
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4091426

CASSE: a system-level modeling and design-space exploration tool for

multiprocessor systems-on-chip

Conference Paper · January 2004

DOI: 10.1109/DSD.2004.1333313 · Source: IEEE Xplore

CITATIONS

34
READS

115

5 authors, including:

Some of the authors of this publication are also working on these related projects:

[Helicoid] Hyperspectral imaging for brain cancer detection View project

State of the art research for hyperspectral imagery applications on Medicine View project

Victor Reyes

Metropolitan Autonomous University

12 PUBLICATIONS 68 CITATIONS

SEE PROFILE

Tomás Bautista

Universidad de Las Palmas de Gran Canaria

41 PUBLICATIONS 202 CITATIONS

SEE PROFILE

Gustavo Marrero Callico

Universidad de Las Palmas de Gran Canaria

161 PUBLICATIONS 1,031 CITATIONS

SEE PROFILE

Pedro P. Carballo

Universidad de Las Palmas de Gran Canaria

46 PUBLICATIONS 99 CITATIONS

SEE PROFILE

All content following this page was uploaded by Tomás Bautista on 28 February 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4091426_CASSE_a_system-level_modeling_and_design-space_exploration_tool_for_multiprocessor_systems-on-chip?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4091426_CASSE_a_system-level_modeling_and_design-space_exploration_tool_for_multiprocessor_systems-on-chip?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Helicoid-Hyperspectral-imaging-for-brain-cancer-detection?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/State-of-the-art-research-for-hyperspectral-imagery-applications-on-Medicine?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Reyes42?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Reyes42?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Metropolitan_Autonomous_University?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Reyes42?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomas_Bautista?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomas_Bautista?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomas_Bautista?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Marrero_Callico?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Marrero_Callico?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Marrero_Callico?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Carballo?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Carballo?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Carballo?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomas_Bautista?enrichId=rgreq-ff498efa7d738e2d1e7bf67c699e73ff-XXX&enrichSource=Y292ZXJQYWdlOzQwOTE0MjY7QVM6OTcwNDIzNzg1MjY3NDVAMTQwMDE0ODExNDg3Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

CASSE: A System-Level Modeling and Design-Space Exploration Tool for

Multiprocessor Systems-on-Chip

Víctor Reyes, Tomás Bautista, Gustavo

Marrero, Pedro P. Carballo

IUMA, Institute for Applied Microelectronics,

University of Las Palmas GC, 35017,

Las Palmas GC, Spain

 vreyes@iuma.ulpgc.es

Wido Kruijtzer

Philips Research Laboratories,

Prof. Holstaan 4, 5656 AA Eindhoven,

 The Netherlands

wido.kruijtzer@philips.com

Abstract

As SoC complexity grows new methodologies and tools

for system design and time-effective design space

exploration are required. In this paper we introduce a tool

called CASSE, what stands for CAmellia System-on-chip

Simulation Environment. CASSE is a fast, flexible, and

modular SystemC-based simulation environment which

aims to be useful for design-space exploration and system-

level design at different abstraction levels. The tool uses

transaction-level modeling techniques for fast simulations
and easy architectural modeling, and bridge the gap to

system implementation by a progressive refinement

approach.

CASSE is being used in the European IST-2001-34410

CAMELLIA project, which focuses on the mapping of

innovative smart imaging applications onto an existing

video encoding architecture.

1. Introduction

Smart imaging applications combine image and video

capturing with the processing and/or interpretation of the

scene contents. A good example is a camera that is able to

segment a video sequence into objects, track some of

them, and raise an alarm if some of these objects show an

unusual behaviour. The aim of the European IST-2001-

34410 CAMELLIA project is to develop a smart imaging

core that can be embedded in a camera [1]. This core

should be suitable of supporting automotive and mobile

communication applications. In the mobile domain

MPEG-4 video compression is also required so the core

will be based on an existing MPEG-4 video compression

core. The idea is to extend this core with smart imaging

(pixel processing) functionality.

Smart imaging is an important step in the direction of

ambient intelligence. Ambient intelligence in general and

smart imaging in particular are two concepts which are

expected to be the driving forces for the consumer

electronics industry in the near future [18]. Designing

systems-on-a-chip (SoCs) that cope with such application

domains is indeed very complex. Complexity arises not

only from the increasingly computational requirements of

those applications but also from the more and more tough

constraints in terms of time-to-market, cost, safety,

performance, reliability, etc. Therefore, as SoCs

complexity grows methodologies and tools which

overcome these drawbacks are needed for helping the

system designer.

