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ABSTRACT 

The present paper describes an Electronic System Level (ESL) design methodology which was established and employed 
in the creation of a H.264/AVC baseline decoder. The methodology involves the synthesis of the algorithmic description 
of the functional blocks that comprise the decoder, using a high level synthesis tool. Optimization and design space 
exploration is carried out at the algorithmic level before performing logic synthesis. Final, post-place and route 
implementation results show that the decoder can operate at the target frequency of 100 MHz and meet real time 
requirements for QCIF frames. 

Keywords: ESL, SystemC, TLM-2.0, high-level synthesis, logic synthesis, FPGA  
 

1. INTRODUCTION 
ESL design methodologies based on the SystemC language, high level synthesis and TLM (transaction level modeling) 
have become increasingly important in the electronic design industry due to increasing design complexity. High level 
synthesis coupled with the SystemC language allows hardware description at a higher level of abstraction than RTL 
(Register Transfer Level) languages such as VHDL, allowing designers to be more productive. In an ESL flow, the high 
level synthesis tool handles the conversion of the algorithmic description of the hardware to the RTL description, taking 
care of implementation details1. Algorithmic and transaction level modeling provide a system-level view that allows fast 
and early architectural exploration and design, and design optimization.  

In the work hereby reported, an ESL design methodology is established and applied to create a synthesizable SystemC 
model of a baseline H.264/AVC decoder. The decoder is aimed at low-end mobile and handheld devices using the QCIF 
frame format, and the synthesizable model has to meet specific area and speed requirements, for a hardware 
implementation on a Virtex-4 FGPA. The established ESL flow includes transformation, modeling and refinement steps 
as front, middle and back-end steps respectively. The starting point for the research is a C++ model of the decoder, 
divided and organized into independently verified functional blocks (hardware-oriented), which were obtained through 
appropriate transformations from the reference C++ application software.  

As a first step, a transaction level model of the decoder is created, using the TLM-2.0 standard. This is a high level 
functional model in which inter-block communication involves the exchange of transaction objects using TLM-2.0 
interfaces. The TLM-2.0 model is verified using the same test cases applied to the C++ model and is used as the 
reference model for the subsequent micro-architecture exploration and RTL implementation. 

Each of the decoder functional blocks is refined, implemented and verified independently. The refinement methodology 
employed involves a modeling phase, high level synthesis, optimization and logic synthesis. 

In the modeling phase, the code is modified for an initial high level synthesis in the SystemC editor. Among the changes 
made is the replacement of the TLM-2.0 socket interfaces with SystemC signal channels, creating a pin-level interface, 
and the addition of timing information using wait() statements.  

High level synthesis is performed next using Agility Compiler, in order to obtain an area and delay estimation summary. 
In order to determine if the results are satisfactory at this stage, initial reference values are set for the target operation 
frequency and for the FPGA area consumption, depending on functional block complexity and other factors.  
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If the area and delay results obtained do not meet the requirements, an iterative process involving the optimization of the 
SystemC code in the editor and the execution of Agility Compiler to obtain area and delay results is performed. Once the 
synthesis results obtained with Agility Compiler are satisfactory, logic synthesis is performed next using Synplify Pro, 
leading to a further improvement in area and delay results.  

After obtaining logic synthesis results, a final implementation using Xilinx tools is carried out to produce the FPGA 
programming information, obtaining final area and delay results. Full decoder performance is estimated using these 
results, and the decoder would be capable of processing more than 30 frames per second for a QCIF frame size at a 
maximum operating frequency of 100 MHz. 

The paper is organized as follows. Section 2 describes the algorithmic C++ model of the decoder, while section 3 
describes how a TLM-2.0 model of the decoder is obtained from the C++ model. Section 4 describes the methodological 
steps followed to implement each of the functional blocks, and section 5 presents results obtained in the application of 
the design methodology. Finally, section 6 concludes the paper. 

 

 

2. ALGORITHMIC C++ MODEL OF THE DECODER 
As discussed in the previous section, the starting point for the research was a C++ model of the H.264/AVC decoder, 
divided and organized into independently verified functional blocks, obtained from the reference C++ application 
software (JM version 12.4)2.The code extracted from this software has been modified and optimized, and any additional 
code necessary added, as required. The C++ model of the decoder adheres to the H.264/AVC Baseline profile, however, 
only one reference frame is used (the previous frame) and flexible macroblock ordering, ASO (Arbitrary Slice Ordering) 
and slice groups are not supported. 

