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Abstract 

As SoC complexity grows new methodologies and tools 

for system design and time-effective design space 

exploration are required. In this paper we introduce a tool 

called CASSE, what stands for CAmellia System-on-chip 

Simulation Environment. CASSE is a fast, flexible, and 

modular SystemC-based simulation environment which 

aims to be useful for design-space exploration and system-

level design at different abstraction levels. The tool uses 

transaction-level modeling techniques for fast simulations 
and easy architectural modeling, and bridge the gap to 

system implementation by a progressive refinement 

approach.  

CASSE is being used in the European IST-2001-34410 

CAMELLIA project, which focuses on the mapping of 

innovative smart imaging applications onto an existing 

video encoding architecture.  

1. Introduction 

Smart imaging applications combine image and video 

capturing with the processing and/or interpretation of the 

scene contents. A good example is a camera that is able to 

segment a video sequence into objects, track some of 

them, and raise an alarm if some of these objects show an 

unusual behaviour. The aim of the European IST-2001-

34410 CAMELLIA project is to develop a smart imaging 

core that can be embedded in a camera [1]. This core 

should be suitable of supporting automotive and mobile 

communication applications. In the mobile domain 

MPEG-4 video compression is also required so the core 

will be based on an existing MPEG-4 video compression 

core. The idea is to extend this core with smart imaging 

(pixel processing) functionality.  

Smart imaging is an important step in the direction of 

ambient intelligence. Ambient intelligence in general and 

smart imaging in particular are two concepts which are 

expected to be the driving forces for the consumer 

electronics industry in the near future [18]. Designing 

systems-on-a-chip (SoCs) that cope with such application 

domains is indeed very complex. Complexity arises not 

only from the increasingly computational requirements of 

those applications but also from the more and more tough 

constraints in terms of time-to-market, cost, safety, 

performance, reliability, etc. Therefore, as SoCs 

complexity grows methodologies and tools which 

overcome these drawbacks are needed for helping the 

system designer. 

On one hand, heterogeneous multiprocessor systems-

on-chip (MPSoC) are becoming the chosen option to 

overcome the continuous increase of computational 

requirements, like these in the smart imaging field. But to 

take advantage of their multiprocessing possibilities, 

applications have to be described in a way that their 

parallelism can be exploited. Exploiting task level 

parallelism allows these computing-intensive applications 

to perform in real time. In order to describe a parallel 

system in an easy and efficient way formal methods or 

models of computation (MoC) are used. Application 

modeling based on the Kahn Process Network MoC, 

which exploit the parallelism at task-level, has been 

applied successfully in many signal processing 

applications [10] [11] [12].  

On the other hand, methodologies that emphasize re-

use and standardized SoC design methods has resulted in 

the notion of a platform and in the orthogonalization of 

concerns [2]. A platform structures and standardizes SoC 

architectures, by regulating the kind of IP blocks that can 

be used, how they are integrated, and how the system is 

programmed. The orthogonalization of concerns promotes 

separating functionality and architecture, and separating 

communication from computation. The 
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function/architecture separation allows the reuse of 

functions for implementation on different architectures. 

The communication/computation separation allows the 

communication infrastructure to evolve without the need 

to change the computational blocks and thereby enabling 

IP re-use.  

One of the important aspects of the CAMELLIA 

project is centred on the efficient mapping of the smart 

imaging functionality onto an enhanced video 

compression core. Thereby, mapping techniques which 

allow design-space exploration in order to find out the 

best HW/SW partitioning of a demanding application into 

a constrained architectural platform are crucial for 

shortening the development cycle and, hence, for facing 

with guarantees the increasing complexity of nowadays 

applications. 

We present in this paper a tool called CASSE which 

supports system-level design and design-space exploration 

of multiprocessor system-on-chip at different levels of 

abstraction. System-level design and design-space 

exploration of complex systems require fast simulations 

and easy modeling with a certain level of accuracy. Fast 

simulation can be achieved by designing at high levels of 

abstraction. Transaction-level modeling (TLM) has been 

promoted as the next modeling abstraction above RTL [5]. 

TLM is intended to make the system modeling easier by 

reducing the amount of details that the designer must 

handle. The aim of transaction-level modeling is to 

achieve increased simulation speeds, while keeping 

enough accuracy for system analysis and verification. 