On one hand, heterogeneous multiprocessor systems-

on-chip (MPSoC) are becoming the chosen option to

overcome the continuous increase of computational

requirements, like these in the smart imaging field. But to

take advantage of their multiprocessing possibilities,

applications have to be described in a way that their

parallelism can be exploited. Exploiting task level

parallelism allows these computing-intensive applications

to perform in real time. In order to describe a parallel

system in an easy and efficient way formal methods or

models of computation (MoC) are used. Application

modeling based on the Kahn Process Network MoC,

which exploit the parallelism at task-level, has been

applied successfully in many signal processing

applications [10] [11] [12].

On the other hand, methodologies that emphasize re-

use and standardized SoC design methods has resulted in

the notion of a platform and in the orthogonalization of

concerns [2]. A platform structures and standardizes SoC

architectures, by regulating the kind of IP blocks that can

be used, how they are integrated, and how the system is

programmed. The orthogonalization of concerns promotes

separating functionality and architecture, and separating

communication from computation. The

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

function/architecture separation allows the reuse of

functions for implementation on different architectures.

The communication/computation separation allows the

communication infrastructure to evolve without the need

to change the computational blocks and thereby enabling

IP re-use.

One of the important aspects of the CAMELLIA

project is centred on the efficient mapping of the smart

imaging functionality onto an enhanced video

compression core. Thereby, mapping techniques which

allow design-space exploration in order to find out the

best HW/SW partitioning of a demanding application into

a constrained architectural platform are crucial for

shortening the development cycle and, hence, for facing

with guarantees the increasing complexity of nowadays

applications.

We present in this paper a tool called CASSE which

supports system-level design and design-space exploration

of multiprocessor system-on-chip at different levels of

abstraction. System-level design and design-space

exploration of complex systems require fast simulations

and easy modeling with a certain level of accuracy. Fast

simulation can be achieved by designing at high levels of

abstraction. Transaction-level modeling (TLM) has been

promoted as the next modeling abstraction above RTL [5].

TLM is intended to make the system modeling easier by

reducing the amount of details that the designer must

handle. The aim of transaction-level modeling is to

achieve increased simulation speeds, while keeping

enough accuracy for system analysis and verification.

1.1. Methodology overview

CASSE applies a Y-chart based methodology [3] [9].

Our starting point is a functional model in terms of

process networks based on the Kahn Process Network

(KPN). Applications are decomposed in concurrent tasks

which communicate with each other using a KPN-derived

protocol for inter-task communication. This protocol is

similar as the ones found in [10] [11]. The mapping of this

functional model comprises an assignment of the tasks

towards a specific architectural platform taking into

account its costs and constraints, such that the tasks can be

implemented efficiently in hardware and software. Our

architectural models follow an interface-based design

approach [4] where the communication among

architectural components is based on predefined interfaces

and on an inter-component communication protocol. Once

the mapping phase is completed performance simulations

are performed in order to obtain simulation traces and

metrics which can help in the decision process. If

requirements are not fulfilled the system designer could

iteratively modify the mapping, the architecture model or

even the process network structure. If the requirement are

fulfilled the system is ready for implementation. CASSE

uses for the system implementation a progressive

refinement approach.

CASSE is a fast, flexible, and modular SystemC-based

simulation environment which aims to be useful for

design-space exploration (DSE) and system-level design

at different abstraction levels. The CASSE simulator has

been completely developed using SystemC/C++. Similar

approaches have been followed in [6] [7] and [8]. In [8] a

SystemC based methodology for architectural exploration

of SoC is also presented. In [6] [7] an automatic

component integration methodology which allows re-use

of predefined component is described. Unlike in those

previous works we emphasize more on a seamless KPN-

derived protocol refinement from system-level to

implementation, and a dynamic instantiation of mapping

alternatives for DSE.

T2: while (true) {
acquireData(in);
load(in,t);
releaseRoom(in);
y = f(t);
acquireRoom(out);
store(out,y);
releaseData(out);

}

T2 outinT1 outin

T2: while (true) {
acquireData(in);
load(in,t);
releaseRoom(in);
y = f(t);
acquireRoom(out);
store(out,y);
releaseData(out);

}

T2 outin T2 outinT1 outin T1 outin

Figure 1. Task communication with ITCP

The paper is organized as follows: Section 2

introduces more in detail the CASSE simulator. The KPN-

derived inter-task communication protocol called ITCP is

introduced in section 2.1. Likewise, the inter-component

communication protocol called ICCP is presented in

section 2.2. Section 2.3 covers the simulator structure and

main functionality. Architectural refinement also covered

by CASSE is described in section 2.4. In section 3 the

CAMELLIA case study is introduced. Finally, in section

4, we present our conclusions.

