
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— In this paper, we present a new and generic system-

level MP-SoC DSE infrastructure, called NASA (Non Ad-hoc
Search Algorithm). This highly modular framework uses well-
defined interfaces to easily integrate different system-level
simulation tools as well as different combinations of search
strategies in a simple plug-and-play fashion. Moreover, NASA
deploys in a so-called dimension-oriented DSE approach,
allowing designers to configure the appropriate number of,
possibly different, search algorithms to simultaneously co-
explore the various design space dimensions. As a result, NASA
provides a flexible and re-usable framework for the systematic
exploration of the multi-dimensional MP-SoC design space,
starting from a set of relatively simple user specifications. To
demonstrate the capabilities of NASA framework and to
illustrate its distinct aspects, we also present several DSE
experiments in which we, e.g., compare NASA configurations
using a single search algorithm for all design space dimensions to
configurations using a separate search algorithm per dimension.
These experiments indicate that the latter multi-dimensional co-
exploration can find better design points and evaluates a higher
diversity of design alternatives as compared to the more
traditional approach of using a single search algorithm for all
dimensions.

Index Terms— MP-SoC design, performance analysis and
design aids, system-level design space exploration.

I. INTRODUCTION
Today’s embedded systems are increasingly based on multi-

processors systems-on-chip (MP-SoC). These MP-SoCs
typically contain multiple storage elements, networks, I/O
components, and a number of heterogeneous programmable
processors for flexible application support as well as dedicated
processing elements for achieving high performance and
power goals [1]. In order to cope with the design complexity
of such systems in a time-efficient way, the abstraction level
of the design process has in recent years been raised towards
the system-level. Design Space Exploration (DSE) is a key
ingredient of such system-level design, during which a wide

Manuscript received July 28, 2010. This work was supported in part by
Spanish Ministry for Science and Technology.

Zai Jian Jia, Tomás Bautista and Antonio Núñez are with the Research
Institute for Applied Microelectronic, University of Las Palmas de Gran
Canaria, Spain; e-mail: {cjia, bautista, nunez}@ iuma.ulpgc.es).

Andy D. Pimentel and Mark Thompson are with the Computer Systems
Architecture Group, Informatics Institute, University of Amsterdam, The
Netherlands; (e-mail: {a.d.pimentel, mthompson}@uva.nl).

range of design choices are explored, especially during the
early design stages. Such early DSE is of paramount
importance as early design choices heavily influence the
success or failure of the final product, and can avoid wasting
time and effort in further design steps without the possibility
of meeting design requirements because of an inappropriate
system architecture design. The process of system-level DSE
logically consists of two interdependent components [2]: (i)
evaluation of a design point in the design space using e.g.
analytical models or (system-level) simulation, and (ii) the
search mechanism to systematically travel through the design
space.

Both DSE components have received significant research
attention during the last decades, e.g., [3]-[8]. For instance,
system-level simulation is a popular method for evaluating
single design points [2]. These simulation tools usually
operate at a high level of abstraction and are often based on
the Y-Chart principle [9], [10]. According to this approach,
any system can be specified with the combination of three
models: an application model, an architecture model and a
mapping model. The latter means that the Y-Chart principle
decouples application from architecture by recognizing two
distinct models for them. An application model – derived from
a target application domain – describes the functional
behaviour of the application (using, e.g., Kahn Process
Networks or tasks-graphs) in an architecture-independent
manner. Simultaneously, an architecture model – defined
with the application in mind – defines the architecture
resources and captures their performance constraints. Finally,
an explicit step (or model) maps the application model onto an
architecture model for co-simulation, after which distinct
system metrics can be quantitatively evaluated.

However, these simulation tools only provide a partial
solution since an overall framework is needed to
systematically explore the design space. Such a system-level
DSE framework should allow for exploring a wide variety of
system parameters and design choices, including the number
and type of processing elements in the MP-SoC platform, the
type of on-chip network, the memory organization, the
mapping of application tasks and communications onto
architecture resources, scheduling policies, and so on.
Evidently, the more details (or dimensions) taken into
account, the larger the design space that needs to be searched,
and therefore the more costly the analysis. Although many

A Generic Infrastructure for System-level MP-
SoC Design Space Exploration

Zai Jian Jia, Andy D. Pimentel, Senior Member, IEEE, Mark Thompson, Tomás Bautista and
Antonio Núñez

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

DSE approaches based on a large variety of search techniques
have been proposed, three common factors can be identified in
all of them:
1) DSE efforts are usually targeted to a specific system-level

simulation tool (or analytical evaluation method), where
each effort typically uses a different kind of simulator.
Consequently, it is hard to re-use these DSE frameworks
and elements in them.

2) Setting up the DSE experiments can be very labour
intensive. It is often the case that for every experiment,
control scripts need to be (re-)written to manipulate the
simulation parameters and configuration files (specifying
the design instance to evaluate) according to the
algorithm that searches through the design space. These
scripts are often inflexible and hard to re-use for different
types of DSE experiments, i.e., assessing different
parameters or parameter ranges.

3) In spite of the wide variety of eligible architectures for
implementing embedded systems applications, many DSE
experiments are focused on a particular class of MP-SoC
architectures only. Moreover, designers have to write
such models manually. This latter is an error-prone task
and one of the bottlenecks in improving the designer's
productivity, and severely limits the amount of the design
space that can be explored in a reasonable time.

In summary, to the best of our knowledge, there does not
exist a generic infrastructure to facilitate and support system-
level MP-SoC DSE experiments, and to foster the re-use of
software in the context of system-level MP-SoC DSE. This
calls for a unified framework integrating and coupling both
simulation and search mechanisms to efficiently and
systematically explore design spaces, as well as a fast tool to
automatically generate a wide range of architecture models, so
that a large variety of architectures can be easily explored and
evaluated. The resulting relationship between these three
components is shown in Fig. 1.

To address the above challenges, this paper presents a new
generic system-level DSE infrastructure implemented in C++,
called NASA (Non Ad-hoc Search Algorithm). Its main goal
is to provide a single, common, and modular framework for
system-level DSE experiments. It allows for incorporating
different (existing) system-level simulation tools as well as
different combinations of search strategies by means of a
simple plug-in mechanism. An architectural platform
generator has also been integrated in NASA to free designers
from the efforts to manually create architecture models. Thus,
this automation improves the design productivity and enables
the designer to focus on the more valuable issue of making
design decisions. As a consequence, the NASA framework
provides a flexible and re-usable environment to
systematically explore the multidimensional MP-SoC design
space, starting from a set of relatively simple user
specifications. NASA's output includes information about all
explored design points as well as a set of optimal design
points within the explored design space, which best meet the
user constraints such as real-time application constraints,

number and types of available components in the platform
architecture, costs/area, etc.

The remainder of the paper is organized as follows. In the
next section, related work and our contributions are presented.
In Section III, we describe various implementation aspects of
NASA framework. In Section IV, we present a range of
experimental results, demonstrating NASA's capabilities.
Finally, Section V concludes the paper.

