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Abstract— In this paper, we present a new and generic system-

level MP-SoC DSE infrastructure, called NASA (Non Ad-hoc 
Search Algorithm). This highly modular framework uses well-
defined interfaces to easily integrate different system-level 
simulation tools as well as different combinations of search 
strategies in a simple plug-and-play fashion. Moreover, NASA 
deploys in a so-called dimension-oriented DSE approach, 
allowing designers to configure the appropriate number of, 
possibly different, search algorithms to simultaneously co-
explore the various design space dimensions. As a result, NASA 
provides a flexible and re-usable framework for the systematic 
exploration of the multi-dimensional MP-SoC design space, 
starting from a set of relatively simple user specifications. To 
demonstrate the capabilities of NASA framework and to 
illustrate its distinct aspects, we also present several DSE 
experiments in which we, e.g., compare NASA configurations 
using a single search algorithm for all design space dimensions to 
configurations using a separate search algorithm per dimension. 
These experiments indicate that the latter multi-dimensional co-
exploration can find better design points and evaluates a higher 
diversity of design alternatives as compared to the more 
traditional approach of using a single search algorithm for all 
dimensions. 
 

Index Terms— MP-SoC design, performance analysis and 
design aids, system-level design space exploration. 
 

I. INTRODUCTION 
Today’s embedded systems are increasingly based on multi-

processors systems-on-chip (MP-SoC). These MP-SoCs 
typically contain multiple storage elements, networks, I/O 
components, and a number of heterogeneous programmable 
processors for flexible application support as well as dedicated 
processing elements for achieving high performance and 
power goals [1]. In order to cope with the design complexity 
of such systems in a time-efficient way, the abstraction level 
of the design process has in recent years been raised towards 
the system-level. Design Space Exploration (DSE) is a key 
ingredient of such system-level design, during which a wide 
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range of design choices are explored, especially during the 
early design stages. Such early DSE is of paramount 
importance as early design choices heavily influence the 
success or failure of the final product, and can avoid wasting 
time and effort in further design steps without the possibility 
of meeting design requirements because of an inappropriate 
system architecture design. The process of system-level DSE 
logically consists of two interdependent components [2]: (i) 
evaluation of a design point in the design space using e.g. 
analytical models or (system-level) simulation, and (ii) the 
search mechanism to systematically travel through the design 
space.  

Both DSE components have received significant research 
attention during the last decades, e.g., [3]-[8]. For instance, 
system-level simulation is a popular method for evaluating 
single design points [2]. These simulation tools usually 
operate at a high level of abstraction and are often based on 
the Y-Chart principle [9], [10]. According to this approach, 
any system can be specified with the combination of three 
models: an application model, an architecture model and a 
mapping model. The latter means that the Y-Chart principle 
decouples application from architecture by recognizing two 
distinct models for them. An application model – derived from 
a target application domain – describes the functional 
behaviour of the application (using, e.g., Kahn Process 
Networks or tasks-graphs) in an architecture-independent 
manner. Simultaneously, an architecture model  – defined 
with the application in mind – defines the architecture 
resources and captures their performance constraints. Finally, 
an explicit step (or model) maps the application model onto an 
architecture model for co-simulation, after which distinct 
system metrics can be quantitatively evaluated.  

However, these simulation tools only provide a partial 
solution since an overall framework is needed to 
systematically explore the design space. Such a system-level 
DSE framework should allow for exploring a wide variety of 
system parameters and design choices, including the number 
and type of processing elements in the MP-SoC platform, the 
type of on-chip network, the memory organization, the 
mapping of application tasks and communications onto 
architecture resources, scheduling policies, and so on. 
Evidently, the more details (or dimensions) taken into 
account, the larger the design space that needs to be searched, 
and therefore the more costly the analysis. Although many 
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DSE approaches based on a large variety of search techniques 
have been proposed, three common factors can be identified in 
all of them:  
1) DSE efforts are usually targeted to a specific system-level 

simulation tool (or analytical evaluation method), where 
each effort typically uses a different kind of simulator. 
Consequently, it is hard to re-use these DSE frameworks 
and elements in them. 

2) Setting up the DSE experiments can be very labour 
intensive. It is often the case that for every experiment, 
control scripts need to be (re-)written to manipulate the 
simulation parameters and configuration files (specifying 
the design instance to evaluate) according to the 
algorithm that searches through the design space. These 
scripts are often inflexible and hard to re-use for different 
types of DSE experiments, i.e., assessing different 
parameters or parameter ranges. 

3) In spite of the wide variety of eligible architectures for 
implementing embedded systems applications, many DSE 
experiments are focused on a particular class of MP-SoC 
architectures only. Moreover, designers have to write 
such models manually. This latter is an error-prone task 
and one of the bottlenecks in improving the designer's 
productivity, and severely limits the amount of the design 
space that can be explored in a reasonable time.  

In summary, to the best of our knowledge, there does not 
exist a generic infrastructure to facilitate and support system-
level MP-SoC DSE experiments, and to foster the re-use of 
software in the context of system-level MP-SoC DSE. This 
calls for a unified framework integrating and coupling both 
simulation and search mechanisms to efficiently and 
systematically explore design spaces, as well as a fast tool to 
automatically generate a wide range of architecture models, so 
that a large variety of architectures can be easily explored and 
evaluated. The resulting relationship between these three 
components is shown in Fig. 1. 

To address the above challenges, this paper presents a new 
generic system-level DSE infrastructure implemented in C++, 
called NASA (Non Ad-hoc Search Algorithm). Its main goal 
is to provide a single, common, and modular framework for 
system-level DSE experiments. It allows for incorporating 
different (existing) system-level simulation tools as well as 
different combinations of search strategies by means of a 
simple plug-in mechanism. An architectural platform 
generator has also been integrated in NASA to free designers 
from the efforts to manually create architecture models. Thus, 
this automation improves the design productivity and enables 
the designer to focus on the more valuable issue of making 
design decisions. As a consequence, the NASA framework 
provides a flexible and re-usable environment to 
systematically explore the multidimensional MP-SoC design 
space, starting from a set of relatively simple user 
specifications. NASA's output includes information about all 
explored design points as well as a set of optimal design 
points within the explored design space, which best meet the 
user constraints such as real-time application constraints, 

number and types of available components in the platform 
architecture, costs/area, etc. 

The remainder of the paper is organized as follows. In the 
next section, related work and our contributions are presented. 
In Section III, we describe various implementation aspects of 
NASA framework. In Section IV, we present a range of 
experimental results, demonstrating NASA's capabilities. 
Finally, Section V concludes the paper.  

II. RELATED WORK AND CONTRIBUTIONS 
Performing DSE in a time-efficient and accurate way is not 

a new problem and there exists a large body of related work in 
this area. Most of the approaches in the embedded systems 
domain are targeted to the system-level exploration of 
heterogeneous MP-SoC [3]-[5], [8], [11]. Although these 
efforts are fairly efficient to explore various alternatives for 
mapping a specific application onto a target MP-SoC 
architecture, they typically still require significant effort to 
(re-)write scripts that control the evaluation mechanism 
(analytical model or simulator) during the search through the 
design space. In fact, this often means that there exists a 
repetitive effort to build customized scripts and/or architecture 
models for every different kind of DSE experiment. Thus, 
automating such a process becomes a key element in terms of 
reusability and flexibility for larger design space explorations 
in the design of a heterogeneous multiprocessor architecture. 