2. CASSE simulator overview

2.1. The inter-task communication protocol

CASSE uses a KPN-derived protocol for describing

applications called ITCP. Applications are described as

process networks, where processes (or tasks) execute

concurrently and communicate with each other by means

of point-to-point channels. Although execution inside

every task is sequential, all tasks in the process network

execute concurrently and, therefore, communication

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

among them has to be synchronized to inform the tasks

about the presence/absence of data and buffer space in the

channels.

ITCP is a protocol for inter-tasks communication and

synchronization. This protocol defines a group of

primitives and their behavior, but it is not focused to any

particular implementation. The protocol is architecture-

independent and can be implemented on both hardware

and software. To be as generic as possible the protocol

treats separately the data access and the data

synchronization. With ITCP applications are represented

as a network (or graph) of concurrent tasks which are

connected together by unidirectional channels. These

channels behave as FIFOs. Its sizes can be selected

individually by the system designer. Tasks access the

channels using ports. These ports implement the ITCP

primitives. We provide two classes of ports: input and

output ports. As mentioned before, the protocol primitives

are also split in two classes: data transport and data

synchronization. There are two data transport primitives:

read a data from the channel (load), and store a data into

the channel (store). Likewise, there are four data

synchronization primitives: two for testing and two for

update purposes. The test primitives are: check if there is

data available in the channel for reading (acquireData)

and check if there is room in the channel for writing

(acquireRoom). The update primitives are: update the

number of data items available in the channel for reading

(releaseData) and update the room available in the

channel for writing (releaseRoom). The load, acquireData

and releaseRoom primitives are implemented in the input

ports, and the store, acquireRoom and releaseData

primitives are implemented in the output ports. Besides

the protocol primitives, ITCP defines also primitives to

interconnect ports and channels.

Communication between two tasks using the inter-

tasks communication protocol, see figure 1, is performed

as follows. First T2 claims access rights for reading data

from input port ‘in’ using the blocking ‘acquireData’

primitive, after which the data can be read and the buffer

space freed at the input port (‘load’ and ‘releaseRoom’

primitives). After computing the result y, we first claim

access rights for storing data (room) from the output ‘port’

using the blocking ‘acquireRoom’ primitive, after which

the data is written and the buffer space filling updated at

the output port (‘store’ and ‘releaseData’ primitives).

2.2. The inter-component communication

protocol

The inter-component communication protocol is used

for communication among architectural components.

ICCP is an abstract protocol which can be used for

modeling device transaction level protocols such as VCI

[16], OCP [15] or AXI [17]. In our case we model the

DTL protocol [19], part of the Philips Nexperia platform.

DTL is a point-to-point communication protocol similar to

the other well-known protocols mentioned above. The

protocol defines a point-to-point interface between two

communication entities called Initiator and Target. The

Initiator acts as the master performing the communication

requests. Likewise, the Target acts as a slave responding

the requests sent by the Initiator. This interface has been

modeled at the transactional-level using SystemC

Master/Slave channels [13], and at the bit-true level using

SystemC signals.

At the transactional level each channel of the interface

transports different information belonging to a group of

signals of the protocol. In order to be as accurate as

possible and still keeping the abstraction level, four

different channels or group of signals have been defined in

the interface. These four channels are a request channel, a

response channel, a write channel and a read channel. The

request channel includes all the information needed for

carrying out the transaction (i.e. base address, read or

write operation, number of data to read or write, and other

essential information needed for the protocol). The

response channel includes the information corresponding

to the status of the transaction (i.e. done, error, or reply).

The write channel includes the data to be written into the

Target, and the read channel includes the data to be read

from the Target.

In
it
ia
to
r

T
a
rg
e
t

M
A

S
T

E
R

S
L

A
V

E

Request channel

W rite channel

Read channel

Response channel

Address Range

0x00000000 - 0x0000FFFF

… … …

Initiator.Read (address1, &data1)

Initiator.Read (address2, &data2)

Compute (data1, data2, &result)

Initiator.Write (address3, result)

… … …

int
Read(address_type address, T &data)
{

request_info.address = address;
request_ch.write(request_info);
wait(N_CYCLES);
data = read_ch.read();
status = response_ch.read();
return (status);

}

In
it
ia
to
r

T
a
rg
e
t

M
A

S
T

E
R

S
L

A
V

E

Request channel

W rite channel

Read channel

Response channel

Address Range

0x00000000 - 0x0000FFFF

… … …

Initiator.Read (address1, &data1)

Initiator.Read (address2, &data2)

Compute (data1, data2, &result)

Initiator.Write (address3, result)

… … …

int
Read(address_type address, T &data)
{

request_info.address = address;
request_ch.write(request_info);
wait(N_CYCLES);
data = read_ch.read();
status = response_ch.read();
return (status);

}

Figure 2. Initiator and Target communication

In ICCP the Initiator entity implements two basic

methods, the read and the write method, for initiating the

communication. Communication starts on the processing

elements by executing those methods on the Initiator

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

modules. Likewise, the Target modules act as slaves

simply executing the commands coming from the

channels. The Target entity implements a register file

interface to access the data and has a programmable

address range. Both the Initiator and Target entities can be

parameterized with different communication latency in

their operations in order to model different system

behavior and protocol standards. Communication between

two components using the ICCP protocol is shown in

figure 2.

