOS (MN3) transistors for the pull–up and pull–down
transitions of the output node out, respectively.

The working principle is as follow: For the case
where the input (node in) is low, inverter (MP1/MN1)
switches node 1 to high–Vddl, transistor MN2 is turned
off due to V3-V1 is lower than its threshold voltage
(Vtn=0.48V), transistor MP2 turns on and node 2 is set to
high–V4≈0.65V. As a consequence, inverter (MP3/MN3)
is driven high and the output node out is pulled–down to

MN2
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CL

MP2MP1
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Vddl

MP3/MN3
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2

Figure 2. Circuit structure of c–level shifter.
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Figure 3. Circuit structure of qc–level shifter.

On the other hand, when node in is high–Vddl node
1 pulled to GND, transistor MP2 is turned off, and MN2 is
switched on, and node 2 is set to GND. In this state, inverter
(MP3/MN3) is driven low and pulls–up node out to the
maximum voltage of Vddh. Note that in this state for the
MP2 transistor, (|VGS| < |Vtp|=0.36V), and is, there-
fore, fully turned off.

Figure 4 shows the various waveforms for the major
nodes of ts–level shifter, c–level shifter and qc–level shifter
for a capacitive load CL of 2pF.

2
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Figure 4. Waveforms for ts–level shifter and
qc–level shifter with a capacitive load of 2pF.

3. Comparative Evaluation

The level shifter circuits were implemented using
STM 65nm 1.2V CMOS process. Active areas for ts–
level shifter [2], c–level shifter, and the proposed qc–
level shifter circuits are 886µm2, 63µm2, and 57µm2, re-
spectively; 15 and 1.1 fold reduction in favor of qc–
level shifter when compared with ts–level shifter and c–
level shifter. All circuits were optimized for the lowest
energ–delay product. The optimized design parameters are
presented in Table 1.
MNCB is used to implement bootstrap capacitors of

1.2pF. The circuits were simulated with the power sup-
plies Vddl= 0.5V, and Vddh= 1V, 500MHz clock fre-
quency with 100ps rise and fall times, and the output load
in the range of 0.2 to 2pF. Simulation results show that
our qc–level shifter is faster than the ts–level shifter and
c–level shifter by 0.39ns at 2pF load condition. Figure 5
presents propagation delay time versus the capacitive load
for the circuits considered in this paper.

The plots of energy consumption versus the loading for
the three level shifters are presented in Figure 6. The energy
dissipation of qc–level shifter at 2pF load is 2.54pJ; 5.5%,
and 48% lower than ts–level shifter, and c–level shifter, re-
spectively.

Figure 7 illustrates the energy efficiency (in energy–
delay product) versus load capacitance for the three level
shifters. As seen energy–delay product reduction for qc–
level shifter with respect ts–level shifter ranges between
20% and 21% for the loads ranging from 0.2pF up to 2pF,
respectively. The corresponding figures with respect to c–
level shifter are 150% and 200%

Table 1. Channel widths for transistors in
ts–level shifter, qc–level shifter, and c–
level shifter, (the channel length for all tran-
sistors is 65nm.)

ts–level shifter qc–level shifter
(Active area=885.53µm2) (Active area=56.55µm2)

Transistor(s) Type Width Transistor Type Width
(µm) (µm)

MP1 P 0.2 MP1 P 3 × 10.0
MP2 P 0.2 MP2 P 5 × 10.0
MP3 P 21 × 10.0 MP3 P 6 × 10.0
MP4 P 31 × 10.0 MN1 N 6 × 10.0
MN3 N 19 × 10.0 MN2 N 10 × 10.0
MN4 N 51 × 10.0 MN3 N 6 × 10.0

MND0–MND3 N 0.8 MND0 N 10.0
MNCB N 620 × 10.0 MND1 N 50 × 10.0

c–level shifter
(Active area=62.53µm2)

Transistor Type Width Transistor Type Width
(µm) (µm)

MP1 P 2.0 MP2 P 2.0 × 10.0
MP3 P 19 × 10.0 MN1 N 6.0 × 10.0
MN2 N 56 × 10.0 MN3 N 13.0 × 10.0

CMOS065–LP–HVT process technology from STM.

4. Conclusions

Level shifters are widely used as output drivers for in-
terfacing logic and functional blocks or circuits on a SoC.
This paper presented a new high performance CMOS level
shifter (qc–level shifters) for driving high capacitive loads
(0.2–2pF).

Under a condition of Vddl= 0.5V, and Vddh= 1V
power supplies, and a loading of 2pF, the delay and the
energy consumption associated with qc–level shifter were
0.39ns and 2.54pJ, respectively.

The proposed qc–level shifter was analyzed in at
500MHz for the output load in the range of 0.2 to 2pF.
For the 2pF output loading it achieves a maximum energy–
delay product saving of 21%, when compared with ts–
level shifter. However, its active area saving is 15 times.
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