Figure 1 shows the H.264/AVC decoder. The H_CONTROL block performs the hardware controller function in the 
decoder. It activates the CAVLD block in order to read the syntax elements pertaining to the current macroblock from 
the bitstream. The I_QUANT (Inverse Quantization) and I_TRANS (Inverse Transform) blocks are activated next in 
order to obtain the dequantized coefficients and the residual macroblock, respectively. The INTER_P (Inter Predictor) or 
INTRA_P (Intra Predictor) block will be activated next depending on whether the samples of the current macroblock 
were obtained using temporal (inter macroblock) or spatial prediction (intra macroblock). Finally, the D_FILTER 
(Deblocking Filter) block will be activated if filtering is enabled for the current macroblock. A decoded frame (F’n) is 
obtained once all the macroblocks belonging to a frame have been filtered3. 

CAVLD

BITSTREAM

I_QUANT I_TRANS INTER_P

INTRA_P

D_FILTER

Decoded 
frame (F’n)

H_CONTROL

 
Fig. 1. H.264/AVC decoder 

The C++ model features the functional blocks which appear in figure 1: H_CONTROL, CAVLD, I_QUANT, I_TRANS, 
INTER_P, INTRA_P and D_FILTER. In this model of the decoder, given the high level of abstraction, the 
H_CONTROL block performs control tasks by invoking the C++ functions associated to the other functional blocks 
sequentially. The decoder functional blocks work at the macroblock level, and therefore these functions are invoked once 
per macroblock. 
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In order to decode a macroblock, data needs to be transferred between functional blocks. In the C++ model of the 
decoder, a global data structure is used for data transfer. This is a C++ custom data structure which is shared by all the 
functional blocks that comprise the C++ model of the H.264/AVC decoder, and is used for data transfer between 
functional blocks (Fig 2).  

In order to access the global data structure, each of the functional blocks that comprise the decoder (except the 
H_CONTROL block) have functions to load data (load results) from and store data (store results) in the global data 
structure. The load results function is used to load the subset of the input fields of the global data structure required by 
the functional block in question into an input data structure. The store results function is used to store the output data 
generated by the block, contained in an output structure, in the corresponding output fields of the global data structure. 
The fields of the input and output data structure are of type integer. Apart from the load and store functions, the 
functional blocks feature a function which performs the block’s main function, reading input data from the input data 
structure and storing output data in the output structure. This function will invoke any other additional functions required 
by the functional block to perform it’s tasks. 

Therefore, in order to invoke a decoder functional block, the H_CONTROL block first invokes the load results function 
to load the input data from the global data structure. Then it invokes the corresponding block function which will read 
input data from the input structure and store output data in the output structure. Finally, the H_CONTROL block will 
invoke the store results function to store output data in the global data structure. This makes the output data available to 
other functional blocks. For example, once the H_CONTROL block has invoked the CAVLD block, the dequantized 
coefficients will be available to the I_QUANT block in the global data structure.  

Macroblock neighbour data is required by certain functional blocks and such data is managed by the H_CONTROL 
block and is stored in the global data structure before the block is invoked, but no load or store functions are used for this 
purpose. For example, for a given macroblock, the INTER_P block requires motion vectors belonging to the neighbour 
to the left, neighbour above, neighbour above and to the left and neighbour above and to the right. The H_CONTROL 
block must make this data available to the INTER_P block in the global data structure before this functional block is 
invoked. 

Load results 
INTER_P INTER_P INTER_P_struct_outINTER_P_struct_in Store results 

INTER_P

Load results 
INTRA_P INTRA_P INTRA_P_struct_outINTRA_P_struct_in Store results 

INTRA_P

global_data_struct

Load results 
I_TRANS I_TRANS I_TRANS_struct_outI_TRANS_struct_in Store results 

I_TRANS

Load results 
I_QUANT I_QUANT I_QUANT_struct_outI_QUANT_struct_in Store results 

I_QUANT

Load results 
CAVLD CAVLD CAVLD_struct_outCAVLD_struct_in Store results 

CAVLD

H_CONTROL

Load results 
D_FILTER D_FILTER D_FILTER_struct_outD_FILTER_struct_in Store results 

D_FILTER

 
Fig. 2. Data transfer scheme used in the C++ model of the H.264/AVC decoder 

Additionally, sample data is required by the INTRA_P, INTER_P and D_FILTER blocks. Memories are implemented in 
the C++ model of the decoder as 2-dimensional arrays (height and width), which are included in the global data 
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structure. The memories used in the C++ model are the Picture Buffer (PB), Decoded Picture Buffer (DPB) and the 
Temporal Picture Buffer (TPB). These memories are accessed using read buffer and write buffer functions, within the 
load results and store results functions. 

