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ABSTRACT

There is a need for developing simple signal processing algorithms for less costly, reliable and noninva-
sive Obstructive Sleep Apnoea (OSA) diagnosing. One of the promising directions is to provide the OSA
analysis based on the heart rate variability (HRV), which clearly shows a non-stationary behavior. So, a
feature extraction approach, being capable of capturing the dynamic heart rate information and suitable
for OSA detection, remains an open issue. Grounded on discriminating capability of frequency bands of
HRV activity between normal and OSA patients, features can be extracted. However, some HRV normal
spectrograms resemble like pathological ones, and vice versa; so, prior to extract the feature set, the
energy spatial contribution contained in each subUband should be clarified. This paper presents a meth-
odology for OSA detection based on a set of short-time feature banked features that are extracted from
the spectrogram of the HRV time series. The methodology introduces the spectral splitting scheme, which
searches for spectral components with alike stochastic behavior improving the OSA detection accuracy.
Two different splitting approaches are considered (heuristic and relevance-based); both of them perform-
ing minute-by-minute classification comparable with other outcomes that are reported in literature, but
avoiding more complex methods or more computed features. For validation purposes, the methodology is
tested on 1-min HRV-segments estimated from 50 Physionet database recordings. Using a parallel com-
bining k-nn classifier, the assessed dynamic feature set reaches as much as 80% value of accuracy, for both
considered approaches of spectral splitting. Attained results can be oriented in research focused on find-
ing alternative methods used for less costly and noninvasive OSA diagnosing with the additional benefit
of easier clinical interpretation of HRV-derived parameters.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Obstructive Sleep Apnoea (OSA) is one of the most common
sleep pathologies with high prevalence among the general popula-
tion (at least, 2% of women and 4% of men (Chervin & Burns,
2011)), and may have dangerous impact on daily living activities.
Patients suffering from sleep apnea report poor mental perfor-
mance and a series of physiological problems (obesity, hyperten-
sion, and arrhythmia). Diagnosis and treatment of all potential
OSA syndrome patients will have a great impact on the capacity
of sleep clinics and on the budget for public health care (van
Houwelingen, van Uffelen, & van Vlie, 1999).

To perform an automatic OSA diagnosis, detection of repetitive
episodes of apnoea and hypopnoea during sleep is carried out,
mostly, by attended overnight polysomnography in a sleep labora-
tory. However, regarding to standard polysomnography test the

* This document is a collaborative effort.
* Corresponding author. Tel.: +57 6 8879300x55713.
E-mail addresses: jmartinezv@unal.edu.co (J.D. Martinez-Vargas), Imsepulve
dac@unal.edu.co (L.M. Sepulveda-Cano), ctravieso@dsc.ulpgc.es (C. Travieso-Gonzalez),
cgcastellanosd@unal.edu.co (G. Castellanos-Dominguez).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.02.043

following disadvantages are frequently attributed: high cost, dis-
comfort of the electrodes connecting to the body, high amount of
information required to be analyzed, and the diagnosis is typically
subjective.

One of the promising directions for less costly, noninvasive, reli-
able and ambulatory screening is to provide the OSA analysis based
on the heart rate variability (HRV), supported by early researches
concluding that the events of apnoea and hypopnoea are related
to concomitant cyclic variations in heart rate. HRV can provide
information on the relative inputs of the two autonomic nervous
system mutually antagonistic components the sympathetic one,
which acts to increase heart rate, and the parasympathetic compo-
nent, which acts to slow the heart and to dilate blood vessels
(McMillan, 2002). The former component activity is measured by
the power in the termed Low Frequency (LF) spectral band
(f€[0.04,0.15] Hz), while the latter activity is measured by high
frequency (HF) band (f € [0.15,0.40] Hz).

Although HRV spectral analysis is used to evaluate the activity of
the autonomic nervous system, commonly imposed stationary
assumption does not hold, since analysis framed on the HRV-derived
features must deal with non-stationary signals (typical of apnoea
episodes (Al-Angari & Sahakian, 2007)). In fact, there is a well-defined
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research direction, with a rich and controversial history, investigating
whether the normal heart activity is chaotic or not (Glass, 2009). So,
different time-frequency (t-f) and time-varying approaches have been
proposed with the aim to track the modification of the HRV spectra
during ischaemic attacks, provocative stress testing, sleep or daily-life
activities (Mainardi, 2009). Furthermore, grounded on discriminating
capability of frequency bands of HRV activity between normal and
sleep apnoea patients, spectral sub-band methods are becoming more
popular for feature extracting t—f techniques. But often all the ex-
tracted features from enhanced t-f representations are analyzed by
static statistical approach, and hence missing a valuable information
about the time-evolving HRV process. Accordingly, extracted data
might be processed as stochastically dependent, and thus, there is a
need for a feature extraction approach being capable of capturing
the dynamic information. Along with static filter-banked features that
take energy values by using splitting scheme over t—f representations,
short-time filter-banked features are derived to give robust estimate of
the overall temporal behavior of HRV signal with the additional benefit
of easier clinical interpretation. Particularly, in (Curcie & Craelius,
1997), it is assumed that specific heart rate patterns are characteristic
of individuals that can be described with cepstral vectors. Although,
increasing number of filter-banked features should produce greater
spectral resolution, the proper choice of number of features as well
as the number of filters used to compute the coefficients turn out to
be a compromise between information vs. consistency of the feature
set estimation. In addition, there are some HRV normal t—f representa-
tions whose waveform resembles like pathological ones, and vice ver-
sa; so, prior to extract the feature set, the energy spatial contribution
contained in each sub-band should be clarified. Therefore, frequency
sub-band selection is to be carried out to optimize the performance
of the spectral splitting algorithm in terms of improving the highest
OSA detection accuracy.