2.3. CASSE structure and functionality

CASSE is structured in three different layers, as shown

in figure 3:

- Front-end layer. This layer feeds to the back-end

layer information about the application, architecture and

mapping selection needed to perform its operations. The

front-end layer is controlled by the user and generates two

classes of information: the user libraries and the

description files. There are two different user libraries: the

tasks user library which contains the ITCP-compliant

tasks composing the application, and the component user

library which contains ICCP-compliant components which

can be used to model a more accurate architecture. The

description files are simple plain text files describing the

process network structure (task-graph file), the

architectural platform (architectural file) and the mapping

(mapping file).

- Back-end layer. This layer is composed of the

simulator core, the system libraries, the trace collector and

the parser. System libraries implement components,

interfaces and protocols for both architectural modeling

and process network modeling. The parser interprets the

description files provided by the upper layer to instantiate

and bind components from the corresponding system

libraries. The simulator core is in charge of performing

several operations like process network modeling,

architectural modeling, and mapping selection. The output

of the simulator core is an executable model which is

simulated using the kernel layer. The trace collector

module gathers the system metrics and the application

trace information produced during simulation.

- Kernel layer. The kernel layer is in charge of

carrying out the system simulations (i.e. functional

simulations of process networks and performance

simulation of architectural models). As kernel layer

CASSE builds upon the standard SystemC simulation

kernel. The SystemC class library and simulation kernel

extend the C++ language to enable the modeling of digital

systems. SystemC provides a threaded event-driven

simulator, modules and ports for representing structure,

and interfaces and channels to describe communication

[14].

2.3.1. Functional simulation of process networks.

CASSE can dynamically model and simulate a process

network. The process network has to be compliant with

the inter-task communication protocol described in section

2.1. The simulator core uses the following elements for

the functional simulation of a process:

- ITCP system-library. This library implements the

ITCP protocol, that is, the primitives, ports and interfaces.

- Process-Network system-library. This library

contains the following elements:

Task container. Every task in the process network has

to be bound to a task container. A task container can be

parameterized on the number of ITCP interfaces (which

must be equal to the number of task ports). In turn, each

port in the task will be bound to a single interface which

provide access to the channels, see figure 4.

ITCP channel. This element implements a circular

buffer channel with all the required functionality to be

compliant with the protocol.

FRONT-END LAYER

Compiler
(gcc)

Simulation
file

Task
graph

file

Mapping
file

Architecture
file

Task
user-lib

Component
user-lib

Processes
Network
creation

Mapping Architectural
Modeling

Functional
simulation

Performance
simulation

ITCP
system

lib

ICCP
system

lib

PN
system

lib

ARCH
system

lib

System libraries

Simulator core

KERNEL LAYER

BACK-END
LAYER

Parser

Traces
collector

FRONT-END LAYER

Compiler
(gcc)

Simulation
file

Task
graph

file

Mapping
file

Architecture
file

Task
user-lib

Component
user-lib

Processes
Network
creation

Mapping Architectural
Modeling

Functional
simulation

Performance
simulation

ITCP
system

lib

ICCP
system

lib

PN
system

lib

ARCH
system

lib

System libraries

Simulator core

KERNEL LAYER

BACK-END
LAYER

Parser

Traces
collector

Figure 3. The CASSE simulator structure

- Tasks user library. The tasks user library contains

the tasks which compose the application. These tasks have

to be ITCP-compliant and, therefore, use the ports and

primitives described in section 2.1.

- The ‘task-graph’ input text file. This file

describes the process network structure in terms of

number of tasks, number of ports per task, number of

channels and their interconnections. This file is used to

instantiate dynamically tasks, task containers, interfaces

and channels from the corresponding libraries. Moreover,

tasks are bound to containers and channels to interfaces

according to the structure described in this file.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

Once the process network has been created and

configured, the simulation can start. Process network

simulations are done completely at the untimed functional

level (UTF). Functional correctness of the process

network can be checked and valuable information in terms

of inter-task communication load can be gathered at this

level.