The DPB (which stores the reference frame) is accessed by the INTER_P block to perform the inter prediction process, 
and after that the INTER_P block stores the unfiltered samples corresponding to the current macroblock in the TPB. In 
order to perform the intra prediction process, the INTRA_P block accesses the TPB to read unfiltered samples 
corresponding to neighbour macroblocks, and stores the unfiltered samples corresponding to the current macroblock in 
the TPB. The D_FILTER block reads unfiltered samples stored in the TPB, filters these samples and stores them in the 
PB. The reason why the TPB memory is included is that the INTRA_P block requires unfiltered neighbour samples and 
therefore cannot read these samples from the PB, as they are being filtered and stored in this memory by the D_FILTER 
block. This memory access scheme is shown in Fig. 3. 

INTER_PCAVLD I_QUANT I_TRANS

INTRA_P

D_FILTERBITSTREAM Decoded
 frame (F’n)

H_CONTROL

PB 
(Picture 
Buffer)

uF’n

news_qcif.yuv
QCIF 176x144

300 frames

Frame 1

DPB 
(Decoded 

Picture 
Buffer)

F’n-1

news_qcif.yuv
QCIF 176x144

300 frames

Frame 0

TPB 
(Temporal 

Picture 
Buffer)

 
Fig. 3. Memory access scheme used in the C++ model of the H.264/AVC decoder 

As an example, the DPB in the figure contains frame 0 of the news test video sequence in QCIF format while the PB 
contains frame 1 of this same test video sequence. 

Each of the functional blocks that comprise the C++ model of the H.264/AVC decoder, and the full decoder, were 
verified using a series of test cases. The test cases comprise one or more input files, and a reference output file. The 
video sequences used for the test cases were: deadline, carphone, foreman, mobile and news. The frame format used was 
QCIF (Quarter Common Intermediate Format) with a resolution of 176 x 144 pixels and colour space 4:2:0. These test 
cases were run with a QP value of 28, a constant bitrate of 1 KB/s and a constant bitrate of 600 KB/s (constant bitrates 
mean the QP will be variable). The intra picture period value used was 4. Additionally, in order to test IPCM macroblock 
compatibility, the following test case was run: news test sequence, 300 frames, 1 slice, QP 0 and period of intra pictures 
4. In order to test CIF (Common Intermediate Format) frame format (with a resolution of 352 x 288 pixels) 
compatibility, the following test case was run: foreman test sequence, 300 frames, 44 slices, QP 28 and period of intra 
pictures 4. 
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3. TLM-2.0 MODEL OF THE DECODER 
In order to create a TLM-2.0 model of the H.264/AVC decoder from the C++ model described in the previous section, 
the basic features of the TLM-2.0 standard are used: initiators, targets, transaction objects and sockets4. Initiator modules 
initiate new transactions, while target modules respond to transactions initiated by other modules. A transaction object is 
a data structure passed between initiators and targets. Sockets are used to pass transactions objects between initiators and 
targets. Transaction objects are sent through initiator sockets in initiator modules and received through target sockets in 
target modules. Transaction objects are of type generic payload, which is a general purpose transaction type implemented 
in the TLM-2.0 standard, and feature a series of attributes. For the purpose of creating the decoder model the following 
standard attributes were used: command, address, data pointer, data length, streaming width and response status.  

The socket interface through which the transaction objects are sent can be blocking or non-blocking. Our model uses the 
blocking interface, which is associated with the loosely-timed coding style, which focuses on functional execution with 
minimal or no timing detail. In this case, the model is untimed (as no clock is used) since the goal is the creation of a 
model whose functionality can be verified with minimal simulation overhead and which serves as the reference model 
for the subsequent  RTL implementation. 

Figure 4 shows the TLM-2.0 model of the H.264/AVC decoder. In order to obtain this model from the C++ model, the 
global data structure and load and store functions are removed. In the model, data is transferred between the decoder 
functional blocks (CAVLD, I_QUANT, I_TRANS, INTRA_P, INTER_P, D_FILTER and H_CONTROL) using TLM-
2.0 socket interfaces. These are point to point communications between independent SystemC modules, as opposed to 
having a global data structure accessed using load and store functions. The model features, like the C++ model, three 
sample memories: the PB, DPB and TPB, which were discussed in the previous section and are also accessed using 
sockets. These memories are arrays declared in independent SystemC modules instead of arrays included in a global data 
structure, as in the C++ model.  Since the address attribute of generic payload only allows the specification of one 
address value, memory arrays are 1-dimensional in the TLM-2.0 model instead of 2-dimensional as in the C++ model, as 
this would have required the specification of two address values (height and width). 
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Fig. 4. TLM-2.0 model of H.264/AVC decoder 
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In the C++ model, given the high level of abstraction, the H_CONTROL block performs control tasks by invoking the 
load results, main block function and store results functions, as described in section 1. In the TLM-2.0 model, the 
H_CONTROL block activates each of the functional blocks that comprise the decoder sequentially, using SystemC 
control signals. The H_CONTROL block asserts a start signal to activate a functional block, and once the functional 
block has finished processing a macroblock, it asserts a finish signal. Each of the functional blocks that comprise the 
TLM-2.0 model have an associated start and finish signal, represented by a bidirectional dotted line from the 
H_CONTROL block to the corresponding functional block in Fig. 4. 