II. RELATED WORK AND CONTRIBUTIONS
Performing DSE in a time-efficient and accurate way is not

a new problem and there exists a large body of related work in
this area. Most of the approaches in the embedded systems
domain are targeted to the system-level exploration of
heterogeneous MP-SoC [3]-[5], [8], [11]. Although these
efforts are fairly efficient to explore various alternatives for
mapping a specific application onto a target MP-SoC
architecture, they typically still require significant effort to
(re-)write scripts that control the evaluation mechanism
(analytical model or simulator) during the search through the
design space. In fact, this often means that there exists a
repetitive effort to build customized scripts and/or architecture
models for every different kind of DSE experiment. Thus,
automating such a process becomes a key element in terms of
reusability and flexibility for larger design space explorations
in the design of a heterogeneous multiprocessor architecture.

Several proposals to integrate external design-point
evaluation tools in a DSE environment can also be found in
literature. In [12], a hierarchical and three-phase DSE
methodology is presented. It facilitates the integration of
simulators by using a set of tool-dependent interpreters or
adapters. Angiolini et al. [13] present a framework that
integrates an ASIP tool-chain within a virtual platform to
explore a number of axes of the MP-SoC configuration space.
However, unlike our work, this framework does not allow the
integration of external search methods. Moreover, it still
requires human intervention in the feedback loop of the
searching and optimization process.

The MultiCube project [14] has similar objectives as the
work presented in this paper, but it targets the exploration of
the configuration space of homogeneous chip multiprocessors
rather than system-level MP-SoC platform DSE. This implies
that it has limited or no capabilities to explore different

Fig. 1. Integration of an external system-level simulator with searching
mechanism and a system generator in a single DSE infrastructure.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

application to architecture mappings, heterogeneous
processing elements, different interconnections, and so on.

Other works have also developed a modular interface-based
system-level MP-SoC DSE framework [15], [16]. In these
cases, different search algorithms can be plugged in, but the
resulting DSE is limited in terms of the target MP-SoC
platforms that can be explored. This last aspect has been
addressed in [17]. Künzli et al. [17] proposed a generic and
modular framework based on PISA [18] for DSE of embedded
system. The PISA interface separates the problem-dependent
variation and estimation part from the generic search and
selection. The resulting two parts are implemented as
independent processes that are communicating via text files.
But, unlike our work and to the best of our knowledge, they
have only coupled analytical models to evaluate design points.
This means that, e.g., the problem of incorporating a system
model generator and external simulation tools has not
addressed.

Using pre-compiled and ready-to-use search algorithms
available at [19] of the PISA framework, Madsen et al. [20]
have created a multi-objective DSE framework. Different
mapping alternatives can be evaluated (by means of analytical
models) for a fixed or flexible platform during the exploration
process. Moreover, the chosen representation formats for
internal interfaces in [20] are problem specific, which means
that they should be modified for each particular problem. In
our case, these are dynamically and automatically updated
according to an input constraints file. Finally, the kind of
platforms generated in [20] is limited to hierarchical bus
topologies, while our approach is not restricted to analyse a
particular architecture.

To conclude this section, we summarize our contributions
as follows. First, we propose a generic infrastructure for
system-level MP-SoC design space exploration, which is
capable of supporting different search strategies and existing
system-level simulation tools in a single environment. As a
result, the potentials for reuse of the framework are
significantly increased since each DSE experiment can be
performed without the need of preparing experiment-
customized scripts, but it only requires a simple change of the
user's input constraint values. Second, we have implemented
and integrated a new approach in NASA to gradually and
automatically generate simulatable system models that are
used for obtaining system metrics to evaluate design
decisions. Thus, the entire DSE process (composed of
searching, system models generation and design point
evaluation) is performed in an automatic and systematic
fashion, thereby improving design productivity and decreasing
the designer’s efforts. Third, NASA deploys a novel
dimension-oriented DSE approach in which the design space
is explicitly separated into dimensions, which could represent
design decisions that are orthogonal to each other such as
mapping, architectural components, and platform. Thus, the
designer can choose to simultaneously explore all dimensions,
or to fix one or more of these dimensions (e.g., a fixed
platform) and to focus the exploration within one or two

dimensions (e.g., mapping exploration only). To this end,
designers are allowed to configure the appropriate number of,
possibly different, search algorithms to simultaneously co-
explore the various design space dimensions.

III. THE NASA FRAMEWORK
Four key properties have been taken into account in the

design of NASA:
Modularity. NASA is a highly modular framework in which

the interaction between its modules is established by well-
defined interfaces, allowing each module to act like an
independent black box inside the framework. As a result,
different modules can be easily integrated in a plug-and-play
fashion.

Flexibility. A key element in NASA is its hierarchical DSE
approach in which the design space is explicitly separated into
different dimensions. As will be explained in more details
later, three dimensions are currently distinguished in NASA:
platform, architectural component, and mapping exploration.
Thus, the designer can choose to simultaneously explore at all
of these levels, or to fix one or more of these levels (e.g., a
fixed platform) and to focus the exploration on one or two
levels (e.g., mapping exploration only).

Re-usability. For a given set of user constraints, NASA is
capable of exploring the design space in a systematic way,
automatically generating the system models of selected design
points that need to be evaluated by the system-level simulator.
Hence, there is no need to prepare experiment-customized
scripts. To perform a new DSE experiment, a designer only
requires changing the constraint values.

Extensibility. Due to the modularity and the well-defined
interfaces, new modules or functionalities can easily be
plugged into the NASA framework. These new modules
could, for instance, handle additional dimensions in the design
space without needing to modify other modules.

The infrastructure of NASA is shown in Fig. 2. Essentially,
six main modules can be distinguished in the framework: the
Search module, Feasibility Checker, Architectural Platform
Generator, Translator, Simulator and Evaluator. Subsequently,

Fig. 2. The NASA infrastructure.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

the different interfaces used by NASA as well as the
functionality of each module are discussed, emphasizing on
the implementation details of the two most important modules:
Search module and Architectural Platform Generator.

A. Interfaces
Three kinds of interfaces are used in NASA: the

architectural intermediate file is used for communication
between the Architectural Platform Generator and Translator,
the fitness file links the Evaluator with the Search module, and
the design-options file is used in all sub-modules of both the
Search module and the Feasibility Checker. Note that these
files are dynamically and automatically created (and updated)
according to the user input files.

In our approach, both the design-options and fitness files
share the same XML-based format, in which design decisions
are encoded in strings. Moreover, each explored dimension
uses a separate design-options and fitness file. For example, in
the 3-level design space exploration shown in Fig. 3, the
platform dimension uses a design-options file to describe
design decisions about the topology, network type(s) and the
connectivity properties for the rest of architectural elements of
a design point; the architectural components dimension uses
its corresponding design options file to specify the type
information of different components, while the decisions
about the mapping of an application onto the different
processing and storage elements are described in a third
design-options file. If the designer decides to use less than one
search algorithm per dimension, then adapter modules will
automatically translate the input and output of the Search
module to match the one design-option file per search
algorithm interface. Note that the number of strings contained
in any design-options file is equal to the number of design
points explored by the Search module in each iteration, as will
also be explained in Section III-B. Examples of design-
decision strings are shown in Fig. 3, for three (Fig. 3(a)) and

one (Fig. 3(b)) search algorithms (SA) in the Search module.
The length of a string description for each dimension may

vary. Using the example shown in Fig. 3, it is evident that the
length of the string describing the mapping depends on the
number of tasks and communication channels in the
application. Similarly, the length of the string describing the
architecture instance is dependent on the number of
processing elements (PEs) and storage elements (SEs) in the
platform.