1.1. Methodology overview 

CASSE applies a Y-chart based methodology [3] [9]. 

Our starting point is a functional model in terms of 

process networks based on the Kahn Process Network 

(KPN). Applications are decomposed in concurrent tasks 

which communicate with each other using a KPN-derived 

protocol for inter-task communication. This protocol is 

similar as the ones found in [10] [11]. The mapping of this 

functional model comprises an assignment of the tasks 

towards a specific architectural platform taking into 

account its costs and constraints, such that the tasks can be 

implemented efficiently in hardware and software. Our 

architectural models follow an interface-based design 

approach [4] where the communication among 

architectural components is based on predefined interfaces 

and on an inter-component communication protocol. Once 

the mapping phase is completed performance simulations 

are performed in order to obtain simulation traces and 

metrics which can help in the decision process. If 

requirements are not fulfilled the system designer could 

iteratively modify the mapping, the architecture model or 

even the process network structure. If the requirement are 

fulfilled the system is ready for implementation. CASSE 

uses for the system implementation a progressive 

refinement approach.  

CASSE is a fast, flexible, and modular SystemC-based 

simulation environment which aims to be useful for 

design-space exploration (DSE) and system-level design 

at different abstraction levels. The CASSE simulator has 

been completely developed using SystemC/C++. Similar 

approaches have been followed in [6] [7] and [8]. In [8] a 

SystemC based methodology for architectural exploration 

of SoC is also presented. In [6] [7] an automatic 

component integration methodology which allows re-use 

of predefined component is described. Unlike in those 

previous works we emphasize more on a seamless KPN-

derived protocol refinement from system-level to 

implementation, and a dynamic instantiation of mapping 

alternatives for DSE. 

T2: while (true) {
acquireData(in);
load(in,t);
releaseRoom(in);
y = f(t);
acquireRoom(out);
store(out,y);
releaseData(out);

}

T2 outinT1 outin

T2: while (true) {
acquireData(in);
load(in,t);
releaseRoom(in);
y = f(t);
acquireRoom(out);
store(out,y);
releaseData(out);

}

T2 outin T2 outinT1 outin T1 outin

Figure 1. Task communication with ITCP 

The paper is organized as follows: Section 2 

introduces more in detail the CASSE simulator. The KPN-

derived inter-task communication protocol called ITCP is 

introduced in section 2.1. Likewise, the inter-component 

communication protocol called ICCP is presented in 

section 2.2. Section 2.3 covers the simulator structure and 

main functionality. Architectural refinement also covered 

by CASSE is described in section 2.4. In section 3 the 

CAMELLIA case study is introduced. Finally, in section 

4, we present our conclusions.

2. CASSE simulator overview

2.1. The inter-task communication protocol 

CASSE uses a KPN-derived protocol for describing 

applications called ITCP. Applications are described as 

process networks, where processes (or tasks) execute 

concurrently and communicate with each other by means 

of point-to-point channels. Although execution inside 

every task is sequential, all tasks in the process network 

execute concurrently and, therefore, communication 
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among them has to be synchronized to inform the tasks 

about the presence/absence of data and buffer space in the 

channels. 

ITCP is a protocol for inter-tasks communication and 

synchronization. This protocol defines a group of 

primitives and their behavior, but it is not focused to any 

particular implementation. The protocol is architecture-

independent and can be implemented on both hardware 

and software. To be as generic as possible the protocol 

treats separately the data access and the data 

synchronization. With ITCP applications are represented 

as a network (or graph) of concurrent tasks which are 

connected together by unidirectional channels. These 

channels behave as FIFOs. Its sizes can be selected 

individually by the system designer. Tasks access the 

channels using ports. These ports implement the ITCP 

primitives. We provide two classes of ports: input and 

output ports. As mentioned before, the protocol primitives 

are also split in two classes: data transport and data 

synchronization. There are two data transport primitives: 

read a data from the channel (load), and store a data into 

the channel (store). Likewise, there are four data 

synchronization primitives: two for testing and two for 

update purposes. The test primitives are: check if there is 

data available in the channel for reading (acquireData)

and check if there is room in the channel for writing 

(acquireRoom). The update primitives are: update the 

number of data items available in the channel for reading 

(releaseData) and update the room available in the 

channel for writing (releaseRoom). The load, acquireData

and releaseRoom primitives are implemented in the input 

ports, and the store, acquireRoom and releaseData

primitives are implemented in the output ports. Besides 

the protocol primitives, ITCP defines also primitives to 

interconnect ports and channels.  