The functional blocks that comprise the TLM-2.0 model of the H.264/AVC decoder are independent SystemC modules 
that feature one thread process and one or more blocking transport methods. As discussed earlier, the blocking interface 
is used for data transfer, and the TLM-2.0 standard requires that the target module implement one blocking transport 
method for each target socket. An exception is the CAVLD block that only acts as an initiator, transferring data to the 
I_QUANT and H_CONTROL blocks, and does not include any blocking transport methods. The memories featured in 
the model only act as targets and therefore don’t include a thread process, only the blocking transport methods. 

The blocking transport method is implemented in the target module but invoked by the initiator module in order to 
transfer the data.  For example, the I_TRANS block would implement a blocking transport method to receive data from 
the I_QUANT block, and this method would be invoked by the I_QUANT block to transfer the data. In order to transfer 
data between decoder functional blocks, only the write command is used, and this is shown in Fig. 4 as the socket pair 
does not include the return path. For memory accesses, both the read and write commands are implemented and the 
return path is shown. The write command and the read command (for memories) are implemented in the blocking 
transport method in either case. 

Upon receiving a transaction object, the blocking transport method checks certain generic payload attributes to determine 
whether the values are acceptable. As stated earlier, for the purpose of creating the decoder model the following standard 
attributes are used: command, address, data pointer, data length, streaming width and response status. The address 
attribute is used by the INTRA_P, INTER_P and D_FILTER blocks for memory access, and it is checked to determine 
whether it is not greater than the highest address value, taking the size of the memory arrays into account. The streaming 
width attribute is also used for memory access and allows the transfer of multiple samples located in contiguous memory 
addresses with only one blocking transport call. However, data transfer between functional blocks does not use this 
feature and therefore the streaming width attribute is set to match the data length attribute, and the data length attribute 
itself is set to the size of the transaction object, both for data transfer between functional blocks and for memory access. 
The blocking transport method checks whether the attributes have acceptable values and therefore the conditions above 
are met, otherwise an error is generated.  

If the generic payload attributes associated to the transaction object are acceptable, then the read or write command is 
executed in the blocking transport method and the response status attribute is set to indicate the successful completion of 
the transaction. Once this is done, the blocking transport method notifies the thread process that data has been received 
using a SystemC event object. 

The thread process is implemented as an infinite loop, and within this process the functional block first waits for data 
from other functional blocks (an exception is the CAVLD block, which only acts as an initiator). For example, the 
I_TRANS block receives data from the H_CONTROL and I_QUANT blocks, which act as initiators. Therefore, the 
I_TRANS block features two blocking transport methods that will notify data reception to the thread process using each 
one event object. Once data has been received, the functional block will wait for the H_CONTROL module to assert the 
start signal. When the rising edge of the start signal is detected, data received from other functional blocks will be copied 
to the input data structure of the functional block. The input data structure, as described in the previous section, is a 
custom data structure whose fields represent the input data of a functional block. In the case of the INTRA_P block, for 
example, a subset of these fields represent data that comes from I_TRANS block, while the rest represent data that 
comes from the H_CONTROL block. If the functional block needs to access the sample memories, this step will be done 
next. The INTRA_P, INTER_P and D_FILTER blocks act as initiators for memory access, copying the required samples 
to their input structures.  

Once the input data structure contains all the data required to process the current macroblock, the functional block’s 
main function will be invoked, and output data corresponding to the current macroblock will be copied to the functional 
block’s output data structure. The input data structure, functional block main function, other functions required by the 
functional block to process a macroblock, and the output structure are obtained from the C++ model. 
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The macroblock output data contained in the output data structure will be transferred to other functional blocks and/or 
written to memory using the corresponding initiator sockets. In the case of the INTRA_P block, for example, a subset of 
the fields of the output data structure contain the macroblock 4x4 intra modes that will be transferred to the 
H_CONTROL block using a transaction object through the corresponding socket interface. The remaining fields of the 
output data structure contain the unfiltered samples of the current macroblock, which will be written to the TPB memory 
using the corresponding socket interface.  

After data has been transferred to other functional blocks and/or written to memory, the functional block will assert a 
finish signal, notifying the H_CONTROL block that the current macroblock has been processed and that data transfer is 
complete.  

 

4. ESL REFINEMENT METHODOLOGY 
As discussed in the previous section, the functional blocks that comprise the TLM-2.0 model of the H.264/AVC decoder 
are SystemC modules with socket interfaces. These socket interfaces are used for data transfer between functional 
blocks. Within the SystemC modules, the original C++ model code is used to perform the block’s function. 