Finally, the values inside the design-decision strings do not
hard-code absolute values but are indirections to table entries
(also illustrated in Fig. 3(a)). This means that, for example, in
the case of the mapping dimension, the string elements do not
directly hard-code the PEs (including their exact type) onto
which application tasks are mapped. Instead, the string
elements point to entries in a PEs table. Hence, this allows the
designer to, e.g., change the type of PE or add a new type
without the need to adapt any module implementation.
Clearly, this makes the approach more re-usable and
extensible.

The last important interface in NASA is the architectural
intermediate file. It describes the architectural platform design
of each design point in a single file and, as will be explained
in more detail later, it is gradually constructed using the
platform and architectural components strings. The
architectural intermediate file is used by the Translator to
generate an architecture model of the design point in question.
Moreover, it is also used to check the mapping feasibility.
Note that platforms are not fixed entities in NASA but are
often also part of the exploration. Therefore, the Feasibility
Checker requires, e.g., connectivity information specifying
which and how PEs are connected, and which SEs are shared
by which PEs. This information is needed to detect and repair
infeasible mappings, as will be explained in Section III-C.

B. Search module
This module performs the actual search through the design

space, iteratively pinpointing (a set of) design points that need
to be evaluated by means of system-level simulation. As
mentioned before, NASA applies a dimension-oriented design
space exploration approach. This way, each dimension can be
co-explored simultaneously using a single search algorithm, or
using multiple and possibly different search algorithms for the
various dimensions. In this context, co-exploration means that,
in spite of using one search algorithm per dimension, we do
not perform the system-level design space exploration as
multiple independent explorations, but instead, the results
from all dimensions are simultaneously taken into account.

(a)

(b)

Fig. 3. Search Algorithms (SA) and search strings in NASA.

(a) (b)

Fig. 4. Pyramidal versus one-to-one technique to link design decisions in a
single design point.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

This is, a design point dp can be expressed by linking k
available design decision values {dpla, darc, dmap}
corresponding to each of k design space dimensions, where
dmap represents a design decision in the mapping dimension,
while darc and dpla express a particular design decision for the
architectural component and the platform dimensions,
respectively.

If multiple search algorithms are used to explore the design
space, then there are many ways of linking the design
decisions of each dimension to form a design point
specification, as depicted in Fig. 4. For example, using a pure
one-to-one linking technique, as shown in Fig. 4(b), each
design decision in each dimension is linked to only one design
decision in the other dimensions. Thus, the number of design
points explored per iteration by the Search module is equal to
the number of design decisions (or strings) contained in any
design-options file, assuming that all design-options files have
the same number of strings. Clearly, this significantly reduces
the number of required evaluations because of the linear
relationship between the number of design decisions and
design points.

However, this approach may suffer from a possible
convergence problem due to “under-exploration”, i.e.,
discarding a design decision (e.g., a specific platform
instance) too soon based on the results of a premature
evaluation. For example, let },,{ A

map
A
arc

A
pla dddA = and

},,{ B
map

B
arc

B
pla dddB = be two different design points. If it turns

out after a single simulation that the fitness value of A is better
than that of B, then this does not mean that platform A

plad or

architectural components A
arcd are always a better choice than

B
plad and B

arcd , but we do can affirm that the combination of

design options },,{ A
map

A
arc

A
pla dddA = is better than

},,{ B
map

B
arc

B
pla dddB = . For instance, this latter does not guarantee

that },,{ A
map

A
arc

A
pla ddd can provide a better fitness value than

},,{ C
map

B
arc

B
pla ddd , where C

mapd is another feasible mapping for B.
To address this under-exploration problem, we use a variant

of one-to-one linking of design decisions. In this technique,
unlike the pure one-to-one technique, only design decisions
from the dimension of the lowest abstraction level (i.e., the
mapping dimension in our case) are evaluated and updated
during each search iteration. The search algorithms for the
higher-level dimensions (i.e., the platform and architectural
components dimensions) keep collecting the fitness values
(for different mappings) without actually changing their
design decisions during a specified number of iterations,
referred to as the collecting iterations (δ). Only when the
search has reached δ iterations, design decisions are updated,
after which the process starts again. Obviously, the higher the
abstraction level, the more design alternatives can be derived
for a single design option (e.g., a multitude of architecture
instances can be obtained from a single platform) and,
consequently, the higher the value of δ should be. Note that
the above mentioned feedback information, i.e., the fitness

values, needed to guide this search through the design space,
are iteratively provided by the Evaluator module, which will
be explained in Section III-G.

C. Feasibility Checker
Because the search algorithms may try to assess infeasible

design points during the DSE process, the main task of the
Feasibility Checker is to detect infeasible design points and
repair those design points if possible. In this context, a
feasible design point is a system design that meets the user
constraints both in terms of mapping and architectural
implementation. If at least one of them is not satisfied, then
the resulting design is classified as an infeasible one.

During this checking process, all sets-of-strings (or design-
options files) are checked in a hierarchical fashion. This is, the
platform string is first checked to determine whether or not the
specified platform template (to be discussed in more detail in
Section III-D) contains a valid topology and, e.g., whether it
does not contain isolated islands of components. Next, the
architectural components string is checked to determine
whether or not the number and types of selected architectural
components in the platform template comply with the
constraints provided by the user. For example, if a design
point deploys 4 ARM processors while the user has specified
that only 2 ARM processors can be instantiated, then we have
an infeasible design point. Finally, the mapping string is
checked for infeasibility, e.g., when application tasks are
mapped onto PEs that have not been allocated in the platform,
or in the case there is no shared SE to map a logical
communication channel between two tasks that have been
assigned to different PEs. So, each design point is globally
checked, i.e., taking all dimensions of the design point into
account.

If an infeasible design point is detected, then different kinds
of repair mechanisms can be applied, depending on the
dimension where the problem occurs. Note that different
repair techniques can also produce different feasible solutions
from the same infeasible design decision. In our current
implementation, we use heuristic minimum-distance repair
techniques, which introduce a minimum number of
modifications to an infeasible design string in order to obtain a
feasible one. As a consequence, our repair techniques only
have a minimal effect on the run-time of the framework. In the
aforementioned infeasible mapping example (i.e., no
reachable SE for two communicating tasks), only the
communication channel of those two application tasks should
be relocated into an reachable SE if a feasible mapping can be
derived from such a repair. Although it is also possible to
repair by mapping one of those two application tasks onto
another available PE (or even both application tasks onto the
same PE), this would require the resulting mapping to re-enter
for a new mapping feasibility check as it may cause additional
infeasibilities for other communication channels. In the worst
case, this may even cause an infinite loop. The impact of these
repair mechanisms on the number of explored feasible design
points will be discussed in Section IV-B. Specifically, our

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

experimental results reveal that these repair techniques can
warrant the repair of a high percentage of infeasible design
points in the DSE experiments.

D. Architectural Platform Generator
The main mission of this module is to provide the

architectural description for each design point by means of
combining both feasible platform and architectural
components information, which are contained in the strings of
their respective design-option files. The resulting architectural
description file is used later for (i) feasibility checking of
mapping strings, and (ii) as input (to the Translator) to
generate the architectural model. Thus, the Architectural
Platform Generator can be considered as the first stage of the
system model generation process.