Several proposals to integrate external design-point 
evaluation tools in a DSE environment can also be found in 
literature. In [12], a hierarchical and three-phase DSE 
methodology is presented. It facilitates the integration of 
simulators by using a set of tool-dependent interpreters or 
adapters. Angiolini et al. [13] present a framework that 
integrates an ASIP tool-chain within a virtual platform to 
explore a number of axes of the MP-SoC configuration space. 
However, unlike our work, this framework does not allow the 
integration of external search methods. Moreover, it still 
requires human intervention in the feedback loop of the 
searching and optimization process. 

The MultiCube project [14] has similar objectives as the 
work presented in this paper, but it targets the exploration of 
the configuration space of homogeneous chip multiprocessors 
rather than system-level MP-SoC platform DSE. This implies 
that it has limited or no capabilities to explore different 

 
 
Fig. 1.  Integration of an external system-level simulator with searching 
mechanism and a system generator in a single DSE infrastructure. 
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application to architecture mappings, heterogeneous 
processing elements, different interconnections, and so on. 

Other works have also developed a modular interface-based 
system-level MP-SoC DSE framework [15], [16]. In these 
cases, different search algorithms can be plugged in, but the 
resulting DSE is limited in terms of the target MP-SoC 
platforms that can be explored. This last aspect has been 
addressed in [17]. Künzli et al. [17] proposed a generic and 
modular framework based on PISA [18] for DSE of embedded 
system. The PISA interface separates the problem-dependent 
variation and estimation part from the generic search and 
selection. The resulting two parts are implemented as 
independent processes that are communicating via text files. 
But, unlike our work and to the best of our knowledge, they 
have only coupled analytical models to evaluate design points. 
This means that, e.g., the problem of incorporating a system 
model generator and external simulation tools has not 
addressed.  

Using pre-compiled and ready-to-use search algorithms 
available at [19] of the PISA framework, Madsen et al. [20] 
have created a multi-objective DSE framework. Different 
mapping alternatives can be evaluated (by means of analytical 
models) for a fixed or flexible platform during the exploration 
process. Moreover, the chosen representation formats for 
internal interfaces in [20] are problem specific, which means 
that they should be modified for each particular problem. In 
our case, these are dynamically and automatically updated 
according to an input constraints file. Finally, the kind of 
platforms generated in [20] is limited to hierarchical bus 
topologies, while our approach is not restricted to analyse a 
particular architecture. 

To conclude this section, we summarize our contributions 
as follows. First, we propose a generic infrastructure for 
system-level MP-SoC design space exploration, which is 
capable of supporting different search strategies and existing 
system-level simulation tools in a single environment. As a 
result, the potentials for reuse of the framework are 
significantly increased since each DSE experiment can be 
performed without the need of preparing experiment-
customized scripts, but it only requires a simple change of the 
user's input constraint values. Second, we have implemented 
and integrated a new approach in NASA to gradually and 
automatically generate simulatable system models that are 
used for obtaining system metrics to evaluate design 
decisions. Thus, the entire DSE process (composed of 
searching, system models generation and design point 
evaluation) is performed in an automatic and systematic 
fashion, thereby improving design productivity and decreasing 
the designer’s efforts. Third, NASA deploys a novel 
dimension-oriented DSE approach in which the design space 
is explicitly separated into dimensions, which could represent 
design decisions that are orthogonal to each other such as 
mapping, architectural components, and platform. Thus, the 
designer can choose to simultaneously explore all dimensions, 
or to fix one or more of these dimensions (e.g., a fixed 
platform) and to focus the exploration within one or two 

dimensions (e.g., mapping exploration only). To this end, 
designers are allowed to configure the appropriate number of, 
possibly different, search algorithms to simultaneously co-
explore the various design space dimensions. 

III. THE NASA FRAMEWORK 
Four key properties have been taken into account in the 

design of NASA: 
Modularity. NASA is a highly modular framework in which 

the interaction between its modules is established by well-
defined interfaces, allowing each module to act like an 
independent black box inside the framework. As a result, 
different modules can be easily integrated in a plug-and-play 
fashion. 

Flexibility. A key element in NASA is its hierarchical DSE 
approach in which the design space is explicitly separated into 
different dimensions. As will be explained in more details 
later, three dimensions are currently distinguished in NASA: 
platform, architectural component, and mapping exploration. 
Thus, the designer can choose to simultaneously explore at all 
of these levels, or to fix one or more of these levels (e.g., a 
fixed platform) and to focus the exploration on one or two 
levels (e.g., mapping exploration only).  

Re-usability. For a given set of user constraints, NASA is 
capable of exploring the design space in a systematic way, 
automatically generating the system models of selected design 
points that need to be evaluated by the system-level simulator. 
Hence, there is no need to prepare experiment-customized 
scripts. To perform a new DSE experiment, a designer only 
requires changing the constraint values. 

Extensibility. Due to the modularity and the well-defined 
interfaces, new modules or functionalities can easily be 
plugged into the NASA framework. These new modules 
could, for instance, handle additional dimensions in the design 
space without needing to modify other modules. 

The infrastructure of NASA is shown in Fig. 2. Essentially, 
six main modules can be distinguished in the framework: the 
Search module, Feasibility Checker, Architectural Platform 
Generator, Translator, Simulator and Evaluator. Subsequently, 

 
Fig. 2.  The NASA infrastructure. 
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the different interfaces used by NASA as well as the 
functionality of each module are discussed, emphasizing on 
the implementation details of the two most important modules: 
Search module and Architectural Platform Generator. 

A. Interfaces  
Three kinds of interfaces are used in NASA: the 

architectural intermediate file is used for communication 
between the Architectural Platform Generator and Translator, 
the fitness file links the Evaluator with the Search module, and 
the design-options file is used in all sub-modules of both the 
Search module and the Feasibility Checker. Note that these 
files are dynamically and automatically created (and updated) 
according to the user input files. 

In our approach, both the design-options and fitness files 
share the same XML-based format, in which design decisions 
are encoded in strings. Moreover, each explored dimension 
uses a separate design-options and fitness file. For example, in 
the 3-level design space exploration shown in Fig. 3, the 
platform dimension uses a design-options file to describe 
design decisions about the topology, network type(s) and the 
connectivity properties for the rest of architectural elements of 
a design point; the architectural components dimension uses 
its corresponding design options file to specify the type 
information of different components, while the decisions 
about the mapping of an application onto the different 
processing and storage elements are described in a third 
design-options file. If the designer decides to use less than one 
search algorithm per dimension, then adapter modules will 
automatically translate the input and output of the Search 
module to match the one design-option file per search 
algorithm interface. Note that the number of strings contained 
in any design-options file is equal to the number of design 
points explored by the Search module in each iteration, as will 
also be explained in Section III-B. Examples of design-
decision strings are shown in Fig. 3, for three (Fig. 3(a)) and 

one (Fig. 3(b)) search algorithms (SA) in the Search module. 
The length of a string description for each dimension may 

vary. Using the example shown in Fig. 3, it is evident that the 
length of the string describing the mapping depends on the 
number of tasks and communication channels in the 
application. Similarly, the length of the string describing the 
architecture instance is dependent on the number of 
processing elements (PEs) and storage elements (SEs) in the 
platform. 