2.3.2. Performance simulation of system architectural

models. CASSE provides a modular (plug and play)

approach for the architectural modeling of a platform

composed of generic components. Complete system

architecture models can be created from scratch and

known architectural platforms can be emulated using the

generic available components by configuring them

accordingly. This architectural platform is composed of a

configurable number of processing elements and storage

elements interconnected together by a configurable

communication network, see figure 5. All these elements

communicate together using the inter-component

communication protocol (ICCP) described in section 2.2.

In order to be modular enough the architectural platform

does not contain any functionality in its creation, but the

functionality is assigned to the platform during the

mapping phase. The simulator core uses the following

elements to model the system architecture:

- Architecture system library. The components in

this library are:

Processing elements. These elements perform the

computational tasks in the systems, and can model both

software and hardware components. Each processing

element is composed of a multi-task container and a

protocol translator wrapper. As above mentioned,

functionality is assigned to the architectural platform by

mapping tasks into the processing elements, but more

specifically, tasks are mapped into the multi-task

container. More than one task can be mapped into the

same container, what calls for a mutual-exclusion unit

(MEU) for accessing the shared resources. Hence,

processing elements are well suited for modeling

computations ranging from multitasking software running

on a CPU to single-task hardware elements. Tasks

communicate using the high-level ITCP protocol, but in

turn the lower level ICCP protocol is used for

communication in the architectural platform. This calls for

a protocol translation from ITCP into ICCP. This is

carried out by the protocol translator wrapper (PTW)

which is highly configurable and able to implement

multiple data transport and synchronization schemes.

Storage elements. These components model memory

elements which can be parameterized in its size.

Moreover, the storage elements are also configurable in

terms of number of Targets interfaces.

Communication network. The communication network

consists of a number of configurable network components.

A network component is a shared-bus based

interconnection with an arbiter module attached.

Currently, two different arbiter modules are provided: a

static priority policy and a round-robin priority policy.

The network components are used to interconnect

processing and storage elements. Each network

component is configurable in terms of number of Initiator

and Target interfaces, communication latency, and

address-range for each Target module.

PRODUCER
TASK

CONSUMER
TASK

Input
port

Output
port

CHANNEL

PRODUCER
TASK

CONSUMER
TASK

ITCP
CHANNEL

TASK CONTAINER TASK CONTAINER

ITCP output port

ITCP input port

ITCP interface

PRODUCER
TASK

CONSUMER
TASK

Input
port

Output
port

CHANNEL

PRODUCER
TASK

CONSUMER
TASK

ITCP
CHANNEL

ITCP
CHANNEL

TASK CONTAINER TASK CONTAINER

ITCP output port

ITCP input port

ITCP interface

Figure 4. A process network model in CASSE

P R O C E S S I N G
E L E M E N T S

S T O R I N G
E L E M E N T S

C O M M U N I C A T I O N N E T W O R K

T A R G E T
1

T A R G E T
n

M E M O R Y
E L E M E N T

IN IT IA T O R
1

M U L T I- T A S K C O N T A I N E R

IN IT IA T O R
n

P R O T O C O L T R A N S L A T O R
W R A P P E R

M .E .U .

T A R G E T
1

T A R G E T
n

IN IT IA T O R
1

IN IT IA T O R
n

P R O C E S S I N G
E L E M E N T S

S T O R I N G
E L E M E N T S

C O M M U N I C A T I O N N E T W O R K

T A R G E T
1

T A R G E T
1

T A R G E T
n

T A R G E T
n

M E M O R Y
E L E M E N T

IN IT IA T O R
1

IN IT IA T O R
1

M U L T I- T A S K C O N T A I N E R

IN IT IA T O R
n

IN IT IA T O R
n

P R O T O C O L T R A N S L A T O R
W R A P P E R

M .E .U .

T A R G E T
1

T A R G E T
1

T A R G E T
n

T A R G E T
n

IN IT IA T O R
1

IN IT IA T O R
1

IN IT IA T O R
n

IN IT IA T O R
n

Figure 5. The architecture platform template

- The ‘architectural’ input text file. This file

describes the composition and structure of the

architectural platform. The file contains information about

the number of components of each type and their

interconnections, as well as the configuration of each

individual component. The simulator core instantiates

automatically those components from the architecture

system-library and bind them together following the rules

described in the input file.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

During the mapping phase the CASSE simulator core

performs a series of steps according the information

provided in the ‘mapping’ input text file. This ‘mapping’

file contains all the necessary information to assign tasks

and channels of the process network to specific processing

and storage elements of the architectural platform. Of

course, both the process network and the architectural

platform have to be created before starting the mapping

process. Once the mapping is performed the simulator

core starts the simulation. This simulation is at the bus-

cycle accurate level (BCA) for communication and at the

timed functional level (TF) for computation.