In order to create a synthesizable SystemC model of the decoder, a refinement methodology that involves a modeling 
phase, high level synthesis, optimization and logic synthesis is used. This methodology is applied to each of the 
functional blocks, which were refined, implemented and verified independently. The following subsections will discuss 
each of these steps. 

4.1 Modeling 

In the modeling phase, the goal is the creation of a synthesizable SystemC model of a functional block and a 
corresponding testbench, in order to verify the functional block independently. The tool used in this phase is Microsoft 
Visual studio 2005 with version 2.2 of the OSCI SystemC library5. A series of steps are performed in order to obtain 
initial high level synthesis results, and these steps are discussed in the following paragraphs. 

The first step that is performed is the addition of input ports for the clock and reset signals. In order to implement the 
reset signal, a function of the high level synthesis tool, Agility Compiler version 1.2, is used. This function allows the 
definition of a global asynchronous reset for the whole design, and it is invoked in the constructor of the top level 
module of a functional block. For simulation with Microsoft Visual Studio, this reset signal is not used. In the functional 
block modules, internal and output signals are initialized outside the thread process loop, while variables are initialized 
in the module constructor. 

After adding the clock signal, the thread processes within the modules are made sensitive to the rising edge of this clock 
signal.   

The next step of the modeling phase is the replacement of the TLM-2.0 socket interface with SystemC signal channels. 
An interface with a request, validate and data signal is used. In this interface, the module that transfers data is a source 
module, and the module that receives data is a sink module. The sink module asserts the request signal, and waits until 
the source module is ready to transfer the data. When the source module is ready, it asserts the validate signal, meaning 
that the data is valid. When the sink module detects that the validate signal has been asserted, it de-asserts the request 
signal and reads the data signal. Likewise, when the source module detects that the request signal has been de-asserted, it 
de-asserts the validate signal. The validate signal can remain asserted for more than one clock cycle if multiple data 
words need to be transferred. In this case the source module won’t de-assert the validate signal when the request signal is 
de-asserted, only when the transfer of all the data words is complete.  

Each TLM-2.0 socket interface of the functional block is replaced with this request, validate and data signal interface. If 
the module acts as a source module (it has an output socket) the request signal will be an input signal, while the validate 
and data signals will be output signals. If the module acts as a sink module (it has an input socket) the request signal will 
be an output signal, while the validate and data signal will be input signals. For example, the I_QUANT block acts as a 
sink to receive the quantized coefficients and other data required to process a macroblock from the CAVLD block, and 
acts as a source to transfer dequantized coefficients to the I_TRANS block. 
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When a functional block acts as a sink to receive data, the data word or words received will be stored in an input 
memory. Each input interface has an associated memory, as data reception happens in parallel using point to point 
interfaces, and the memories used only have one write port. For example, the I_TRANS block receives one data word 
from the H_CONTROL block, which is stored in an input memory, and 384 dequantized coefficients (256 for luminance 
samples + 128 for chrominance samples) from the I_QUANT block, which are stored in another input memory.  
Likewise, when a functional block acts as a source to send data, data words are read from output memories and sent 
through the corresponding interfaces. 

The memories used in a functional block are synchronous and feature one read and one write port. Each memory used in 
the design is an independent SystemC module instantiated in the top module of the functional block. For simulation, the 
memories are implemented as arrays of the appropriate depth and width. In the high level synthesis stage, additional code 
is added to the memory modules, so that Agility Compiler will implement these memories using FPGA memory 
resources.  

The memory architecture used in the decoder allows one sample to be read from memory or written to memory in each 
clock cycle. This means that the input and output interfaces will receive or transfer one sample per cycle, and that the 
core module will read from or write one sample to memory per clock cycle for processing. This also applies to the 
quantized coefficients that the CAVLD block transfers to the I_QUANT block, to the dequantized coefficients that the 
I_QUANT block transfers to the I_TRANS block, and to the residual elements that the I_TRANS block transfers to the 
INTRA_P and INTER_P blocks. This memory access scheme is used to simplify the decoder architecture and provides 
sufficient bandwidth to decode QCIF frames at a frame rate of 30 frames per second, as will be seen in the results 
section. 

It was decided at this stage that the synthesizable SystemC model of a functional block would be divided into at least two 
modules, featuring an architecture comprising an interface module and a core module. The interface module manages the 
input and output interface or interfaces, as described above, and the core module performs the actual macroblock 
processing. The interface and core modules communicate using memories: the core module reads the input data stored by 
the interface module in memory and stores output data in memory, which will be read by the interface module. This 
partition is done to simplify the following optimization phase and improve both high level synthesis times and results, 
and presents a logical separation of the functional block’s interface and functionality. The core module can be divided 
into additional sub-modules to further improve synthesis results, as will be discussed later. The interface module also 
performs control tasks, as it activates the core module using a start signal and is notified by the core module once the 
macroblock has been processed using a finish signal. 