Finally, the values inside the design-decision strings do not 
hard-code absolute values but are indirections to table entries 
(also illustrated in Fig. 3(a)). This means that, for example, in 
the case of the mapping dimension, the string elements do not 
directly hard-code the PEs (including their exact type) onto 
which application tasks are mapped. Instead, the string 
elements point to entries in a PEs table. Hence, this allows the 
designer to, e.g., change the type of PE or add a new type 
without the need to adapt any module implementation. 
Clearly, this makes the approach more re-usable and 
extensible. 

The last important interface in NASA is the architectural 
intermediate file. It describes the architectural platform design 
of each design point in a single file and, as will be explained 
in more detail later, it is gradually constructed using the 
platform and architectural components strings. The 
architectural intermediate file is used by the Translator to 
generate an architecture model of the design point in question. 
Moreover, it is also used to check the mapping feasibility. 
Note that platforms are not fixed entities in NASA but are 
often also part of the exploration. Therefore, the Feasibility 
Checker requires, e.g., connectivity information specifying 
which and how PEs are connected, and which SEs are shared 
by which PEs. This information is needed to detect and repair 
infeasible mappings, as will be explained in Section III-C. 

B. Search  module 
This module performs the actual search through the design 

space, iteratively pinpointing (a set of) design points that need 
to be evaluated by means of system-level simulation. As 
mentioned before, NASA applies a dimension-oriented design 
space exploration approach. This way, each dimension can be 
co-explored simultaneously using a single search algorithm, or 
using multiple and possibly different search algorithms for the 
various dimensions. In this context, co-exploration means that, 
in spite of using one search algorithm per dimension, we do 
not perform the system-level design space exploration as 
multiple independent explorations, but instead, the results 
from all dimensions are simultaneously taken into account.  

(a) 
 

 
(b) 

 
Fig. 3.  Search Algorithms (SA) and search strings in NASA. 

(a)         (b) 
 

Fig. 4.  Pyramidal versus one-to-one technique to link design decisions in a 
single design point. 
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This is, a design point dp can be expressed by linking k 
available design decision values {dpla, darc, dmap} 
corresponding to each of k design space dimensions, where 
dmap represents a design decision in the mapping dimension, 
while darc and dpla express a particular design decision for the 
architectural component and the platform dimensions, 
respectively. 

If multiple search algorithms are used to explore the design 
space, then there are many ways of linking the design 
decisions of each dimension to form a design point 
specification, as depicted in Fig. 4. For example, using a pure 
one-to-one linking technique, as shown in Fig. 4(b), each 
design decision in each dimension is linked to only one design 
decision in the other dimensions. Thus, the number of design 
points explored per iteration by the Search module is equal to 
the number of design decisions (or strings) contained in any 
design-options file, assuming that all design-options files have 
the same number of strings. Clearly, this significantly reduces 
the number of required evaluations because of the linear 
relationship between the number of design decisions and 
design points.  

However, this approach may suffer from a possible 
convergence problem due to “under-exploration”, i.e., 
discarding a design decision (e.g., a specific platform 
instance) too soon based on the results of a premature 
evaluation. For example, let },,{ A

map
A
arc

A
pla dddA =  and 

},,{ B
map

B
arc

B
pla dddB =  be two different design points. If it turns 

out after a single simulation that the fitness value of A is better 
than that of B, then this does not mean that platform A

plad  or 

architectural components A
arcd  are always a better choice than 

B
plad  and B

arcd , but we do can affirm that the combination of 

design options },,{ A
map

A
arc

A
pla dddA =  is better than 

},,{ B
map

B
arc

B
pla dddB = . For instance, this latter does not guarantee 

that },,{ A
map

A
arc

A
pla ddd  can provide a better fitness value than 

},,{ C
map

B
arc

B
pla ddd , where C

mapd  is another feasible mapping for B. 
To address this under-exploration problem, we use a variant 

of one-to-one linking of design decisions. In this technique, 
unlike the pure one-to-one technique, only design decisions 
from the dimension of the lowest abstraction level (i.e., the 
mapping dimension in our case) are evaluated and updated 
during each search iteration. The search algorithms for the 
higher-level dimensions (i.e., the platform and architectural 
components dimensions) keep collecting the fitness values 
(for different mappings) without actually changing their 
design decisions during a specified number of iterations, 
referred to as the collecting iterations (δ). Only when the 
search has reached δ iterations, design decisions are updated, 
after which the process starts again. Obviously, the higher the 
abstraction level, the more design alternatives can be derived 
for a single design option (e.g., a multitude of architecture 
instances can be obtained from a single platform) and, 
consequently, the higher the value of δ should be. Note that 
the above mentioned feedback information, i.e., the fitness 

values, needed to guide this search through the design space, 
are iteratively provided by the Evaluator module, which will 
be explained in Section III-G. 

C. Feasibility Checker 
Because the search algorithms may try to assess infeasible 

design points during the DSE process, the main task of the 
Feasibility Checker is to detect infeasible design points and 
repair those design points if possible. In this context, a 
feasible design point is a system design that meets the user 
constraints both in terms of mapping and architectural 
implementation. If at least one of them is not satisfied, then 
the resulting design is classified as an infeasible one.  

During this checking process, all sets-of-strings (or design-
options files) are checked in a hierarchical fashion. This is, the 
platform string is first checked to determine whether or not the 
specified platform template (to be discussed in more detail in 
Section III-D) contains a valid topology and, e.g., whether it 
does not contain isolated islands of components. Next, the 
architectural components string is checked to determine 
whether or not the number and types of selected architectural 
components in the platform template comply with the 
constraints provided by the user. For example, if a design 
point deploys 4 ARM processors while the user has specified 
that only 2 ARM processors can be instantiated, then we have 
an infeasible design point. Finally, the mapping string is 
checked for infeasibility, e.g., when application tasks are 
mapped onto PEs that have not been allocated in the platform, 
or in the case there is no shared SE to map a logical 
communication channel between two tasks that have been 
assigned to different PEs. So, each design point is globally 
checked, i.e., taking all dimensions of the design point into 
account. 