Communication between two tasks using the inter-

tasks communication protocol, see figure 1, is performed 

as follows.  First T2 claims access rights for reading data 

from input port ‘in’ using the blocking ‘acquireData’

primitive, after which the data can be read and the buffer 

space freed at the input port (‘load’ and ‘releaseRoom’

primitives). After computing the result y, we first claim 

access rights for storing data (room) from the output ‘port’ 

using the blocking ‘acquireRoom’ primitive, after which 

the data is written and the buffer space filling updated at 

the output port (‘store’ and ‘releaseData’ primitives). 

2.2. The inter-component communication 

protocol 

The inter-component communication protocol is used 

for communication among architectural components. 

ICCP is an abstract protocol which can be used for 

modeling device transaction level protocols such as VCI 

[16], OCP [15] or AXI [17]. In our case we model the 

DTL protocol [19], part of the Philips Nexperia platform. 

DTL is a point-to-point communication protocol similar to 

the other well-known protocols mentioned above. The 

protocol defines a point-to-point interface between two 

communication entities called Initiator and Target. The 

Initiator acts as the master performing the communication 

requests. Likewise, the Target acts as a slave responding 

the requests sent by the Initiator. This interface has been 

modeled at the transactional-level using SystemC 

Master/Slave channels [13], and at the bit-true level using 

SystemC signals.  

At the transactional level each channel of the interface 

transports different information belonging to a group of 

signals of the protocol. In order to be as accurate as 

possible and still keeping the abstraction level, four 

different channels or group of signals have been defined in 

the interface. These four channels are a request channel, a 

response channel, a write channel and a read channel. The 

request channel includes all the information needed for 

carrying out the transaction (i.e. base address, read or 

write operation, number of data to read or write, and other 

essential information needed for the protocol). The 

response channel includes the information corresponding 

to the status of the transaction (i.e. done, error, or reply).

The write channel includes the data to be written into the 

Target, and the read channel includes the data to be read 

from the Target. 
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int
Read( address_type address, T &data)
{

request_info.address = address;   
request_ch.write(request_info);
wait(N_CYCLES);
data = read_ch.read();
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int
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request_ch.write(request_info);
wait(N_CYCLES);
data = read_ch.read();
status = response_ch.read();
return (status);

}

Figure 2. Initiator and Target communication 

In ICCP the Initiator entity implements two basic 

methods, the read and the write method, for initiating the 

communication. Communication starts on the processing 

elements by executing those methods on the Initiator 
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modules. Likewise, the Target modules act as slaves 

simply executing the commands coming from the 

channels. The Target entity implements a register file 

interface to access the data and has a programmable 

address range. Both the Initiator and Target entities can be 

parameterized with different communication latency in 

their operations in order to model different system 

behavior and protocol standards. Communication between 

two components using the ICCP protocol is shown in 

figure 2. 

2.3. CASSE structure and functionality 

CASSE is structured in three different layers, as shown 

in figure 3: 

- Front-end layer. This layer feeds to the back-end 

layer information about the application, architecture and 

mapping selection needed to perform its operations. The 

front-end layer is controlled by the user and generates two 

classes of information: the user libraries and the 

description files. There are two different user libraries: the 

tasks user library which contains the ITCP-compliant 

tasks composing the application, and the component user 

library which contains ICCP-compliant components which 

can be used to model a more accurate architecture. The 

description files are simple plain text files describing the 

process network structure (task-graph file), the 

architectural platform (architectural file) and the mapping

(mapping file).

- Back-end layer. This layer is composed of the 

simulator core, the system libraries, the trace collector and 

the parser. System libraries implement components, 

interfaces and protocols for both architectural modeling 

and process network modeling. The parser interprets the 

description files provided by the upper layer to instantiate 

and bind components from the corresponding system 

libraries.  The simulator core is in charge of performing 

several operations like process network modeling, 

architectural modeling, and mapping selection. The output 

of the simulator core is an executable model which is 

simulated using the kernel layer. The trace collector 

module gathers the system metrics and the application 

trace information produced during simulation.  