Once activated by the interface module, the core module reads input data from the input memory or memories, and stores 
it in the input data structure of the functional block. The original C++ code included in the SystemC module is invoked 
to process the macroblock, and output data is stored in the output data structure. This data is written to the output 
memory or memories, so that the interface module can transfer this data through the output interface or interfaces. 

The input and output data structures are custom data structures used in the C++ model in which variables and arrays are 
of type integer, as described in section 2. Although these structures are synthesizable, they are removed in order to 
reduce the area requirements of a functional block.   

At this stage, the functional block is verified using the same testbench used to verify the C++ model. The testbench is 
modified to use the same request, data and validate signal interface used by the functional block. Verification using this 
testbench is done every time changes are made in the modeling phase. 

The next step performed in order to prepare the SystemC module of the functional block for the initial high level 
synthesis, is the addition of timing information to the core module. Although synthesis would be possible without doing 
this, the entire core module is implemented as a combinational circuit in such a case and area requirements exceed FPGA 
resources, even for the less complex functional blocks such as I_QUANT and I_TRANS. 

Adding timing information involves adding SystemC wait() statements to the code. The interface module that replaces 
the TLM-2.0 socket interfaces is already cycle-accurate as it includes the necessary wait() statements so that the input 
and output interfaces can work as described earlier. 

Several factors must be taken into account when adding wait() statements to the code. Every wait() statement added to 
the code means that the functional block will require an additional clock cycle to process a macroblock, as the processes 
are sensitive to the rising edge of the clock and a wait() statement means the processes will wait for the next clock cycle 
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and therefore data will be registered. Therefore, the number of cycles required to process a macroblock can be controlled 
directly, with the addition or removal of wait() statements. Also, since the operation frequency is determined by the 
critical path of the design, code lines with many arithmetic or logic operations done serially will be split by adding wait() 
statements and creating intermediate registers, so that the number of arithmetic and logic operations done before a wait() 
is limited to 3 for the initial high level synthesis. 

After the addition of wait() statements, the core module code is simplified by turning multidimensional arrays into 
single-dimensional arrays. This is done because operating with arrays of more than one dimension requires nested for 
loops to generate indices for each dimension, and more registers for the index values, complicating the hardware 
required and leading to worse synthesis results. Additionally, it is of particular interest to convert multidimensional 
arrays that hold constant values to single-dimensional arrays as this would allow the specification of these arrays as 
ROM memories in the high level synthesis stage, to reduce area requirements. 

The next step is the replacement of the integer data type, used in the C++ model, with the SystemC sc_uint and sc_int 
data types, which are found to yield better high level synthesis results, as they allow the specification of the exact register 
widths in bits. Other changes made to the code are related to the replacement of the input and output structures of each 
functional block with input and output memories, as described earlier. Sections of code that read from or write to these 
structures will instead access the corresponding memory using functions that have been created for this purpose. The 
number of variables and arrays used for temporal results is reduced whenever possible, writing to memories directly in 
order to reduce area requirements. 

4.2 High level synthesis and optimization 

Once the functional block code has been modified in the modeling phase, Agility Compiler is run next in order to 
perform high level synthesis. The tool is configured to use EDIF as the output format with default optimizations enabled, 
and to use the target FPGA, a Xilinx Virtex 4 (part number xc4vfx60ff1152-11). Once high level synthesis is performed, 
Agility Compiler generates an area and delay estimation summary. This report provides a breakdown of FPGA resources 
used for each file that comprises a functional block, and the longest combinational paths in the design. We use the 
number of LUTs required to estimate the area requirements for the functional block, and the maximum logic and routing 
delay from flip flop to flip flop (critical path) to estimate the frequency of operation. 

The area requirement is compared to a reference value that depends on block complexity. Less complex functional 
blocks such as the I_TRANS and I_QUANT blocks are allowed a maximum area requirement of 5000 LUTs, while the 
INTER_P, D_FILTER and CAVLD blocks can have an area requirement of no more than 15000 LUTs. Other blocks 
must have an area requirement below 10000 LUTs. The initial critical path reference value is 10 ns, but was allowed to 
reach 15 ns, seeing that the logic synthesis tool is able to optimize the critical path to reach the target frequency of 100 
MHz, for values up to 15 ns. 

If either the area requirement or critical path are above the reference values for the functional block, an iterative process 
involving the optimization of the SystemC code in the editor and the execution of Agility Compiler to obtain area and 
delay results is performed, in order to bring the values obtained in the report as close as possible to the reference values. 
In this optimization phase, the goal is not only to adjust the frequency but the number of cycles as well, so that the 
performance goal of achieving over 30 frames per second for QCIF video sequences is met, while at the same time 
satisfying area requirements. 