If an infeasible design point is detected, then different kinds 
of repair mechanisms can be applied, depending on the 
dimension where the problem occurs. Note that different 
repair techniques can also produce different feasible solutions 
from the same infeasible design decision. In our current 
implementation, we use heuristic minimum-distance repair 
techniques, which introduce a minimum number of 
modifications to an infeasible design string in order to obtain a 
feasible one. As a consequence, our repair techniques only 
have a minimal effect on the run-time of the framework. In the 
aforementioned infeasible mapping example (i.e., no 
reachable SE for two communicating tasks), only the 
communication channel of those two application tasks should 
be relocated into an reachable SE if a feasible mapping can be 
derived from such a repair. Although it is also possible to 
repair by mapping one of those two application tasks onto 
another available PE (or even both application tasks onto the 
same PE), this would require the resulting mapping to re-enter 
for a new mapping feasibility check as it may cause additional 
infeasibilities for other communication channels. In the worst 
case, this may even cause an infinite loop. The impact of these 
repair mechanisms on the number of explored feasible design 
points will be discussed in Section IV-B. Specifically, our 
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experimental results reveal that these repair techniques can 
warrant the repair of a high percentage of infeasible design 
points in the DSE experiments. 

D. Architectural Platform Generator 
The main mission of this module is to provide the 

architectural description for each design point by means of 
combining both feasible platform and architectural 
components information, which are contained in the strings of 
their respective design-option files. The resulting architectural 
description file is used later for (i) feasibility checking of 
mapping strings, and (ii) as input (to the Translator) to 
generate the architectural model. Thus, the Architectural 
Platform Generator can be considered as the first stage of the 
system model generation process. 

An architectural description is created in two steps: 
platform or topological template generation and architecture 
instance generation. The basic building block of these 
descriptions is the so-called Basic Topology Unit (BTU). As 
shown in Fig. 5, the BTU is a logical pattern consisting of a 
network container (the gray component) and a variable 
number of element containers (the white blocks). These 
element containers are labelled inside each BTU and can, in a 
later stage, be instantiated as architectural components such as 
PEs and SEs. The number of element containers in a BTU 
depends on the user specifications, like the maximum number 
of PEs and SEs in a platform. Note that network containers 
cannot directly connect to each other, while element 
containers can connect to both element and network 
containers. 

The BTU is labelled and replicated a number of times to 
form a meta-platform, which is used later in topological 
template generation. In principle, the meta-platform is used as 
a basis from which all feasible platform instance descriptions 
can be (gradually) derived and generated. The number of BTU 
replications in the meta-platform depends on the maximum 
number of network element (NE) and connections allowed 
among element containers, as specified by the user. The latter 
is referred to as connectivity, which defines for each element 
container both the available links and the directions 
(represented with numbered arrows in the top-left corner of 
Fig. 5). Thus, a BTU can be replicated through two or three 
directions and, as consequence, different kind of meta-
platforms can be generated according to the user 
specifications. A 2D meta-platform generation process is 
shown in Fig. 5, although a 3D meta-platform can be also 
generated if the gray links of an element container (top-left 
corner of Fig. 5) are also used during this process. It should be 
noticed that the generation of the BTUs as well as the meta-
platform is performed statically (but automatically) before the 
actual DSE process. 

Driven by the exploration at platform level (in Search 
module), the meta-platform is used to generate topological 
template instances. To this end, the set of strings of feasible 
platforms is used to instantiate the topological templates from 
such a meta-platform: each string sets (for one design point) 

the type(s) and number of networks in the platform. 
Moreover, the number of element containers in the platform as 
well as their connectivity properties are also determined. 
Finally, a type classification of the element containers is 
made. This latter means that for each allocated element 
container in the BTUs, it is indicated whether it contains a PE 
or a SE. Note that, as explained in Sections III-B and III-C, 
these platforms have been selected by the Search module and 
checked by Feasibility Checker. The latter repairs strings 
describing any infeasible topological templates such as, for 
example, isolated BTUs that do not connect to any other BTU, 
architectural elements with incorrect connectivity links, and 
other inconsistencies. 

Finally, in order to obtain the complete specification of the 
architecture platform for each design point, the topological 
templates are further refined. In this process, which is driven 
by the exploration at architecture component level, the same 
topological template can be reused to derive different 
architecture templates. For this propose, the actual component 
types of the element containers in a template are added. In the 
example of Fig. 5, this means that, e.g., a PE allocated in an 
element container either becomes an ARM or MIPS processor, 
and the SEs either SDRAM or DDRAM. Evidently, all this 
information is also provided by the strings of feasible 
architectural components. 

E. Translator 
In order to integrate a system-level simulator in NASA, it is 

required that the simulator allows for explicitly describing the 
design points that need to be simulated using some kind of file 
format. Thus, a system model for each design alternative 
should be generated first. Such a system model, composed of 
an architecture model, an application model and a mapping 
model, can be provided by the Translator module in an 
automatic way. To this end, it uses as input the architectural 
intermediate file, the application specifications and the strings 

 
Fig. 5.  Generation of topological templates and architecture instances. 
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that describe feasible mappings. Thus, the Translator can be 
considered as the second (and last) stage in the generation 
process of the simulatable system model. 

There exist two relevant benefits in including this module 
in our framework. First, the Translator converts NASA’s 
internal format of a design point to a file-based format that is 
specific for the target system-level simulator. Second, the 
integration of a new system-level simulator in NASA only 
requires the adaptation of the Translator module, i.e., tailoring 
the Translator for each different simulator, while all other 
modules remain unaffected. This is why two kinds of module 
colors can be identified in Fig. 2, simulators-dependent 
(black) and simulators-independent (gray) modules. 

F. Simulator 
At this moment, we have integrated a SystemC-based 

system-level simulation environment called CASSE [3] in 
NASA. Another system-level simulator, called Sesame [4], is 
in the process of being integrated. Both tools follow a Y-Chart 
methodology, covering application and architecture 
modelling, as well as mapping and analysis within a unified 
simulation environment.  

For these simulators, the application model is described as a 
process network (Kahn Process Network) or as a Tasks-graph, 
where parallel tasks communicate with each other by means of 
unidirectional channels. Here, tasks (containing the 
application functionality) are often written in C/C++. On the 
other hand, the architectural model is specified as a modular 
composition of highly configurable predefined elements 
(provided by the tool libraries), including processing elements 
(PE), storage elements (SE) and network elements (NE). The 
number of elements of each type and their configuration (e.g., 
number and width of port, clock, memory size, network 
arbitration scheme, task scheduler policy, etc.) can also be 
properly configured in this description file. Finally, another 
description file is used by CASSE and Sesame to control the 
mapping of the application onto the architecture. Note that 
both tools ensure deadlock-free task mappings and scheduling 
for feasible design points. Obviously, all the required models 
and descriptions can directly be generated by a customized 
Translator module, as it was explained in Section III-E. 

At this point, it is important to highlight a key property for 
the mentioned simulation tools. The system model file is read 
and parsed by CASSE and Sesame during elaboration time in 
order to properly configure the desired design point. Thus, 
changes in the files describing a design point do not require 
any recompilation effort. Evidently, this allows for evaluating 
design alternatives during the exploration process in a 
completely automatic way, without any human intervention. 
To give an example, the simulators are highly parametrized in 
terms of performance values for the different architectural 
processing and communication elements. These parameter 
values are explicitly stored in the system model file. This 
allows for, for example, quickly evaluating different 
hardware/software partitionings by simple manipulation of the 
performance values for selected processing elements. 