- Kernel layer. The kernel layer is in charge of 

carrying out the system simulations (i.e. functional 

simulations of process networks and performance 

simulation of architectural models). As kernel layer 

CASSE builds upon the standard SystemC simulation 

kernel. The SystemC class library and simulation kernel 

extend the C++ language to enable the modeling of digital 

systems. SystemC provides a threaded event-driven 

simulator, modules and ports for representing structure, 

and interfaces and channels to describe communication 

[14].

2.3.1. Functional simulation of process networks. 

CASSE can dynamically model and simulate a process 

network. The process network has to be compliant with 

the inter-task communication protocol described in section 

2.1. The simulator core uses the following elements for 

the functional simulation of a process: 

- ITCP system-library. This library implements the 

ITCP protocol, that is, the primitives, ports and interfaces. 

- Process-Network system-library. This library 

contains the following elements:  

Task container. Every task in the process network has 

to be bound to a task container. A task container can be 

parameterized on the number of ITCP interfaces (which 

must be equal to the number of task ports). In turn, each 

port in the task will be bound to a single interface which 

provide access to the channels, see figure 4. 

ITCP channel. This element implements a circular 

buffer channel with all the required functionality to be 

compliant with the protocol. 
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Figure 3. The CASSE simulator structure 

- Tasks user library. The tasks user library contains 

the tasks which compose the application. These tasks have 

to be ITCP-compliant and, therefore, use the ports and 

primitives described in section 2.1.  

- The ‘task-graph’ input text file. This file 

describes the process network structure in terms of 

number of tasks, number of ports per task, number of 

channels and their interconnections. This file is used to 

instantiate dynamically tasks, task containers, interfaces 

and channels from the corresponding libraries. Moreover, 

tasks are bound to containers and channels to interfaces 

according to the structure described in this file.  
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Once the process network has been created and 

configured, the simulation can start. Process network 

simulations are done completely at the untimed functional 

level (UTF).  Functional correctness of the process 

network can be checked and valuable information in terms 

of inter-task communication load can be gathered at this 

level.  

2.3.2. Performance simulation of system architectural 

models. CASSE provides a modular (plug and play) 

approach for the architectural modeling of a platform 

composed of generic components. Complete system 

architecture models can be created from scratch and 

known architectural platforms can be emulated using the 

generic available components by configuring them 

accordingly. This architectural platform is composed of a 

configurable number of processing elements and storage 

elements interconnected together by a configurable 

communication network, see figure 5. All these elements 

communicate together using the inter-component 

communication protocol (ICCP) described in section 2.2. 

In order to be modular enough the architectural platform 

does not contain any functionality in its creation, but the 

functionality is assigned to the platform during the 

mapping phase. The simulator core uses the following 

elements to model the system architecture:

- Architecture system library. The components in 

this library are:  

Processing elements. These elements perform the 

computational tasks in the systems, and can model both 

software and hardware components. Each processing 

element is composed of a multi-task container and a 

protocol translator wrapper. As above mentioned, 

functionality is assigned to the architectural platform by 

mapping tasks into the processing elements, but more 

specifically, tasks are mapped into the multi-task 

container. More than one task can be mapped into the 

same container, what calls for a mutual-exclusion unit 

(MEU) for accessing the shared resources. Hence, 

processing elements are well suited for modeling 

computations ranging from multitasking software running 

on a CPU to single-task hardware elements. Tasks 

communicate using the high-level ITCP protocol, but in 

turn the lower level ICCP protocol is used for 

communication in the architectural platform. This calls for 

a protocol translation from ITCP into ICCP. This is 

carried out by the protocol translator wrapper (PTW) 

which is highly configurable and able to implement 

multiple data transport and synchronization schemes.  

Storage elements. These components model memory 

elements which can be parameterized in its size. 

Moreover, the storage elements are also configurable in 

terms of number of Targets interfaces.  

Communication network. The communication network 

consists of a number of configurable network components. 

A network component is a shared-bus based 

interconnection with an arbiter module attached. 

Currently, two different arbiter modules are provided: a 

static priority policy and a round-robin priority policy. 