An architectural description is created in two steps:
platform or topological template generation and architecture
instance generation. The basic building block of these
descriptions is the so-called Basic Topology Unit (BTU). As
shown in Fig. 5, the BTU is a logical pattern consisting of a
network container (the gray component) and a variable
number of element containers (the white blocks). These
element containers are labelled inside each BTU and can, in a
later stage, be instantiated as architectural components such as
PEs and SEs. The number of element containers in a BTU
depends on the user specifications, like the maximum number
of PEs and SEs in a platform. Note that network containers
cannot directly connect to each other, while element
containers can connect to both element and network
containers.

The BTU is labelled and replicated a number of times to
form a meta-platform, which is used later in topological
template generation. In principle, the meta-platform is used as
a basis from which all feasible platform instance descriptions
can be (gradually) derived and generated. The number of BTU
replications in the meta-platform depends on the maximum
number of network element (NE) and connections allowed
among element containers, as specified by the user. The latter
is referred to as connectivity, which defines for each element
container both the available links and the directions
(represented with numbered arrows in the top-left corner of
Fig. 5). Thus, a BTU can be replicated through two or three
directions and, as consequence, different kind of meta-
platforms can be generated according to the user
specifications. A 2D meta-platform generation process is
shown in Fig. 5, although a 3D meta-platform can be also
generated if the gray links of an element container (top-left
corner of Fig. 5) are also used during this process. It should be
noticed that the generation of the BTUs as well as the meta-
platform is performed statically (but automatically) before the
actual DSE process.

Driven by the exploration at platform level (in Search
module), the meta-platform is used to generate topological
template instances. To this end, the set of strings of feasible
platforms is used to instantiate the topological templates from
such a meta-platform: each string sets (for one design point)

the type(s) and number of networks in the platform.
Moreover, the number of element containers in the platform as
well as their connectivity properties are also determined.
Finally, a type classification of the element containers is
made. This latter means that for each allocated element
container in the BTUs, it is indicated whether it contains a PE
or a SE. Note that, as explained in Sections III-B and III-C,
these platforms have been selected by the Search module and
checked by Feasibility Checker. The latter repairs strings
describing any infeasible topological templates such as, for
example, isolated BTUs that do not connect to any other BTU,
architectural elements with incorrect connectivity links, and
other inconsistencies.

Finally, in order to obtain the complete specification of the
architecture platform for each design point, the topological
templates are further refined. In this process, which is driven
by the exploration at architecture component level, the same
topological template can be reused to derive different
architecture templates. For this propose, the actual component
types of the element containers in a template are added. In the
example of Fig. 5, this means that, e.g., a PE allocated in an
element container either becomes an ARM or MIPS processor,
and the SEs either SDRAM or DDRAM. Evidently, all this
information is also provided by the strings of feasible
architectural components.

E. Translator
In order to integrate a system-level simulator in NASA, it is

required that the simulator allows for explicitly describing the
design points that need to be simulated using some kind of file
format. Thus, a system model for each design alternative
should be generated first. Such a system model, composed of
an architecture model, an application model and a mapping
model, can be provided by the Translator module in an
automatic way. To this end, it uses as input the architectural
intermediate file, the application specifications and the strings

Fig. 5. Generation of topological templates and architecture instances.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

that describe feasible mappings. Thus, the Translator can be
considered as the second (and last) stage in the generation
process of the simulatable system model.

There exist two relevant benefits in including this module
in our framework. First, the Translator converts NASA’s
internal format of a design point to a file-based format that is
specific for the target system-level simulator. Second, the
integration of a new system-level simulator in NASA only
requires the adaptation of the Translator module, i.e., tailoring
the Translator for each different simulator, while all other
modules remain unaffected. This is why two kinds of module
colors can be identified in Fig. 2, simulators-dependent
(black) and simulators-independent (gray) modules.

F. Simulator
At this moment, we have integrated a SystemC-based

system-level simulation environment called CASSE [3] in
NASA. Another system-level simulator, called Sesame [4], is
in the process of being integrated. Both tools follow a Y-Chart
methodology, covering application and architecture
modelling, as well as mapping and analysis within a unified
simulation environment.

For these simulators, the application model is described as a
process network (Kahn Process Network) or as a Tasks-graph,
where parallel tasks communicate with each other by means of
unidirectional channels. Here, tasks (containing the
application functionality) are often written in C/C++. On the
other hand, the architectural model is specified as a modular
composition of highly configurable predefined elements
(provided by the tool libraries), including processing elements
(PE), storage elements (SE) and network elements (NE). The
number of elements of each type and their configuration (e.g.,
number and width of port, clock, memory size, network
arbitration scheme, task scheduler policy, etc.) can also be
properly configured in this description file. Finally, another
description file is used by CASSE and Sesame to control the
mapping of the application onto the architecture. Note that
both tools ensure deadlock-free task mappings and scheduling
for feasible design points. Obviously, all the required models
and descriptions can directly be generated by a customized
Translator module, as it was explained in Section III-E.

At this point, it is important to highlight a key property for
the mentioned simulation tools. The system model file is read
and parsed by CASSE and Sesame during elaboration time in
order to properly configure the desired design point. Thus,
changes in the files describing a design point do not require
any recompilation effort. Evidently, this allows for evaluating
design alternatives during the exploration process in a
completely automatic way, without any human intervention.
To give an example, the simulators are highly parametrized in
terms of performance values for the different architectural
processing and communication elements. These parameter
values are explicitly stored in the system model file. This
allows for, for example, quickly evaluating different
hardware/software partitionings by simple manipulation of the
performance values for selected processing elements.

Since the implementation of these tools is behind the scope
of this paper, the interested reader is referred to [2] for an
overview of existing system-level simulators, and to [3] [4]
for more detailed information about CASSE and Sesame.

G. Evaluator
During simulations, quantitative information about the

system execution (e.g., data about performance, cost/area, and
power consumption) can be gathered and dumped into files
for later inspection. All these metrics can be used in system-
level DSE to find a set of Pareto optimal design points, which
then yields a multi-objective optimization problem.

The essence of the Evaluator module is to provide this
feedback about the quality of a set of evaluated design points
to the Search module, influencing the search decisions taken
in the exploration process.

Separating the Evaluator from the Search module again
provides flexibility and enhanced reusability of the
components in NASA. It allows for easily changing the
optimization objectives or the function that quantifies the
quality of a design point without affecting the other
components. Such a function is typically referred to as the
fitness function. The Evaluator also provides the flexibility to,
e.g., use a single fitness function for all search algorithms in
the Search Module, or to deploy a different, and possibly
tailored, fitness function per search algorithm.

However, when multiple search algorithms and fitness
functions are used together, these should be defined in a
coherent way with respect to each other in order to avoid
conflicting fitness functions and safeguard convergence. This
is because there exists a tight connection between the different
search algorithms and their respective fitness functions. This
connection should be made explicit. In our current
implementation, these relations can be defined by a set of
hierarchical fitness functions, which can be used with a
variant of the one-to-one linking technique (already explained
in Section III-B) to address the under-exploration problem in
hierarchical design space explorations with multiple search
algorithms. Formally, these hierarchical fitness functions are
formulated as follows:

where iLy is the fitness value of a design point of the lowest-
level dimension (the mapping dimension in our case) in the
search iteration i, I is the total number of search iterations, xk
represents the value of the metric k used in the fitness function
f, ijy is the fitness value of a design point in any dimension
other than the lowest one, and δj represents the collecting
iterations for the individuals of dimension j. Moreover, for a
given range of dimensions β, the number of the search
iterations needed for collecting fitness information for
dimension z (e.g., platform) should be bigger than the number
of iterations needed for dimension w (e.g., architecture) if z
has a higher abstraction level than w (denoted by the ⊃

⎪
⎩

⎪
⎨

⎧

⊃=∀>

≠∀=∀∑==

=∀=

=
wzandwz

LjandIiyxxxfy

Iixxxfy

wz

jj
j

q qLkjij

kLiL

βδδ

δδ
δ

..1,;

..2,,1;),...,,(

..1);,...,,(

1
21

21

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

operator).