Since the implementation of these tools is behind the scope 
of this paper, the interested reader is referred to [2] for an 
overview of existing system-level simulators, and to [3] [4] 
for more detailed information about CASSE and Sesame. 

G. Evaluator 
During simulations, quantitative information about the 

system execution (e.g., data about performance, cost/area, and 
power consumption) can be gathered and dumped into files 
for later inspection. All these metrics can be used in system-
level DSE to find a set of Pareto optimal design points, which 
then yields a multi-objective optimization problem.  

The essence of the Evaluator module is to provide this 
feedback about the quality of a set of evaluated design points 
to the Search module, influencing the search decisions taken 
in the exploration process. 

Separating the Evaluator from the Search module again 
provides flexibility and enhanced reusability of the 
components in NASA. It allows for easily changing the 
optimization objectives or the function that quantifies the 
quality of a design point without affecting the other 
components. Such a function is typically referred to as the 
fitness function. The Evaluator also provides the flexibility to, 
e.g., use a single fitness function for all search algorithms in 
the Search Module, or to deploy a different, and possibly 
tailored, fitness function per search algorithm.  

However, when multiple search algorithms and fitness 
functions are used together, these should be defined in a 
coherent way with respect to each other in order to avoid 
conflicting fitness functions and safeguard convergence. This 
is because there exists a tight connection between the different 
search algorithms and their respective fitness functions. This 
connection should be made explicit. In our current 
implementation, these relations can be defined by a set of 
hierarchical fitness functions, which can be used with a 
variant of the one-to-one linking technique (already explained 
in Section III-B) to address the under-exploration problem in 
hierarchical design space explorations with multiple search 
algorithms. Formally, these hierarchical fitness functions are 
formulated as follows: 

where iLy is the fitness value of a design point of the lowest-
level dimension (the mapping dimension in our case) in the 
search iteration i, I is the total number of search iterations, xk 
represents the value of the metric k used in the fitness function 
f, ijy is the fitness value of a design point in any dimension 
other than the lowest one, and δj represents the collecting 
iterations for the individuals of dimension j. Moreover, for a 
given range of dimensions β, the number of the search 
iterations needed for collecting fitness information for 
dimension z (e.g., platform) should be bigger than the number 
of iterations needed for dimension w (e.g., architecture) if z 
has a higher abstraction level than w (denoted by the ⊃  
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operator). 

IV. EXPERIMENTAL RESULTS 
In this section, we present a number of DSE experiments to 

demonstrate the capabilities of the NASA framework and to 
illustrate its distinct aspects. 

A. NASA configurations for experiments and parameter 
settings 
The first set of experiments aims at comparing the more 

traditional approach of using a single search algorithm for all 
design space dimensions to our dimension-oriented approach 
(using a separate search algorithm per dimension, i.e., 3 
search algorithms (SAs) in total). To properly evaluate and 
compare the quality of the DSE between different search 
strategies, we can define three criteria: 
1) Diversity. A large number of different design points 

should be explored in each DSE experiment to cover a 
wide range of design decisions for each dimension. 

2) Convergence. The strategies should provide 
approximations to global (or near-to) optimal solutions 
without being trapped at local optima. 

3) Coverage. The explored design points should be well-
distributed in the design space for a complete view of the 
trade-off curve or landscape of the design space as well as 
catching boundary values. 

Assessing the quality of the exploration is not equal to 
assessing the “quality” of the obtained design points. 
However, an exploration meeting all three criteria should lead 
to good design points in terms of fitness values (such as good 
performance). Different parameter settings for the 
experiments, i.e., different NASA configurations, lead to 
different results in DSE quality and in the fitness values 
obtained. Next, we introduce several different NASA 
configurations together with the results obtained. 

In Table I, the most important user specifications and 
parameters for the first set of experiments are listed. The 
studied MP-SoCs may consist of up to 6 PEs of the types 
ARM, PowerPC (PPC), or MIPS, up to 3 SEs of either single 
(SDR) or double data-rate (DDR) type, and up to 4 NEs of 
three types (bus, fully connected, or a customized network 
consisting of a bus and point-to-point links). The application 
that is mapped onto the MP-SoC is an optimized version of 
the computer vision algorithm presented in [8]. Basically, this 
visual tracking algorithm has a real-time requirement (25 
frames/s), and applies a correlation or block matching 
technique to continuously track a specific target in the 
incoming image frames. The block or pattern size and frames 
size used in our experiments are 24×24 and 320×240, 
respectively. 

 
1) Search Algorithms settings (SA) 

With respect to the search algorithm(s) we use for 
exploration, a multitude of them can be used (via a simple 
plug-in mechanism): from exhaustive search or random 
search, to heuristic search methods. We focus on 

implementations based on genetic algorithms (GAs), since 
GA-based DSE has been widely studied in the domain of 
system-level design [6], [7], [11], [17], [20], and it has been 
demonstrated to yield good results. In this case, we use a 
proprietary implementation of the GAs, but any existing GA 
such as SPEA2 or NSGA-II [11] could also have been used. 

 
2) Crossover and mutation type settings 

The crossover and mutation operators in our GAs are 
performed at the granularity of entire sub-strings (see Fig. 3) 
in a string that describes the topological platform, architectural 
components or mapping. These operators are applied 
according to their associated probabilities (pc: probability of 
crossover, and pm: probability of mutation). Further, the GA 
can perform either a 1-point or a 2-point crossover, and 
supports two types of mutation. In “simultaneous” mutation 
(M=1), a single random position is simultaneously changed in 
every sub-string. In “independent” mutation (M=6), the 
mutation probability is used for each of the six sub-strings to 
determine whether it is mutated or not. In the case that three 
GAs are used for exploration, different and customized values 
for the probabilities pc and pm can be used within each GA. 

If all the GA parameters in Table I are taken into account, a 
large number of experimental combinations can be performed. 
From this set of experiments, we present a selection of four 
NASA configurations. The nomenclature used to denote these 
configurations is “SAgaCxM”, where the meaning of each 
capital letter is defined in Table I. For example, “3ga1x6” 
refers to the configuration with 3 GAs that simultaneously 
explore the platform, architectural components and mapping 
dimensions, a 1-point crossover, and “independent” mutation 
(M=6). 