Communication latency can be specified in the Initiator

and Target modules of the architecture platform as

desired. The modeling of computation delays is by means

of manual code annotation in the application tasks.

During simulation the simulator core collects relevant

information and dumps it into text files for later

inspection. The simulator gathers all the simulation

information using special tracing classes which are

transparent to the system designer. The information

gathered is: the total number of execution cycles,

communication load per interface (in bytes),

communication load per network component (in bytes),

average communication latency per interface (in cycles),

and maximum communication latency per interface (in

cycles). Moreover, information regarding the inter-task

communication protocol performance can also be

collected. Synchronization rate and average number of

cycles waiting for data or room per tasks is stored in order

to analyze the protocol implementation. Furthermore, the

simulator core can trace information regarding the

computational load per processing element if latencies are

annotated in the tasks descriptions.

If after analyses of the trace information the system

designer finds out that the chosen mapping does not fulfill

the requirements, then both a new mapping selection

and/or architectural modifications can be created without

the need of recompiling the system. The fact that different

architectures can be instantiated without recompilation

allows driving the simulator through scripts (batch

processing) more easily and hence allows a more

extensive exploration of the design space (parameters

sweeps).

2.4. System refinement

CASSE is not only useful for system analysis at the

highest abstraction levels but also can bridge the existing

gap between system modeling and system

implementation. The approach followed to refine from an

architectural model to a synthesizable architecture is

twofold:

- Interface refinement. As mentioned in section

2.1, the ICCP protocol is also implemented at a bit-true

level by using SystemC signals. This means that

architectural components might communicate with each

other at a cycle-true/bit-true level by simply replacing the

transactional-level Initiator and Target modules with their

equivalent bit-true versions. Both the Initiator and Target

entities have been also implemented at the RTL level

using synthesizable SystemC.

- Component refinement. As mentioned above, a

components user library can be used to plug external

components (designed by the user) into the architecture

platform. Such components can be instantiated during the

architectural modeling phase just like any other generic

component. These user-designed components can be

SystemC modules designed at both behavioral or RTL

level with the only requisite of being ICCP compliant.

Therefore, refinement is achieved by simply replacing the

generic processing elements which execute functional

tasks, with external components which, for instance, can

model completely accurate hardware (co)processors.

CASSE also supports co-simulation: Untimed

functional models using transaction-level communication

with SystemC Master/Slave channels (TLM/SC-MS) and

cycle-accurate models using bit-true communication with

SystemC signals (CA/BT) can be connected using

abstraction-level adaptors components (i.e. adaptors from

TLM/SC-MS to CA/BT, and vice versa), which are

included in the system libraries.

3. The CAMELLIA case study

The target smart imaging system architecture is based

on the integration of coprocessors with smart imaging

functionality in an existing video encoder, which consists

of highly configurable dedicated hardware accelerators for

video encoding (one of these hardware accelerators is a

motion estimator coprocessor), a central CPU, a memory

interface, and input and output interfaces.

As an example, one of the automotive domain

applications identified for CAMELLIA, the low-speed

obstacle detection application (LSOD), is disclosed here.

This application is composed of a “high-level” algorithm

(HLA) which combines the output of several vehicle

detection “medium-level” algorithms (MLA) in order to

obtain an exact detection and localization of vehicles.

These medium-level algorithms use low-level operations

(LLA) for pixel processing (e.g. kernel filtering,

morphological and arithmetic operations, etc). The

medium-level algorithms used in LSOD are: shadow

detection, edges detection, rear lights detection, symmetry

detection and motion segmentation.

With the classification of algorithms described above,

a general approach for mapping an application onto the

architecture can be derived. As the main characteristic of

the high-level algorithm is its sequential nature and the

limited computational requirements, this kind of

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

algorithms are candidates for execution on the embedded

CPU. Low-level algorithms are associated with a high

amount of inherent parallelism and relatively simple

operations. Hence, they are well-suited for being mapped

on coprocessors. Medium-level algorithms can be split

into a pixel processing part to be mapped onto

coprocessors and a control part to be mapped onto the

embedded CPU. CASSE is used to analyze different

partition alternatives for these medium-level algorithms.

Depending on the partition chosen different processing

granularity (i.e. synchronization rate) is derived. The

processing granularity has a significant impact in both the

communication load and the storage needed. For a

particular HW/SW partition, in addition to this processing

granularity impact, there exist many architectural

alternatives which could also significantly influence on

the final performance. These architectural alternatives

(e.g. number and organization of memories, number of

busses, etcetera) and even system parameters regarding

communication issues can be also explored using CASSE.