IV. EXPERIMENTAL RESULTS
In this section, we present a number of DSE experiments to

demonstrate the capabilities of the NASA framework and to
illustrate its distinct aspects.

A. NASA configurations for experiments and parameter
settings
The first set of experiments aims at comparing the more

traditional approach of using a single search algorithm for all
design space dimensions to our dimension-oriented approach
(using a separate search algorithm per dimension, i.e., 3
search algorithms (SAs) in total). To properly evaluate and
compare the quality of the DSE between different search
strategies, we can define three criteria:
1) Diversity. A large number of different design points

should be explored in each DSE experiment to cover a
wide range of design decisions for each dimension.

2) Convergence. The strategies should provide
approximations to global (or near-to) optimal solutions
without being trapped at local optima.

3) Coverage. The explored design points should be well-
distributed in the design space for a complete view of the
trade-off curve or landscape of the design space as well as
catching boundary values.

Assessing the quality of the exploration is not equal to
assessing the “quality” of the obtained design points.
However, an exploration meeting all three criteria should lead
to good design points in terms of fitness values (such as good
performance). Different parameter settings for the
experiments, i.e., different NASA configurations, lead to
different results in DSE quality and in the fitness values
obtained. Next, we introduce several different NASA
configurations together with the results obtained.

In Table I, the most important user specifications and
parameters for the first set of experiments are listed. The
studied MP-SoCs may consist of up to 6 PEs of the types
ARM, PowerPC (PPC), or MIPS, up to 3 SEs of either single
(SDR) or double data-rate (DDR) type, and up to 4 NEs of
three types (bus, fully connected, or a customized network
consisting of a bus and point-to-point links). The application
that is mapped onto the MP-SoC is an optimized version of
the computer vision algorithm presented in [8]. Basically, this
visual tracking algorithm has a real-time requirement (25
frames/s), and applies a correlation or block matching
technique to continuously track a specific target in the
incoming image frames. The block or pattern size and frames
size used in our experiments are 24×24 and 320×240,
respectively.

1) Search Algorithms settings (SA)

With respect to the search algorithm(s) we use for
exploration, a multitude of them can be used (via a simple
plug-in mechanism): from exhaustive search or random
search, to heuristic search methods. We focus on

implementations based on genetic algorithms (GAs), since
GA-based DSE has been widely studied in the domain of
system-level design [6], [7], [11], [17], [20], and it has been
demonstrated to yield good results. In this case, we use a
proprietary implementation of the GAs, but any existing GA
such as SPEA2 or NSGA-II [11] could also have been used.

2) Crossover and mutation type settings

The crossover and mutation operators in our GAs are
performed at the granularity of entire sub-strings (see Fig. 3)
in a string that describes the topological platform, architectural
components or mapping. These operators are applied
according to their associated probabilities (pc: probability of
crossover, and pm: probability of mutation). Further, the GA
can perform either a 1-point or a 2-point crossover, and
supports two types of mutation. In “simultaneous” mutation
(M=1), a single random position is simultaneously changed in
every sub-string. In “independent” mutation (M=6), the
mutation probability is used for each of the six sub-strings to
determine whether it is mutated or not. In the case that three
GAs are used for exploration, different and customized values
for the probabilities pc and pm can be used within each GA.

If all the GA parameters in Table I are taken into account, a
large number of experimental combinations can be performed.
From this set of experiments, we present a selection of four
NASA configurations. The nomenclature used to denote these
configurations is “SAgaCxM”, where the meaning of each
capital letter is defined in Table I. For example, “3ga1x6”
refers to the configuration with 3 GAs that simultaneously
explore the platform, architectural components and mapping
dimensions, a 1-point crossover, and “independent” mutation
(M=6).

3) Group of experiments and run-times per simulation

All possible combinations of the pc and pm values (as listed

TABLE I
PARAMETER SETTINGS IN OUR EXPERIMENTS

Parameter Nr. Types Values
PE ≤ 6 3 ARM, PPC, MIPS
SE ≤ 3 2 DDR, SDR

NE ≤ 4 3 Bus, Fully-connected,
Customized-network

App. Tasks 7 - -
App. Channels 12 - -

Dimensions (β) 3 - Platform, architectural
components and mapping

Search algs. (SA) 1 or 3 1 Genetic algorithms
GA Selection (S) 1 1 Proportional with elitism
GA Crossover (C) 1 2 1-point and 2-point
C probability (pc) 5 - [0.1,0.3,0.5,0.8,1.0]

GA Mutation (M) 1 2 Simultaneous (M=1) and
Independent (M=6)

M probability (pm) 5 - [0.1,0.3,0.5,0.8,1.0]
Collecting iterations
(δarc)

1 - 2, architectural components
dimension

Collecting iterations
(δpla)

1 - 4, platform dimension

Search iterations (I) 41 - -
Population size (N) 10 - Nr. of individuals per iteration
Simulation tool 1 - CASSE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

in Table I) have been evaluated. This results in 25 groups of
experiments (5 pc probabilities × 5 pm probabilities) for each
of the four mentioned NASA configurations. Note that,
independent of the number of search algorithms used in these
experiments (i.e., 1 GA or 3 GAs), a maximum of 205,000
simulations (25 groups of experiments × 20 different initial
populations × 41 iterations × 10 individuals per iteration) have
been performed for each NASA configuration. The CASSE
tool – which dominates the run-time of our DSE experiments
– requires on average 40 seconds to simulate a single design
point on a PC with a Pentium IV processor at 1.6 GHz and 2
GB main memory, running Linux.

4) Fitness functions for evaluation and optimization

In order to simplify the graphic representation of the results
and the explanation of the examples in this section, without
loss of generality, the fitness value in our experiments only
takes a single system metric into account, namely
performance. We would like to stress, however, that multi-
objective optimization can also be perfectly addressed with
NASA.

B. DSE behaviour and sensitivity to various parameter
settings

1) Impact of the number of search algorithms on DSE
quality

The results of the above experiments are shown in the four
scatter-plots of Fig. 6, which compare the behaviour of DSE
experiments based on a single and multiple GA approach after
10, 20, 30 and 40 iterations, respectively. Each scatter-plot
shows the average total of different explored design points
(i.e., accumulated diversity) on the x-axis and the average of
the best fitness values, in terms of processed data packets/s, on
the y-axis for each of the experiments.

If the input arrival frame rate is 1450 packets/s and a
minimum of 1250 packets/s has to be processed to satisfy the
minimum real-time requirements of the studied application
(which is equivalent to processing 25 frames/s), then using a 3
GA-based search approach in NASA not only provides the
design alternatives with the best fitness values (in the upper
right corner for each scatter-plot of Fig. 6) but the
accumulated diversity of the explored design points is also
largest. Notice that exploring the same design space with a
traditional, single GA approach, optimal and near-to-optimal
architectures are less often found. This is mainly due to a
smaller accumulated diversity of explored design points.
Moreover, it can also be seen that the larger the number of
iterations, the larger the gap between traditional single GA-
based DSE and our 3GA-based DSE in terms of accumulated
diversity and best design points reached.