 
3) Group of experiments and run-times per simulation 

All possible combinations of the pc and pm values (as listed 

TABLE I 
PARAMETER SETTINGS IN OUR EXPERIMENTS 

Parameter Nr. Types Values 
PE ≤ 6 3 ARM, PPC, MIPS 
SE ≤ 3 2 DDR, SDR 

NE ≤ 4 3 Bus, Fully-connected, 
Customized-network 

App. Tasks 7 - - 
App. Channels 12 - - 

Dimensions (β) 3 - Platform, architectural 
components and mapping 

Search algs. (SA) 1 or 3 1 Genetic algorithms 
GA Selection (S) 1 1 Proportional with elitism 
GA Crossover (C) 1 2 1-point and 2-point 
C probability (pc) 5 - [0.1,0.3,0.5,0.8,1.0] 

GA Mutation (M) 1 2 Simultaneous (M=1) and 
Independent (M=6) 

M probability (pm) 5 - [0.1,0.3,0.5,0.8,1.0] 
Collecting iterations 
(δarc) 

1 - 2, architectural components 
dimension 

Collecting iterations 
(δpla) 

1 - 4, platform dimension 

Search iterations (I) 41 - - 
Population size (N) 10 - Nr. of individuals per iteration 
Simulation tool 1 - CASSE 
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in Table I) have been evaluated. This results in 25 groups of 
experiments (5 pc probabilities × 5 pm probabilities) for each 
of the four mentioned NASA configurations. Note that, 
independent of the number of search algorithms used in these 
experiments (i.e., 1 GA or 3 GAs), a maximum of 205,000 
simulations (25 groups of experiments × 20 different initial 
populations × 41 iterations × 10 individuals per iteration) have 
been performed for each NASA configuration. The CASSE 
tool – which dominates the run-time of our DSE experiments 
– requires on average 40 seconds to simulate a single design 
point on a PC with a Pentium IV processor at 1.6 GHz and 2 
GB main memory, running Linux. 

 
4) Fitness functions for evaluation and optimization 

In order to simplify the graphic representation of the results 
and the explanation of the examples in this section, without 
loss of generality, the fitness value in our experiments only 
takes a single system metric into account, namely 
performance. We would like to stress, however, that multi-
objective optimization can also be perfectly addressed with 
NASA. 

B. DSE behaviour and sensitivity to various parameter 
settings 

1) Impact of the number of search algorithms on DSE 
quality 

The results of the above experiments are shown in the four 
scatter-plots of Fig. 6, which compare the behaviour of DSE 
experiments based on a single and multiple GA approach after 
10, 20, 30 and 40 iterations, respectively. Each scatter-plot 
shows the average total of different explored design points 
(i.e., accumulated diversity) on the x-axis and the average of 
the best fitness values, in terms of processed data packets/s, on 
the y-axis for each of the experiments.  

If the input arrival frame rate is 1450 packets/s and a 
minimum of 1250 packets/s has to be processed to satisfy the 
minimum real-time requirements of the studied application 
(which is equivalent to processing 25 frames/s), then using a 3 
GA-based search approach in NASA not only provides the 
design alternatives with the best fitness values (in the upper 
right corner for each scatter-plot of Fig. 6) but the 
accumulated diversity of the explored design points is also 
largest. Notice that exploring the same design space with a 
traditional, single GA approach, optimal and near-to-optimal 
architectures are less often found. This is mainly due to a 
smaller accumulated diversity of explored design points. 
Moreover, it can also be seen that the larger the number of 
iterations, the larger the gap between traditional single GA-
based DSE and our 3GA-based DSE in terms of accumulated 
diversity and best design points reached. 

From this, it appears that the multiple GA search has a 
positive impact on the DSE quality. In other words, while all 
parameter settings affect the quality criteria of the exploration 
performed, and consequently the best design points obtained, 
the multiple GA-based searching seems to be an important 
factor for achieving quality.  

For a detailed comparison between both approaches (single 
GA and multiple GA search), the three proposed criteria – 
diversity, convergence and coverage – are separately analyzed 
in Fig. 8, Fig. 9 and Fig. 10. To this end, we have selected one 
group of experiments for each of the four mentioned 
configurations, where all configurations use the values pc=0.8 
and pm=0.3. With these probabilities, the “3ga2x6” 
configuration finds the design point with the best overall 
fitness value after 40 iterations (see upper right corner of Fig. 
6(d)). 

 

  
(a) 10 iterations (b) 20 iterations 

  
(c) 30 iterations (d) 40 iterations 

 
Fig. 6.  DSE results for four NASA configurations. 
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2) Impact of repair mechanisms on the efficiency of the 
DSE process 

At this point, it is important to highlight that, although the 
explored design points shown in our experimental results 
include both feasible and infeasible design points, only 
feasible design solutions are evaluated by the CASSE tool. 
However, due to the repair techniques applied in the 
Feasibility Checker module, most of the infeasible design 
points can be detected and converted to feasible ones. As a 
consequence, the feasible alternatives actually evaluated 
represent an important percentage of the total number of 
explored design points. This can be illustrated in Fig. 7(a) and 
Fig. 7(b), which depict the average percentage of feasible, 
repaired and infeasible design points per iteration for the DSE 
experiments based on both approaches (single and multiple 
GA search). Note that the gray part of each bar (in Fig. 7) 
represents feasible design points without any repair, the dark 
part refers to repaired design points (i.e., infeasible design 
points repaired by the Feasibility Checker module and 
converted to feasible ones), and the white part indicates the 
infeasible design points that cannot be repaired by our 
heuristic minimum-distance repair techniques.  

From these data, it can be seen that our repair techniques 
can repair more than the 84 percentage of detected infeasible 
design points in each iteration, and as a result, more than the 
91 percentage of explored design points can be actually 
evaluated by the CASSE tool. Thus, it seems that the repair 
mechanisms significantly affect and improve the efficiency of 
the DSE experiments. 

 
3) Convergence rate and number of iterations 

The convergence is illustrated in Fig. 8, where the 
horizontal axis indicates the number of explored design points 
(and iterations) and the vertical axis represents the fitness 
values in terms of processed data packets/s. Investigating 
these data, it can be seen that 1 GA-based experiments have a 
higher convergence rate (i.e., a steeper slope) than 3 GA-
based experiments in the first iterations. This phenomenon is 
the implicit effect of using the hierarchical fitness functions 
(explained in Section III-G) and the variant of the one-to-one 
individual linking technique (presented in Section III-B) in 3 
GA-based experiments.  

However, when the number of iterations increases, 3 GA-
based experiments do not only gradually and progressively 
reach higher fitness values than 1 GA-based experiments, but 

they can also ensure that most of the individuals in each 
iteration satisfy the real-time restriction (1250 packets/s). In 
the 1 GA-based experiments, on the other hand, mostly design 
solutions with fitness values lower than the real-time 
restriction are reached. Moreover, the 1 GA-based experiment 
hardly improves or provides better design alternatives with the 
evolution of iterations. The latter could indicate that the GA is 
trapped in a local optimum, which occurs when design points 
explored in each experiment are not sufficiently different or 
well-distributed (i.e., partial coverage) to properly capture the 
design space in its entirety (e.g., covering only partially or 
some regions of the design space), caused by an insufficient 
variety of new individuals introduced in each iteration (i.e., a 
low incremental diversity) that prevents the populations to 
escape from such local optima. These aspects can be 
demonstrated in both Fig. 9 and Fig. 10. 

a) Diversity and the search approach 
Each curve in Fig. 9 represents the percentage of new and 

different design points introduced in each iteration that have 
not been explored in any of previous iterations, i.e., the 

  
(a) 1GA: average percentage of repair = 84.21% (b) 3GA: average percentage of repair = 86.68% 

 
Fig. 7.  Average percentage of feasible, repaired and infeasible design points per iteration in our DSE experiments. 