Following the methodology presented in this paper we

first have decomposed the low-speed obstacle detection

(LSOD) application into several parallel processes which

communicate with each other using the described ITCP

protocol. The correctness of the process network is

checked by functional simulations. In addition, the target

system architecture is modeled using the simulator at the

highest level of abstraction. According to the application

composition (i.e. HLA, MLAs, and LLAs) and the project

requirements (i.e. the need of reusing an existing

platform), the mapping of the process network into the

modeled architecture is performed as follows. The high-

level algorithm and the more control-oriented part of the

medium-level algorithms are combined together in a task,

which fits well to be mapped onto the CPU component of

the architecture. All the low-level operations are

combined together in a pixel-processing task, which is

mapped onto a smart imaging component. Likewise, the

pixel processing part of the motion segmentation medium-

level algorithm is distinguished as an independent task,

which is mapped onto the existing motion estimator

component. Hence, the best communication network and

memory organization instance for the selected HW/SW

partition is chosen by an iterative performance simulation

process. Hereunder, an example of the target system

architecture with two busses and two shared memories is

presented, see figure 6.

Communication load and latencies per processing

elements, as well as the impact of the synchronization

rate, is obtained during the performance simulations. In

figure 7 the communication load produced per processing

element on the network component 2, corresponding to

the figure 6 example, is shown. In figure 8 the number of

synchronization calls per processing element is shown.

These numbers correspond to a 25 frames simulation of

the LSOD application. Among others, these results guide

the tuning of parameters related with both the data

transport and the synchronization (i.e. burst size,

priorities, channel size, channel allocation, processing

granularity, number of busses, etcetera).

INITIATOR
1

INITIATOR
1

INITIATOR
2

INITIATOR
1

INITIATOR
2

INITIATOR
1

INITIATOR
2

HLA + MLAs

(control

oriented)

SI (pixel

processing)
ME (pixel

processing)

Video

Input

INITIATOR
2

Network

component 1

TARGET
1

TARGET
3

TARGET
2

TARGET
4

Network

component 2

TARGET
1

TARGET

3

TARGET

2

TARGET

4

FRAME

MEMORY

TARGET
1

CHANNELS

MEMORY

TARGET
1

INITIATOR
1

INITIATOR
1

PE1 PE2 PE3 PE4

INITIATOR
1

INITIATOR
1

INITIATOR
1

INITIATOR
1

INITIATOR
2

INITIATOR
2

INITIATOR
1

INITIATOR
1

INITIATOR
2

INITIATOR
2

INITIATOR
1

INITIATOR
1

INITIATOR
2

INITIATOR
2

HLA + MLAs

(control

oriented)

SI (pixel

processing)
ME (pixel

processing)

Video

Input

INITIATOR
2

INITIATOR
2

Network

component 1

TARGET
1

TARGET
1

TARGET
3

TARGET
3

TARGET
2

TARGET
2

TARGET
4

TARGET
4

Network

component 2

TARGET
1

TARGET
1

TARGET

3

TARGET

3

TARGET

2

TARGET

2

TARGET

4

TARGET

4

FRAME

MEMORY

TARGET
1

TARGET
1

CHANNELS

MEMORY

TARGET
1

TARGET
1

INITIATOR
1

INITIATOR
1

INITIATOR
1

INITIATOR
1

PE1 PE2 PE3 PE4

Figure 6. Mapping of the LSOD application onto a
system architecture instance

Network Component 2

0

2

4

6

8

10

12

14

16

18

20

PE1.INIT2

(CPU)

PE2.INIT2

(SI)

PE3.INIT2

(ME)

PE4.INIT2

(VIDEO)

M
b
y
te

s

Figure 7. Communication load on the Network
Component 2

Protocol Translator Wrappers (PTW)

0

10000

20000

30000

40000

50000

60000

70000

80000

PE1.PTW

(CPU)

PE2.PTW

(SI)

PE3.PTW

(ME)

PE4.PTW

(VIDEO)

s
y
n
c
h
ro

n
iz

a
ti
o
n
 c

a
ll
s

Figure 8. Synchronization rate per processing
elements

In addition, this system architectural model is being

used to verify refined models (RTL SystemC) of both a

smart imaging and a motion estimator coprocessor, which

are being developed during the project. System

verification is performed by replacing the processing

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.

elements where the corresponding functional tasks are

mapped, for these more accurate coprocessors.