From this, it appears that the multiple GA search has a
positive impact on the DSE quality. In other words, while all
parameter settings affect the quality criteria of the exploration
performed, and consequently the best design points obtained,
the multiple GA-based searching seems to be an important
factor for achieving quality.

For a detailed comparison between both approaches (single
GA and multiple GA search), the three proposed criteria –
diversity, convergence and coverage – are separately analyzed
in Fig. 8, Fig. 9 and Fig. 10. To this end, we have selected one
group of experiments for each of the four mentioned
configurations, where all configurations use the values pc=0.8
and pm=0.3. With these probabilities, the “3ga2x6”
configuration finds the design point with the best overall
fitness value after 40 iterations (see upper right corner of Fig.
6(d)).

(a) 10 iterations (b) 20 iterations

(c) 30 iterations (d) 40 iterations

Fig. 6. DSE results for four NASA configurations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

2) Impact of repair mechanisms on the efficiency of the
DSE process

At this point, it is important to highlight that, although the
explored design points shown in our experimental results
include both feasible and infeasible design points, only
feasible design solutions are evaluated by the CASSE tool.
However, due to the repair techniques applied in the
Feasibility Checker module, most of the infeasible design
points can be detected and converted to feasible ones. As a
consequence, the feasible alternatives actually evaluated
represent an important percentage of the total number of
explored design points. This can be illustrated in Fig. 7(a) and
Fig. 7(b), which depict the average percentage of feasible,
repaired and infeasible design points per iteration for the DSE
experiments based on both approaches (single and multiple
GA search). Note that the gray part of each bar (in Fig. 7)
represents feasible design points without any repair, the dark
part refers to repaired design points (i.e., infeasible design
points repaired by the Feasibility Checker module and
converted to feasible ones), and the white part indicates the
infeasible design points that cannot be repaired by our
heuristic minimum-distance repair techniques.

From these data, it can be seen that our repair techniques
can repair more than the 84 percentage of detected infeasible
design points in each iteration, and as a result, more than the
91 percentage of explored design points can be actually
evaluated by the CASSE tool. Thus, it seems that the repair
mechanisms significantly affect and improve the efficiency of
the DSE experiments.

3) Convergence rate and number of iterations

The convergence is illustrated in Fig. 8, where the
horizontal axis indicates the number of explored design points
(and iterations) and the vertical axis represents the fitness
values in terms of processed data packets/s. Investigating
these data, it can be seen that 1 GA-based experiments have a
higher convergence rate (i.e., a steeper slope) than 3 GA-
based experiments in the first iterations. This phenomenon is
the implicit effect of using the hierarchical fitness functions
(explained in Section III-G) and the variant of the one-to-one
individual linking technique (presented in Section III-B) in 3
GA-based experiments.

However, when the number of iterations increases, 3 GA-
based experiments do not only gradually and progressively
reach higher fitness values than 1 GA-based experiments, but

they can also ensure that most of the individuals in each
iteration satisfy the real-time restriction (1250 packets/s). In
the 1 GA-based experiments, on the other hand, mostly design
solutions with fitness values lower than the real-time
restriction are reached. Moreover, the 1 GA-based experiment
hardly improves or provides better design alternatives with the
evolution of iterations. The latter could indicate that the GA is
trapped in a local optimum, which occurs when design points
explored in each experiment are not sufficiently different or
well-distributed (i.e., partial coverage) to properly capture the
design space in its entirety (e.g., covering only partially or
some regions of the design space), caused by an insufficient
variety of new individuals introduced in each iteration (i.e., a
low incremental diversity) that prevents the populations to
escape from such local optima. These aspects can be
demonstrated in both Fig. 9 and Fig. 10.

a) Diversity and the search approach
Each curve in Fig. 9 represents the percentage of new and

different design points introduced in each iteration that have
not been explored in any of previous iterations, i.e., the

(a) 1GA: average percentage of repair = 84.21% (b) 3GA: average percentage of repair = 86.68%

Fig. 7. Average percentage of feasible, repaired and infeasible design points per iteration in our DSE experiments.

Fig. 8. Average fitness values per iterations.

Fig. 9. Incremental diversity per iterations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

incremental diversity per iteration. These results highlight that
3 GA-based experiments clearly yield a higher incremental
diversity per iteration than 1 GA-based experiments, and
especially in the case of 1 GA with “simultaneous” mutation
(M=1). A direct consequence of the latter result thus explains
the resulting gap of the accumulated diversity between both
approaches, as already shown in Fig. 6.

4) Coverage, design points concentrations and local
optima

All design points explored by each of the selected group of
experiments (corresponding to the four mentioned NASA
configurations) are separately shown in Fig. 10, where each
axis represents one design space dimension in our 3D design
space. Moreover, for a fair comparison, each axis in Fig. 10
contains all ordered design-decision instance numbers (i.e.,
the canonical representations of the strings for the platform,
architectural components and mappings dimensions) explored
together by these four groups of experiments. It can also be
seen in Fig. 10 that the design points explored in the 3 GA-
based experiments are scattered over almost the whole design
space (high coverage) and are characterized by a high
accumulated diversity. The design solutions reached by the 1
GA-based experiments, on the other hand, have a lower
accumulated diversity and are often concentrated in a single
region of the explored design space (lower coverage). This
indicates that the searching process is converging toward an
optimum, and in this last case, toward a local optimum as

already shown in Fig. 8.

5) The need for refinement

It should be noted that design points concentration – a
visual indicator of the convergence process – can also be
observed in the 3 GA-based experiments. But, unlike the 1
GA-based experiments, the convergence is toward a global
optimum or toward a few optimal points. The existence of
several “optimal points” can be illustrated for two NASA
configurations based on multiple GAs shown in Fig. 10,
where more than one design points concentration (or
convergence) area can be identified. This is correct since
different alternatives can often satisfy a given set of user
restrictions. To illustrate the above, two design points (A and
B) have been marked in Fig. 10(d), and their respective
architectures and mappings are shown in Fig. 11. In this case,
although both solutions (corresponding to each of the design
points convergence regions) have similar performance (A
achieving 1371 packets/s and B 1355 packets/s), their
underlying platform architectures are however quite different.
Moreover, they are also over-dimensioned in the sense that
not all resources are actually used by the application.
Therefore, in this case, designers can perform an additional
optimization process in terms of architectural components
and/or in terms of mapping. Such refined optimization can be
performed in a next and more detailed phase of exploration
experiments where, e.g., the platform is fixed and only the
architectural components and mapping dimensions are

(a) 1GA1x6 (b) 1GA2x1

(c) 3GA1x6 (d) 3GA2x6

Fig. 10. Explored design points by each selected NASA configuration.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

explored more rigorously. Alternatively, additional objectives
or fitness functions (such as the cost of designs) can also be
taken into account in the optimization process. In the next
section, we will further investigate refinement by fixing one
dimension (platforms) and then conducting DSE in just a two
dimensional space (architecture components and mapping).