Fig. 8.  Average fitness values per iterations. 
 

Fig. 9.  Incremental diversity per iterations. 
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incremental diversity per iteration. These results highlight that 
3 GA-based experiments clearly yield a higher incremental 
diversity per iteration than 1 GA-based experiments, and 
especially in the case of 1 GA with “simultaneous” mutation 
(M=1). A direct consequence of the latter result thus explains 
the resulting gap of the accumulated diversity between both 
approaches, as already shown in Fig. 6. 

 
4) Coverage, design points concentrations and local 
optima 

All design points explored by each of the selected group of 
experiments (corresponding to the four mentioned NASA 
configurations) are separately shown in Fig. 10, where each 
axis represents one design space dimension in our 3D design 
space. Moreover, for a fair comparison, each axis in Fig. 10 
contains all ordered design-decision instance numbers (i.e., 
the canonical representations of the strings for the platform, 
architectural components and mappings dimensions) explored 
together by these four groups of experiments. It can also be 
seen in Fig. 10 that the design points explored in the 3 GA-
based experiments are scattered over almost the whole design 
space (high coverage) and are characterized by a high 
accumulated diversity. The design solutions reached by the 1 
GA-based experiments, on the other hand, have a lower 
accumulated diversity and are often concentrated in a single 
region of the explored design space (lower coverage). This 
indicates that the searching process is converging toward an 
optimum, and in this last case, toward a local optimum as 

already shown in Fig. 8. 
 
5) The need for refinement 

It should be noted that design points concentration – a 
visual indicator of the convergence process – can also be 
observed in the 3 GA-based experiments. But, unlike the 1 
GA-based experiments, the convergence is toward a global 
optimum or toward a few optimal points. The existence of 
several “optimal points” can be illustrated for two NASA 
configurations based on multiple GAs shown in Fig. 10, 
where more than one design points concentration (or 
convergence) area can be identified. This is correct since 
different alternatives can often satisfy a given set of user 
restrictions. To illustrate the above, two design points (A and 
B) have been marked in Fig. 10(d), and their respective 
architectures and mappings are shown in Fig. 11. In this case, 
although both solutions (corresponding to each of the design 
points convergence regions) have similar performance (A 
achieving 1371 packets/s and B 1355 packets/s), their 
underlying platform architectures are however quite different. 
Moreover, they are also over-dimensioned in the sense that 
not all resources are actually used by the application. 
Therefore, in this case, designers can perform an additional 
optimization process in terms of architectural components 
and/or in terms of mapping. Such refined optimization can be 
performed in a next and more detailed phase of exploration 
experiments where, e.g., the platform is fixed and only the 
architectural components and mapping dimensions are 

(a) 1GA1x6 (b) 1GA2x1 

(c) 3GA1x6 (d) 3GA2x6 
 
Fig. 10.  Explored design points by each selected NASA configuration. 
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explored more rigorously. Alternatively, additional objectives 
or fitness functions (such as the cost of designs) can also be 
taken into account in the optimization process. In the next 
section, we will further investigate refinement by fixing one 
dimension (platforms) and then conducting DSE in just a two 
dimensional space (architecture components and mapping). 

C. Hierarchical refinement and analysis of 2D-DSE with 
NASA 
Our second set of experiments presented in this paper aims 

at demonstrating NASA’s flexibility and capacity to perform 
the aforementioned refinement process. To this end, this set of 
experiments is focused on 2D design space explorations, 
where design decisions about mapping and architectural 
components are explored for a particular platform template, 
i.e., the platform dimension is fixed and no search algorithm is 
used in this dimension. Obviously, in order to model a specific 
platform template, designers should properly configure the 
platform string values for the number and types of element 
containers in each instantiated BTU as well as their 
connections with each other. 

 
1) Fixed target platform, variable architectural 
components and mapping 

The selected target platform template and available type 
values for PE and SE are depicted in Fig. 12 and Table II. 
This platform template can provide architecture models based 
on two AMBA buses connecting up to six processing 
elements and three storage elements. The execution time of 
the visual tracking application’s tasks has been estimated 
using an instruction set simulator [21] for the ARM processor, 
while we assume that the hardware dedicated block (which 
executes block matching operations of the target application) 
has a ×10 speedup factor with respect to the SW 
implementation. Note that in this case study, plenty of 
platforms could have been analyzed in our refinement 
experiment. However, we believe that we selected a realistic 
MP-SoC platform template, consisting of several 
homogeneous processors completed with a few coprocessors 
or hardware dedicated blocks in a bus-based architecture, 
rather than an MP-SoC based on various processing and 
network element types having different computational and 
communication characteristics. 

 
2) 2D NASA configuration for DSE 

Four NASA configurations have been selected in this 

second set of experiments: 1GA+1Random, 1GA+1ga, 
1GA+1GA and a heuristic algorithm from [22]. The used 
parameter settings of the genetic algorithms are illustrated in 
Table II. For example, 1GA+1GA (or 1GA+1ga) refers to two 
identical (or different) genetic algorithms are used in the 
architectural components and mapping dimensions, 
respectively. On the other hand, in the cases of 
1GA+1Random, a GA explores different architecture 
instances by varying the type of SEs as well as the location of 
the hardware dedicated block in different PE containers of the 
platform template (since the rest of PE share the same 
processor type), while a random search algorithm explores 
different functionality distributions onto system resources in a 
random fashion. It should be noted that although not included 
in this set of experiments, an extensive number of 
combinations of different search algorithms as well as GA 
parameters could have been used (as already shown in Fig. 6 
for our first set of experiments). Therefore, the four selected 
configurations only represent a few samples of NASA’s 
capacity and flexibility. 

 
3) Heuristic-based mapping algorithm 

For convenience, a brief overview of the heuristic algorithm 
is introduced before presenting our results and performing 
comparisons. This heuristic algorithm [22] uses as input a 
real-time application, the equivalent deadline (in number of 
cycles) of the real-time constraint, a MP-SoC template and a 
list of available PEs and SEs for such template, and estimates 
analytically the best MP-SoC instance (varying the location 
and combination of PEs and SEs) for the target real-time 
application, i.e., achieving real-time requirements as well as 
optimizing processor utilization, inter-processors traffic load, 
and processor load balancing. The heuristic approach consists 
of three phases. First, a real-time application is modelled as a 
tasks-graph, after which the algorithm schedules the tasks on a 
set of virtual processors (VPs) or logical clusters taking into 
account the real-time deadline and assuming that: (i) each 
physical PE can only hold a single VP in the further steps and, 
(ii) the set of PEs works in a pipeline fashion. Second, all 
possible MP-SoC instances are exhaustively generated, i.e., all 

 
(a) Design point A: 1371 packets/s (b) Design point B: 1355 packets/s 

Fig. 11.  Examples of design points found by 3GA2x6 DSE with pc=0.8, 
pm=0.3 after 40 iterations. 
 