4. Conclusions

In this paper a SystemC-based simulator called

CASSE is presented. CASSE provides fast simulations

and easy architectural modeling by using transaction-level

modeling techniques. Moreover, CASSE provides a

seamless KPN-derived protocol refinement to cover from

application to system implementation. Simulations at

different abstraction levels are covered by CASSE, from

completely untimed functional simulations of process

networks to BCA/CA performance simulations of

architectural models. Co-simulation with elements at

different abstraction levels is also possible.

The work presented in this paper is being used in the

European CAMELLIA project to derive an adequate

HW/SW partition and an optimal communication

infrastructure for the building blocks in the target

CAMELLIA smart imaging system.

5. Acknowledgements

This work is sponsored by the European Commission in

the IST-2001-34410 CAMELLIA project. The authors

would like to thank their colleagues and partners involved

in the project for their contributions and fruitful

discussions.

6. References

[1] CAMELLIA webpage: www.iuma.ulpgc.es/camellia/

[2] K. Keutzer, S. Malik, R. Newton, J. Rabaey and S.

Sangiovanni-Vicentelli, “System Level Design:

Orthogonalization of Concerns and Platform-Based Design”, in

Proc. IEEE Transactions on Computer-Aided Design of Circuits

and Systems, Vol. 19, No. 12, December 2000

[3] B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf,

“An Approach for Quantitative Analysis of Application-Specific

Dataflow Architectures”, in Proc. 11-th Int. Conf. on

Application-specific Systems, Architectures and Processors,

Zurich, Switzerland, July 14-16 1997

[4] J.A. Rowson and A. Sangiovanni-Vicentelli, “Interface-

Based Design”, in Proc. Of Design Automation Conference,

Anaheim, California, June 1997

[5] Lukai Cai and Daniel Gajski, “Transaction Level Modeling:

An Overview”, in CODES+ISSS’03, California, USA, October

2003

[6] W. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo,

A.A. Jerraya, L. Gauthier and M. Diaz-Nava, “Multiprocessor

SoC Platforms: A Component-Based Design Approach”, in

IEEE Design & Test of Computers, December 2002

[7] M-A. Dziri, W. Cesario, F. Wagner, and A.A. Jerraya,

“Unified Component Integration Flow for Multi-Processor SoC

Design and Validation”, in Proc. DATE’04, Paris, February

2004

[8] T. Kogel, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, D.

Bussaglia, M. Ariyamparambath, “Virtual Architecture

Mapping: A SystemC based Methodology for Architectural

Exploration of System-on-Chip Designs”, in Int. Workshop on

Systems, Architecture, Modeling and Simulation, samos, Greece,

July 2003

[9] P. Lieverse, T. Stefanov, P. van der Wolf, E. Deprettere,

“System Level Design with Spade: and M-JPEG Case Study”, in

Proc. ICCAD’2001, November 2001, San Jose, CA

[10] A. Nieuwland, J. Kang, O.P. Gangwal, R. Sethuraman, N.

Busa, K. Goossens, R. Peset Llopis, and Paul Lippens, “C-

HEAP: A Heterogeneous Multi-processor Architecture Template

and Scalable and Flexible Protocol for the Design of Embedded

Signal Processing Systems”, in Design automation for

Embedded Systems, Vol 7(3): 229–266, 2002, Kluwer

[11] M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol,

“Eclipse: Heterogeneous Multiprocessor Architecture for

Flexible Media Processing”, in Workshop on Parallel and

Distributed Computing in Image Processing, Video Processing,

and Multimedia (PDIVM'2002), Fort Lauderdale, USA, 2002,

pp. 39–50

[12] T. Stefanov, P. Lieverse, E. Deprettere, P. van der Wolf,

“Y-Chart Based System Level Performance Analysis: An M-

JPEG Case Study”, in Proc. of the Progress Workshop, 2000

[13] Functional Specification for SystemC 2.0.1, April 2002,

http://www.systemc.org

[14] SystemC 2.0.1 Language Reference Manual

[15] Open Core Protocol Specification-v1.0.

http://www.sonic.com, October 1999

[16] Virtual Component Interface Standard Version 2. On-Chip

Bus DWG (OCB 2.2.0), http://www.vsi.org, April 2001

[17] ARM. AMBA AXI Protocol Specification, June 2003

[18] Harwig, Rick and Emile Aarts, “Ambient Intelligence:

Invisible Electronics Emerging”, in Proc. of the 2002

International Interconnect Technology Conference, San

Francisco, pp. 3-5

[19] P. Klapproth, “Architectural Concept for IP re-use”, in

VLSI ASP DAC, December 2002

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on December 23, 2008 at 09:11 from IEEE Xplore. Restrictions apply.View publication statsView publication stats

https://www.researchgate.net/publication/4091426