In order to reduce area requirements in the optimization stage, additional changes were made to the code of each 
functional block to reduce fanout problems. In the original C++ code, shared variables and arrays are read in many 
different branches, meaning that the resultant hardware registers will have high fanout. This applies particularly to the 
more complex blocks such as INTRA_P, INTER_P and D_FILTER, which process the luminance and chrominance 
components of the macroblock serially reutilizing the same variables in many cases. This leads to an increase in area 
requirements and makes it harder to optimize the critical path. To alleviate these problems, the core module of the 
INTRA_P, INTER_P and D_FILTER blocks is divided into a luminance core and a chrominance core, which process the 
macroblock components in parallel. This improves synthesis results and times as it is easier for Agility Compiler to 
optimize smaller modules. For example, the core module of the INTRA_P block has an area requirement of 20544 
LUTs, and a critical path value of 13,88 ns. After dividing the module, the resultant luminance module has an area 
requirement of 12738 LUTs and a critical path value of 12,92 ns, while the chrominance module has an area requirement 
of 3595 LUTs and a critical path of 13,78 ns. In this case the improvement in the area requirement is over 4000 LUTs, 
and it can be seen that the critical path is in the chrominance module and that the luminance module requires over three 

Proc. of SPIE Vol. 7363  73630K-9



 

 

// Original code 
ih_acu = (3 * (sample_add_0 - sample_add_1)) + ih_acu; 
wait(); 
 
// Modified code 
partial_result_sub = sample_add_0 - sample_add_1; 
wait(); 
partial_result_mult = partial_result_sub * 3; 
wait(); 
ih_acu = partial_result_mult + ih_acu; 
wait(); 

times as many FPGA LUTs as the chrominance module. The high area requirement of the luminance module is again 
due to fanout issues. The arrays used to store the macroblock neighbour samples for 16x16 intra prediction are read from 
many different branches in the code, leading to high fanout and high area requirements as a result. The solution in this 
case is the removal of these arrays, reading samples directly from memory when required, and relying on one or two 
registers for operations. The functions that had these arrays as parameters will have one or more memory base addresses 
as parameters, from which to read the required samples. After performing these changes to the luminance module code, 
the area requirement is reduced by more than 10000 LUTs. 

Once area has been optimized to bring it as close as possible to the reference value, the critical path is optimized next. To 
optimize the critical path, the Agility Compiler report is used, as it provides a list of the code lines in the longest 
combinational path, the FPGA resources in the path and the delays between them. It must be taken into account that 
optimizing one value might lead to the worsening of another, as reducing the area requirement and obtaining a high 
operation frequency are frequently mutually exclusive goals. For example, as stated earlier, the luminance module of the 
INTRA_P block was optimized to reduce the area requirement by 10000 LUTs, however, the changes made to the code 
also lead to an increase in the critical path to 16 ns. In order to reduce this critical path, the Agility Compiler report is 
studied to determine which code lines contribute to the critical path. The lines involved feature a calculation involving 
three consecutive arithmetic operations which are done combinationally. The combinational path is broken by registering 
intermediate results, as shown below. 

Table 1. Critical path optimization example. 

 

 

 

 

 

 

 

 

 

After optimizing both area and critical path, the number of cycles required to process a macroblock is optimized next. In 
order to determine the total number of cycles that a functional block requires to process a macroblock, code is added to 
the functional block to subtract the start and finish SystemC simulation times and divide by the clock period, obtaining 
the number of cycles. Reducing the number of cycles involves removing wait() statements that are not in the critical 
path. Wait() statements that represent an unnecessary wait for the next clock cycle, can be removed. In these cases, 
Agility Compiler has inferred the hardware elements to perform the associated operations in parallel, but the hardware 
elements are used serially due to the addition of wait() statements. 

4.3 Logic synthesis and implementation  

Once the functional blocks have been optimized and area and delay estimation values are satisfactory, Agility Compiler 
is run again, this time using VHDL as the output format with default optimizations enabled. An additional option 
specified is flatten hierarchy, so that only one VHDL file is generated for the functional block, instead of one for each of 
the modules that comprise the functional block.  

The VHDL code obtained is used to perform logic synthesis with Synplify Pro version 9.6.1. This tool is configured to 
use the target FPGA. For synthesis, the resource sharing option is disabled, retiming is enabled and no timing constraints 
are set, so that the tool will attempt to obtain the highest frequency possible. These settings were found to give better 
results for the project discussed in this article.  