TABLE II 
SEARCH MODULE AND TARGET ARCHITECTURE PARAMETER 

SETTINGS  
Selection (S) Proportional with etilism 
Crossover (C) 1-point, pc = 0.5 GA 
Mutation (M) Independent (M=6), pm = 0.5 
Selection (S) Tournament without etilism 
Crossover (C) 2-point, pc = 0.8 ga 
Mutation (M) Simultaneous (M=1), pm= 0.3 

Collecting iterations (δarc) 2 architectural components dimension 
Search iterations (I) 21 - 
Population size (N) 10 Nr. of individuals per iteration 
PE ≤ 6 ARM and hardware dedicated block 
SE ≤ 3 DDR and SDR 

 

 
Fig. 12.  Target platform template for the second set of experiments. 
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combinations of type and locations of PEs and SEs on the 
target template. In the last step, the algorithm uses a set of 
analytical expressions (which take into account variables such 
as resource connectivity, remaining processing and storage 
capacities, latency parameters associated to communication 
protocols of each component, etc.) to evaluate different 
alternatives. Subsequently, it outputs the best logical clusters 
mapping onto MP-SoC instance that satisfies the real-time 
constraint. Interested readers are referred to [22] for more 
detailed information. 

It should be noted that although this heuristic algorithm can 
quickly and simultaneously explore both architecture 
candidates and feasible mappings by means of a static 
performance estimation technique, the output (or the selected 
design point) still needs to be carefully examined in a system-
level simulator. This is because of non-deterministic or non-
linear system functions (e.g., the bus arbitration delay due to 
simultaneous access requests by multiple PEs) are not taken 
into account during its estimation process, thereby making an 
accurate performance evaluation difficult without a 
simulation. To this end, the output of this algorithm is adapted 
to the string format required by NASA’s Translator, which 
then produces the corresponding architectural and mapping 
model to be simulated in the CASSE tool. 

 
4) Results and discussions 

The results of the above four configurations are shown in 
Fig. 13. The dark bar represents the fitness value obtained in 
simulation with the design point selected by the mentioned 
heuristic algorithm. The curves show for the rest of the 
configurations (i.e., 1GAx1GA, 1GAx1ga and 
1GAx1Random) the average fitness values reached by all 
individuals in each of the twenty iterations. From these results, 
it can be seen that 1GAx1Random can only sporadically reach 
a few design points that satisfy the real-time constraints. 
Moreover, it clearly cannot ensure convergence toward any 
global optimum. On the other hand, both the heuristic 
algorithm and the experiments based on two genetic 
algorithms can provide solutions that satisfy the input 
constraints. To this end, the heuristic algorithm only requires 
to simulate a single system model (or individual), while 
1GAx1ga and 1GAx1GA need to simulate an average number 
of 40 and 60 individuals respectively (since 1GAx1ga has a 
higher convergence rate than 1GAx1GA in the first four 
iterations) before reaching the first individual that satisfies the 
real-time constraint. This might suggest that the multiple GAs 
strategies are not as efficient as this heuristic algorithm in 
terms of simulation time dedicated to DSE. However, our 
multiple GAs-based co-exploration approach presents three 
important benefits with respect to the heuristic algorithm: (i) 
both 1GAx1GA and 1GAx1ga can converge toward design 
points with higher fitness values, (ii) the studied heuristic 
algorithm cannot perform multi-objective optimization where 
the result is a Pareto front of solutions, and (iii) GAs provide 
not only information about the best solutions but also about all 
other explored design points in each experiment (rather than a 

single design point outputted by the heuristic algorithm). This 
is a key element for better understanding the studied design 
space, i.e., the more design points are provided to the 
designer, the more information can be extracted from the 
explored design space, and therefore, it will allow designers to 
more easily compare the architectural characteristics of the 
evaluated design points. That is, it can be very useful for a 
designer to distinguish the architectural similarities of the 
design alternatives featuring good fitness values.  

This last aspect can be illustrated in Fig. 14, which shows 
an example of typical NASA output after each DSE 
experiment. The set of simulated design points, corresponding 
to a 1GAx1ga experiment in this case, can form a surface that 
approximates the landscape of the explored design space. A 
2D view of the resulting surface is shown for this experiment 
since it is based on 2D exploration, i.e., the x axes and y axes 
of the 2D view contain the explored instance numbers of the 
mapping and architectural components dimensions, having 
fixed the platform as mentioned. So, for example, 120 
different mappings have been explored in this example. Note 
that the fitness value associated to each design point is color 
coded, ranging from red (high fitness value) to blue (low 
fitness value). Therefore, even when exploring a relatively 
small number of design points, the distribution of design 
points in the surface can clearly indicate the location of 
convergence region(s), while dark red areas can provide a 
good insight of where the sweet spots (design points with 
higher fitness values) in the design space are located. 

 
Fig. 13.  Comparative results obtained in the second set of DSE experiments. 

 
Fig. 14.  Example of NASA output. 
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Moreover, designers can select any design point of the 
surface, and examine information about that design point such 
as the parameter values for the mapping and/or architectural 
components dimensions. Finally, it should be stressed that all 
these experiments presented in this paper have been 
performed in a fully automatic fashion, only providing 
parameter settings and constraints such as those shown in 
Table I and Table II. 

V. CONCLUSIONS 
In this paper, we addressed the lack of a generic, flexible, 

and re-usable infrastructure to facilitate and support system-
level MP-SoC design space exploration (DSE) experiments. 
To this end, we have presented a system-level MP-SoC DSE 
support infrastructure, called NASA. This highly modular 
framework uses well-defined interfaces to easily integrate 
different system-level simulation tools as well as different 
combinations of search strategies in a simple plug-and-play 
fashion. Moreover, we described NASA’s dimension-oriented 
DSE approach, allowing designers to configure the 
appropriate number of, possibly different and tailored, search 
algorithms to simultaneously co-explore the various design 
space dimensions. The result is a flexible and re-usable 
framework for the systematic exploration of the multi-
dimensional MP-SoC design space, starting from just a set of 
relatively simple user specifications.  

Our experimental results indicate that, compared to the 
more traditional approach of using a single search algorithm 
for all dimensions, the multi-dimensional co-exploration 
seems to be able to find better design points and ensure the 
convergence toward global optima. Furthermore, the multi-
dimensional co-exploration has a higher diversity and 
coverage of design alternatives, producing higher quality DSE 
results. Finally, we have also illustrated NASA’s capability 
and flexibility to integrate different kinds of search algorithms 
in DSE experiments. As future work, we plan to integrate a 
more extensive set of search algorithms into NASA, e.g., 
through the integration of the PISA optimization framework 
[18], [19], as well as to perform additional deployment case 
studies of NASA such as multi-objective optimization 
problems introducing other fitness and cost functions.  
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