The network components are used to interconnect 

processing and storage elements. Each network 

component is configurable in terms of number of Initiator 

and Target interfaces, communication latency, and 

address-range for each Target module.   
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Figure 4. A process network model in CASSE 
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Figure 5. The architecture platform template 

- The ‘architectural’ input text file. This file 

describes the composition and structure of the 

architectural platform. The file contains information about 

the number of components of each type and their 

interconnections, as well as the configuration of each 

individual component. The simulator core instantiates 

automatically those components from the architecture 

system-library and bind them together following the rules 

described in the input file.  
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During the mapping phase the CASSE simulator core 

performs a series of steps according the information 

provided in the ‘mapping’ input text file. This ‘mapping’

file contains all the necessary information to assign tasks 

and channels of the process network to specific processing 

and storage elements of the architectural platform. Of 

course, both the process network and the architectural 

platform have to be created before starting the mapping 

process. Once the mapping is performed the simulator 

core starts the simulation. This simulation is at the bus-

cycle accurate level (BCA) for communication and at the 

timed functional level (TF) for computation. 

Communication latency can be specified in the Initiator 

and Target modules of the architecture platform as 

desired. The modeling of computation delays is by means 

of manual code annotation in the application tasks. 

During simulation the simulator core collects relevant 

information and dumps it into text files for later 

inspection. The simulator gathers all the simulation 

information using special tracing classes which are 

transparent to the system designer. The information 

gathered is: the total number of execution cycles, 

communication load per interface (in bytes), 

communication load per network component (in bytes), 

average communication latency per interface (in cycles), 

and maximum communication latency per interface (in 

cycles). Moreover, information regarding the inter-task 

communication protocol performance can also be 

collected. Synchronization rate and average number of 

cycles waiting for data or room per tasks is stored in order 

to analyze the protocol implementation. Furthermore, the 

simulator core can trace information regarding the 

computational load per processing element if latencies are 

annotated in the tasks descriptions.

If after analyses of the trace information the system 

designer finds out that the chosen mapping does not fulfill 

the requirements, then both a new mapping selection 

and/or architectural modifications can be created without 

the need of recompiling the system. The fact that different 

architectures can be instantiated without recompilation 

allows driving the simulator through scripts (batch 

processing) more easily and hence allows a more 

extensive exploration of the design space (parameters 

sweeps).

2.4. System refinement 

CASSE is not only useful for system analysis at the 

highest abstraction levels but also can bridge the existing 

gap between system modeling and system 

implementation. The approach followed to refine from an 

architectural model to a synthesizable architecture is 

twofold: 

- Interface refinement. As mentioned in section 

2.1, the ICCP protocol is also implemented at a bit-true 

level by using SystemC signals. This means that 

architectural components might communicate with each 

other at a cycle-true/bit-true level by simply replacing the 

transactional-level Initiator and Target modules with their 

equivalent bit-true versions. Both the Initiator and Target 

entities have been also implemented at the RTL level 

using synthesizable SystemC. 

- Component refinement. As mentioned above, a 

components user library can be used to plug external 

components (designed by the user) into the architecture 

platform. Such components can be instantiated during the 

architectural modeling phase just like any other generic 

component. These user-designed components can be 

SystemC modules designed at both behavioral or RTL 

level with the only requisite of being ICCP compliant. 

Therefore, refinement is achieved by simply replacing the 

generic processing elements which execute functional 

tasks, with external components which, for instance, can 

model completely accurate hardware (co)processors. 

CASSE also supports co-simulation: Untimed 

functional models using transaction-level communication 

with SystemC Master/Slave channels (TLM/SC-MS) and 

cycle-accurate models using bit-true communication with 

SystemC signals (CA/BT) can be connected using 

abstraction-level adaptors components (i.e. adaptors from 

TLM/SC-MS to CA/BT, and vice versa), which are 

included in the system libraries.  

3. The CAMELLIA case study 

The target smart imaging system architecture is based 

on the integration of coprocessors with smart imaging 

functionality in an existing video encoder, which consists 

of highly configurable dedicated hardware accelerators for 

video encoding (one of these hardware accelerators is a 

motion estimator coprocessor), a central CPU, a memory 

interface, and input and output interfaces.  

As an example, one of the automotive domain 

applications identified for CAMELLIA, the low-speed 

obstacle detection application (LSOD), is disclosed here. 