After obtaining logic synthesis results, the EDIF output file generated by Synplify Pro is used to obtain final area and 
delay results using Xilinx ISE version 10.1. The tool is configured to use the target FPGA and other options are set to 
default values. 
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5. RESULTS 
Table 2 shows results for each functional block that comprises the H.264/AVC decoder, and the full decoder. The table 
shows synthesis results (area, critical path and frequency values) obtained with Agility Compiler and Synplify Pro.  

 

Table 2. Area, critical path and frequency results obtained with Agility Compiler and Synplify Pro 

 Area (LUTs) Critical path (ns) Frequency (MHz) 

 Agility 
Compiler 

Synplify 
Pro 

Agility 
Compiler 

Synplify 
Pro 

Agility 
Compiler 

Synplify 
Pro 

CAVLD 8671 7352 13,59 5,73 73,58 174,40 

I_QUANT 3799 2753 13,73 5,73 72,83 174,40 

I_TRANS 2884 2819 10,65 5,73 93,90 174,40 

INTRA_P 7059 6185 13,69 5,73 73,05 174,40 

INTER_P 14831 12240 14,54 8,22 68,78 121,70 

D_FILTER 9826 6978 13,03 5,73 76,75 174,40 

H_CONTROL 7521 6088 13,75 5,73 72,73 174,40 

DECODER 57822 46871 15,56 8,44 64,27 118,48 

 

It can be seen that Synplify Pro is able to optimize the area requirement obtained with Agility Compiler significantly in 
some cases. The area requirement obtained for the D_FILTER and INTER_P blocks in Agility Compiler is reduced by 
more than 2500 LUTs in Synplify Pro. Critical path values obtained with Agility Compiler are likewise improved 
significantly. Synplify Pro is able to obtain a maximum frequency of 174,40 MHz for all functional blocks except the 
INTER_P block, which achieves a critical path value of 8,22 and a corresponding frequency of 121,70 MHz. This is due 
to the complexity of the ¼ pixel interpolation algorithm required by the H.264/AVC standard, which must be performed 
in the inter predictor functional block. The full decoder area requirement obtained in Synplify Pro is below the total 
number of LUTs available in the Virtex-4 FPGA used. The maximum operating frequency for the full decoder, 118,48 
MHz, is below the INTER_P block frequency, as expected. 

Table 3 shows area, critical path and frequency values obtained with Xilinx ISE, for each functional block and the full 
decoder, after performing place and route. Xilinx ISE is able to improve the Synplify Pro area requirement modestly, and 
the critical path value is improved for the I_TRANS block, resulting in a maximum operating frequency of 197,04. This 
might be due to the simplicity of the inverse transform functional block and the fact that ISE is a tool by Xilinx and can 
target the Virtex-4 FPGA hardware better. The maximum operating frequency for the full decoder, 118,48 MHz, is 
above the required frequency value of 100 MHz.  

For this operating frequency, the decoder can process QCIF images with a frame rate above 30 frames per second. In 
order to determine this, the maximum number of cycles required to process a macroblock is obtained using the test cases 
discussed in section 1, for each functional block and for the full decoder. The CAVLD, I_QUANT, I_TRANS and 
INTRA_P blocks require no more than 5000 cycles to process a macroblock in the worst case. The D_FILTER block 
takes at most 15000 cycles to process a macroblock, while the maximum number of cycles that the INTER_P block 
requires to process a macroblock is below 25000 cycles. The H_CONTROL block and full decoder require no more than 
30000 cycles to process a macroblock in the worst case. Assuming a worst-case situation in which all macroblocks are 
processed in 30000 cycles, the decoder would still yield a frame rate above 33 frames per second for an operating 
frequency of 100 MHz. 
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Table 3. Area, critical path and frequency results obtained with Xilinx ISE 

 Area (LUTs) Critical path (ns) Frequency (MHz)

CAVLD 8521 7,31 136,80 

I_QUANT 2716 6,74 148,46 

I_TRANS 2804 5,08 197,04 

INTRA_P 6102 6,44 155,21 

INTER_P 12061 8,81 113,47 

D_FILTER 6881 7,70 129,82 

H_CONTROL 7428 6,87 145,56 

DECODER 46513 9,13 109,53 

 

 

6. CONCLUSIONS 
In this paper, an ESL design methodology was established and was put to use in the creation of a synthesizable SystemC 
model of a H.264/AVC decoder. This decoder adheres to the baseline profile of the H.264/AVC standard and is aimed at 
low-end mobile applications and handheld devices. Results obtained in the application of the methodological steps show 
that the SystemC model of the decoder meets expected area and frequency requirements. For an operating frequency of 
100 MHz, frame rates above 30 would be achievable for a QCIF frame size. 

The synthesizable SystemC model of the decoder will be used for future research and development, being of particular 
interest the deployment on a prototyping platform, in order to validate the results obtained with the software tools 
employed in the design methodology. 
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