C. Hierarchical refinement and analysis of 2D-DSE with
NASA
Our second set of experiments presented in this paper aims

at demonstrating NASA’s flexibility and capacity to perform
the aforementioned refinement process. To this end, this set of
experiments is focused on 2D design space explorations,
where design decisions about mapping and architectural
components are explored for a particular platform template,
i.e., the platform dimension is fixed and no search algorithm is
used in this dimension. Obviously, in order to model a specific
platform template, designers should properly configure the
platform string values for the number and types of element
containers in each instantiated BTU as well as their
connections with each other.

1) Fixed target platform, variable architectural
components and mapping

The selected target platform template and available type
values for PE and SE are depicted in Fig. 12 and Table II.
This platform template can provide architecture models based
on two AMBA buses connecting up to six processing
elements and three storage elements. The execution time of
the visual tracking application’s tasks has been estimated
using an instruction set simulator [21] for the ARM processor,
while we assume that the hardware dedicated block (which
executes block matching operations of the target application)
has a ×10 speedup factor with respect to the SW
implementation. Note that in this case study, plenty of
platforms could have been analyzed in our refinement
experiment. However, we believe that we selected a realistic
MP-SoC platform template, consisting of several
homogeneous processors completed with a few coprocessors
or hardware dedicated blocks in a bus-based architecture,
rather than an MP-SoC based on various processing and
network element types having different computational and
communication characteristics.

2) 2D NASA configuration for DSE

Four NASA configurations have been selected in this

second set of experiments: 1GA+1Random, 1GA+1ga,
1GA+1GA and a heuristic algorithm from [22]. The used
parameter settings of the genetic algorithms are illustrated in
Table II. For example, 1GA+1GA (or 1GA+1ga) refers to two
identical (or different) genetic algorithms are used in the
architectural components and mapping dimensions,
respectively. On the other hand, in the cases of
1GA+1Random, a GA explores different architecture
instances by varying the type of SEs as well as the location of
the hardware dedicated block in different PE containers of the
platform template (since the rest of PE share the same
processor type), while a random search algorithm explores
different functionality distributions onto system resources in a
random fashion. It should be noted that although not included
in this set of experiments, an extensive number of
combinations of different search algorithms as well as GA
parameters could have been used (as already shown in Fig. 6
for our first set of experiments). Therefore, the four selected
configurations only represent a few samples of NASA’s
capacity and flexibility.

3) Heuristic-based mapping algorithm

For convenience, a brief overview of the heuristic algorithm
is introduced before presenting our results and performing
comparisons. This heuristic algorithm [22] uses as input a
real-time application, the equivalent deadline (in number of
cycles) of the real-time constraint, a MP-SoC template and a
list of available PEs and SEs for such template, and estimates
analytically the best MP-SoC instance (varying the location
and combination of PEs and SEs) for the target real-time
application, i.e., achieving real-time requirements as well as
optimizing processor utilization, inter-processors traffic load,
and processor load balancing. The heuristic approach consists
of three phases. First, a real-time application is modelled as a
tasks-graph, after which the algorithm schedules the tasks on a
set of virtual processors (VPs) or logical clusters taking into
account the real-time deadline and assuming that: (i) each
physical PE can only hold a single VP in the further steps and,
(ii) the set of PEs works in a pipeline fashion. Second, all
possible MP-SoC instances are exhaustively generated, i.e., all

(a) Design point A: 1371 packets/s (b) Design point B: 1355 packets/s

Fig. 11. Examples of design points found by 3GA2x6 DSE with pc=0.8,
pm=0.3 after 40 iterations.

TABLE II
SEARCH MODULE AND TARGET ARCHITECTURE PARAMETER

SETTINGS
Selection (S) Proportional with etilism
Crossover (C) 1-point, pc = 0.5 GA
Mutation (M) Independent (M=6), pm = 0.5
Selection (S) Tournament without etilism
Crossover (C) 2-point, pc = 0.8 ga
Mutation (M) Simultaneous (M=1), pm= 0.3

Collecting iterations (δarc) 2 architectural components dimension
Search iterations (I) 21 -
Population size (N) 10 Nr. of individuals per iteration
PE ≤ 6 ARM and hardware dedicated block
SE ≤ 3 DDR and SDR

Fig. 12. Target platform template for the second set of experiments.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

combinations of type and locations of PEs and SEs on the
target template. In the last step, the algorithm uses a set of
analytical expressions (which take into account variables such
as resource connectivity, remaining processing and storage
capacities, latency parameters associated to communication
protocols of each component, etc.) to evaluate different
alternatives. Subsequently, it outputs the best logical clusters
mapping onto MP-SoC instance that satisfies the real-time
constraint. Interested readers are referred to [22] for more
detailed information.

It should be noted that although this heuristic algorithm can
quickly and simultaneously explore both architecture
candidates and feasible mappings by means of a static
performance estimation technique, the output (or the selected
design point) still needs to be carefully examined in a system-
level simulator. This is because of non-deterministic or non-
linear system functions (e.g., the bus arbitration delay due to
simultaneous access requests by multiple PEs) are not taken
into account during its estimation process, thereby making an
accurate performance evaluation difficult without a
simulation. To this end, the output of this algorithm is adapted
to the string format required by NASA’s Translator, which
then produces the corresponding architectural and mapping
model to be simulated in the CASSE tool.

4) Results and discussions

The results of the above four configurations are shown in
Fig. 13. The dark bar represents the fitness value obtained in
simulation with the design point selected by the mentioned
heuristic algorithm. The curves show for the rest of the
configurations (i.e., 1GAx1GA, 1GAx1ga and
1GAx1Random) the average fitness values reached by all
individuals in each of the twenty iterations. From these results,
it can be seen that 1GAx1Random can only sporadically reach
a few design points that satisfy the real-time constraints.
Moreover, it clearly cannot ensure convergence toward any
global optimum. On the other hand, both the heuristic
algorithm and the experiments based on two genetic
algorithms can provide solutions that satisfy the input
constraints. To this end, the heuristic algorithm only requires
to simulate a single system model (or individual), while
1GAx1ga and 1GAx1GA need to simulate an average number
of 40 and 60 individuals respectively (since 1GAx1ga has a
higher convergence rate than 1GAx1GA in the first four
iterations) before reaching the first individual that satisfies the
real-time constraint. This might suggest that the multiple GAs
strategies are not as efficient as this heuristic algorithm in
terms of simulation time dedicated to DSE. However, our
multiple GAs-based co-exploration approach presents three
important benefits with respect to the heuristic algorithm: (i)
both 1GAx1GA and 1GAx1ga can converge toward design
points with higher fitness values, (ii) the studied heuristic
algorithm cannot perform multi-objective optimization where
the result is a Pareto front of solutions, and (iii) GAs provide
not only information about the best solutions but also about all
other explored design points in each experiment (rather than a

single design point outputted by the heuristic algorithm). This
is a key element for better understanding the studied design
space, i.e., the more design points are provided to the
designer, the more information can be extracted from the
explored design space, and therefore, it will allow designers to
more easily compare the architectural characteristics of the
evaluated design points. That is, it can be very useful for a
designer to distinguish the architectural similarities of the
design alternatives featuring good fitness values.