This application is composed of a “high-level” algorithm 

(HLA) which combines the output of several vehicle 

detection “medium-level” algorithms (MLA) in order to 

obtain an exact detection and localization of vehicles. 

These medium-level algorithms use low-level operations 

(LLA) for pixel processing (e.g. kernel filtering, 

morphological and arithmetic operations, etc). The 

medium-level algorithms used in LSOD are: shadow 

detection, edges detection, rear lights detection, symmetry 

detection and motion segmentation. 

With the classification of algorithms described above, 

a general approach for mapping an application onto the 

architecture can be derived. As the main characteristic of 

the high-level algorithm is its sequential nature and the 

limited computational requirements, this kind of 
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algorithms are candidates for execution on the embedded 

CPU. Low-level algorithms are associated with a high 

amount of inherent parallelism and relatively simple 

operations. Hence, they are well-suited for being mapped 

on coprocessors. Medium-level algorithms can be split 

into a pixel processing part to be mapped onto 

coprocessors and a control part to be mapped onto the 

embedded CPU. CASSE is used to analyze different 

partition alternatives for these medium-level algorithms. 

Depending on the partition chosen different processing 

granularity (i.e. synchronization rate) is derived. The 

processing granularity has a significant impact in both the 

communication load and the storage needed. For a 

particular HW/SW partition, in addition to this processing 

granularity impact, there exist many architectural 

alternatives which could also significantly influence on 

the final performance. These architectural alternatives 

(e.g. number and organization of memories, number of 

busses, etcetera) and even system parameters regarding 

communication issues can be also explored using CASSE. 

Following the methodology presented in this paper we 

first have decomposed the low-speed obstacle detection 

(LSOD) application into several parallel processes which 

communicate with each other using the described ITCP 

protocol. The correctness of the process network is 

checked by functional simulations. In addition, the target 

system architecture is modeled using the simulator at the 

highest level of abstraction. According to the application 

composition (i.e. HLA, MLAs, and LLAs) and the project 

requirements (i.e. the need of reusing an existing 

platform), the mapping of the process network into the 

modeled architecture is performed as follows. The high-

level algorithm and the more control-oriented part of the 

medium-level algorithms are combined together in a task, 

which fits well to be mapped onto the CPU component of 

the architecture. All the low-level operations are 

combined together in a pixel-processing task, which is 

mapped onto a smart imaging component. Likewise, the 

pixel processing part of the motion segmentation medium-

level algorithm is distinguished as an independent task, 

which is mapped onto the existing motion estimator 

component. Hence, the best communication network and 

memory organization instance for the selected HW/SW 

partition is chosen by an iterative performance simulation 

process. Hereunder, an example of the target system 

architecture with two busses and two shared memories is 

presented, see figure 6.

Communication load and latencies per processing 

elements, as well as the impact of the synchronization 

rate, is obtained during the performance simulations. In 

figure 7 the communication load produced per processing 

element on the network component 2, corresponding to 

the figure 6 example, is shown. In figure 8 the number of 

synchronization calls per processing element is shown. 

These numbers correspond to a 25 frames simulation of 

the LSOD application. Among others, these results guide 

the tuning of parameters related with both the data 

transport and the synchronization (i.e. burst size, 

priorities, channel size, channel allocation, processing 

granularity, number of busses, etcetera). 
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In addition, this system architectural model is being 

used to verify refined models (RTL SystemC) of both a 

smart imaging and a motion estimator coprocessor, which 

are being developed during the project. System 

verification is performed by replacing the processing 
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elements where the corresponding functional tasks are 

mapped, for these more accurate coprocessors.   

4. Conclusions 

In this paper a SystemC-based simulator called 

CASSE is presented. CASSE provides fast simulations 

and easy architectural modeling by using transaction-level 

modeling techniques.  Moreover, CASSE provides a 

seamless KPN-derived protocol refinement to cover from 

application to system implementation. Simulations at 

different abstraction levels are covered by CASSE, from 

completely untimed functional simulations of process 

networks to BCA/CA performance simulations of 

architectural models. Co-simulation with elements at 

different abstraction levels is also possible.  

The work presented in this paper is being used in the 

European CAMELLIA project to derive an adequate 

HW/SW partition and an optimal communication 

infrastructure for the building blocks in the target 

CAMELLIA smart imaging system. 
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