This last aspect can be illustrated in Fig. 14, which shows
an example of typical NASA output after each DSE
experiment. The set of simulated design points, corresponding
to a 1GAx1ga experiment in this case, can form a surface that
approximates the landscape of the explored design space. A
2D view of the resulting surface is shown for this experiment
since it is based on 2D exploration, i.e., the x axes and y axes
of the 2D view contain the explored instance numbers of the
mapping and architectural components dimensions, having
fixed the platform as mentioned. So, for example, 120
different mappings have been explored in this example. Note
that the fitness value associated to each design point is color
coded, ranging from red (high fitness value) to blue (low
fitness value). Therefore, even when exploring a relatively
small number of design points, the distribution of design
points in the surface can clearly indicate the location of
convergence region(s), while dark red areas can provide a
good insight of where the sweet spots (design points with
higher fitness values) in the design space are located.

Fig. 13. Comparative results obtained in the second set of DSE experiments.

Fig. 14. Example of NASA output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

Moreover, designers can select any design point of the
surface, and examine information about that design point such
as the parameter values for the mapping and/or architectural
components dimensions. Finally, it should be stressed that all
these experiments presented in this paper have been
performed in a fully automatic fashion, only providing
parameter settings and constraints such as those shown in
Table I and Table II.

V. CONCLUSIONS
In this paper, we addressed the lack of a generic, flexible,

and re-usable infrastructure to facilitate and support system-
level MP-SoC design space exploration (DSE) experiments.
To this end, we have presented a system-level MP-SoC DSE
support infrastructure, called NASA. This highly modular
framework uses well-defined interfaces to easily integrate
different system-level simulation tools as well as different
combinations of search strategies in a simple plug-and-play
fashion. Moreover, we described NASA’s dimension-oriented
DSE approach, allowing designers to configure the
appropriate number of, possibly different and tailored, search
algorithms to simultaneously co-explore the various design
space dimensions. The result is a flexible and re-usable
framework for the systematic exploration of the multi-
dimensional MP-SoC design space, starting from just a set of
relatively simple user specifications.

Our experimental results indicate that, compared to the
more traditional approach of using a single search algorithm
for all dimensions, the multi-dimensional co-exploration
seems to be able to find better design points and ensure the
convergence toward global optima. Furthermore, the multi-
dimensional co-exploration has a higher diversity and
coverage of design alternatives, producing higher quality DSE
results. Finally, we have also illustrated NASA’s capability
and flexibility to integrate different kinds of search algorithms
in DSE experiments. As future work, we plan to integrate a
more extensive set of search algorithms into NASA, e.g.,
through the integration of the PISA optimization framework
[18], [19], as well as to perform additional deployment case
studies of NASA such as multi-objective optimization
problems introducing other fitness and cost functions.

REFERENCES
[1] G. Martin, “Overview of the MPSoC design challenge”, in Proc. of

Design Automation Conference (DAC'06), Jul. 2006.
[2] M. Gries, “Methods for evaluating and covering the design space during

early design development”, Integration, the VLSI Journal, vol. 38, no. 2,
pp. 131-183, Dec. 2004.

[3] V. Reyes, T. Bautista, G. Marrero, P. P. Carballo and W. Kruijtzer,
“CASSE: a system-Level modeling and design-space exploration tool
for multiprocessor systems-on-chip”, Euromicro Symposium on Digital
System Design (DSD'04), pp.476-483, 2004.

[4] C. Erbas, A. D. Pimentel, M. Thompson and S. Polstra, “A framework
for system-level modeling and simulation of embedded systems
architectures”, EURASIP Journal on Embedded Systems, no. 1, pp. 2-2,
Jan. 2007.

[5] C. Lee, S. Kim and S. Ha, “A systematic design space exploration of
MPSoC based on synchronous data flow specification”, Journal of
Signal Processing System, vol. 58, no. 2, pp. 193-213, Feb. 2010.

[6] J. Teich, T. Blickle and L. Thiele, “An evolutionary approach to system-
level synthesis”, in Proc. of the 5th Int. Workshop on
Hardware/Software Co-Design (Codes/CASHE'97), pp. 167-171, 1997.

[7] M. Palesi and T. Givargis, “Multi-objective design space exploration
using genetic algorithms”, in Proc. of Int. Symposium on
Hardware/Software codesign (CODES'02), pp. 67-72, May. 2002.

[8] Z. J. Jia, T. Bautista, A. Núñez, C. Guerra and M. Hernandez, “Design
space exploration and performance analysis or the modular design of
CVS in a heterogeneous MPSoC”, in Proc. of the Conference on
Reconfigurable Computing and FPGA (ReConFig 2008), pp. 193-198,
Dec. 2008.

[9] K. Keutzer, S. Malik, A. Newton, J. Rabaey and A. Sangiovanni-
Vincentelli, “System level design: orthogonalization of concerns and
platform-based design”, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, Dec.
2000.

[10] B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf, “An
approach for quantitative analysis of application-specific dataflow
architectures”, in Proc. of the IEEE Int. Conference on Application-
Specific Systems, Architectures and Processors, pp. 338, Jul. 1997.

[11] C. Erbas, S. Cerav-Erbas and A. D. Pimentel, “Multiobjective
optimization and evolutionary algorithms for the application mapping
problem in multiprocessor system-on-chip design”, IEEE Trans.
Evolutionary Computation, vol. 10, no. 3, pp. 358-374, 2006.

[12] S. Mohanty, V. K. Prasanna, S. Neema and J. Davis, “Rapid design
space exploration of heterogeneous embedded systems using symbolic
search and multi-granular simulation”, in Proc. of Languages, compilers
and tools for embedded systems: software and compilers for embedded
systems (LCTES'02-SCOPES'02), Jun. 2002.

[13] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri and L. Benini, “An
integrated open framework for heterogeneous MPSoC design space
exploration”, in Proc. of the Design, Automation and Test in Europe
(DATE'06), pp. 1145-1150, Mar. 2006.

[14] www.multicube.eu
[15] L. Thiele, I. Bacivarov, W. Haid and K. Huang, “Mapping applications

to tiled multiprocessor embedded systems”, in Proc. 7th Int. Conference
on Application of Concurrency to System Design (ACSD 2007), pp. 29-
40, Jul. 2007.

[16] G. Palermo, C. Silvano and V. Zaccaria, “A flexible framework for fast
multi-objective design space exploration of embedded systems”,
PATMOS 2003, vol. 2799, pp. 249-258, Sep. 2003.

[17] S. Künzli, L. Thiele and E. Zitzler, “A modular design space exploration
framework for embedded systems”, IEE Proc. Computer & Digital
Techniques, pp. 183-192, 2005.

[18] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA – a platform
and programming language independent interface for search
algorithms”, in C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb and L.
Thiele, editors, Evolutionary Multi-Criterion Optimization (EMO 2003),
vol. 2632/2003 of LNCS, pp. 494-508. Springer-Verlag Heidelberg,
2003.

[19] http://www.tik.ee.ethz.ch/sop/pisa/
[20] J. Madsen, T. K. Stidsen, P. Kjarulf and S. Mahadevan, “Multi-objective

design space exploration of embedded system platforms”, IFIP, vol. 225,
pp. 185-194, 2006.

[21] ARM Developer Suite, Version 1.2, www.arm.com
[22] Z. J. Jia, T. Bautista and A. Núñez, “Real-time application to

multiprocessor-system-on-chip mapping strategy for a system-level
design tool”, IEE Electronic Letters, vol. 45, no. 12, pp. 613-615, 2009.