This paper presents a methodology for OSA detection based on a
set of short-time feature banked features that are extracted from the
spectrogram of the HRV time series. The methodology introduces
the spectral splitting concept, which searches for spectrogram spec-
tral components with alike dynamic behavior improving the highest
OSA detection accuracy. To this end, two different multi-band split-
ting approaches are considered (heuristic and relevance-based);
both of them performing accuracy comparable with another out-
comes, reported in the literature. Attained results can be oriented
in research focused on finding alternative methods used for less
costly and noninvasive OSA diagnosing with the additional benefit
of easier clinical interpretation of HRV-derived parameters. The rest
of this paper is organized as follows: generation of dynamic filter-
banked features is introduced in Section 2, including a detailed
explanation of considered approaches of multi-band splitting. Next,
the proposed methodology for automatic OSA detection is devel-
oped in Section 3 that is based on a set of short-time feature banked
features, which are extracted from the spectrogram of the HRV time
series. Discussion of the results as well as regarding conclusions are
given in Sections 4 and 5, respectively.

2. Materials and methods
2.1. Generation of dynamic filter-banked features

In this study, OSA detection is conducted by using the set of
short-time filter-banked features {x, € R"*T}. Such a measurement
can be extracted from a given t-f representation of input HRV sig-
nal, since it is inherently a time-evolving spectral representation.
In particular, the short time Fourier Transform is used introducing
a time localization concept by means of a tapering window func-
tion of short duration, ¢, that is going along the underlying HRV
signal, y(t), i.e.,

2
S,(t.f) = ' [y@ote-ve e, s,(ef) e w (1)

witht, 7 €T, feF.

Based on introduced spectrogram of Eq. (1), the corresponding
t-f representation matrix, S, € R, can be described by the row
vectors, Sy=[si...sf...s;]”P, with s;¢ R'™T, where vector
sp=[s(f,1)...s(f,0)...(f.T)],s(f,t) € R, is each one of the time-
variant spectral decomposition component at frequency f, and
equally sampled through the time axis t.

Within the context of feature extraction, a filter-bank divides the
spectrogram into bands and is defined by the number of filters, the
shape, centre frequency and bandwidth of each filter. Regarding the
determination of those parameters, the multi-band scheme can be
performed which splits the whole frequency range F of the spectro-
gram of Eq. (1) into several sub-bands {AF,}, comprising a set of
adjacent spectral components {sg}, from where time-variant fea-
tures are to be extracted independently. That is, each assessed fre-
quency sub-band A F,, from end to end along the time domain,
holds the boundary within a single dynamic feature x,, is calculated.

For the sake of simplicity, present study performs the set of
filter-banked Frequency Cepstral Coefficients (FCCs) for generation
of dynamic features, extracted from the enhanced t-f representa-
tion in hand. Although other filter-banked based approaches might
be also considered, as discussed in (Sepulveda-Cano, Gil, Laguna, &
Castellanos-Dominguez, 2011). So, given a discrete time series, y(t),
being the sampled version of a continuous HRV signal, each FCC
coefficient around time t is extracted by discrete cosine transform
of triangular log-shape filter banks, {6F,(f): f € A F,}, spaced in the
frequency domain:

xu(6) = 3 log(3a(t)) cos (n (m - % g)) )

meng

where n € p with p the number of desired dynamic FCC features to
be considered, and s,,(t) is the weighted sum of each frequency filter
response set, i.e.,

Sn(t) = > s(F,)5Fm(f),

feAFy

being m € ng, t, and f the indexes for filter ordinal, time, and fre-
quency axes, respectively.

2.2. Multi-band splitting upon estimated spectrogram

Within the framework of the filter-banked feature extraction,
estimation of both the number of dynamic features p as well as
the number of filter banks nr is provided by using the above ex-
plained cepstral partition (see Eq. (2)) upon the given spectrogram
(see Eq. (1)). At this point, it should be remarked that the main pur-
pose of the present work is to optimize the performance of the
spectral splitting algorithm in terms of improving the highest
OSA detection accuracy, but with the lowest possible complexity,
i.e., with the fewest number of stochastic features p and without
increasing the computational effort.

In addition, either way of spectral splitting over spectrograms
should be carried out separately for both considered HRV bands
of interest (LH and HF), because of their markedly different statical
behavior.

Since every vectorial feature is attained by multi-band splitting
modeling, the spectrogram spectral partition set for each band-
width of interest can be determined by one of the following
approaches:
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i. Heuristic splitting: To obtain information about the energy
distribution, a given bandwidth of interest is arbitrary split
in equally spaced sub-band partitions, {AF,}. So, a linear grid
is used, based on a regular partition in the spectrogram fre-
quency axis. To provide sufficient information related to the
non-stationary properties of the HRV signal, from every
sub-band partition a single dynamic feature is calculated,
by using short-time representation of the signal fractional
energy in a specific frequency sub-band and time window.
Next, the underlying idea is to search for an optimal dynamic
feature set by exploring all the suitable combinations
between the filter bank number ny and the feature amount
p. With this in mind, an iterative searching process takes
place by which the sub-band partition set in hand is stepwise
increased. At the beginning, a given bandwidth of interest is
split in two halves, conforming the initial sub-band partition
set. Therefore, two corresponding FCC dynamic features are
estimated. A given performance measure is accomplished
for every combination of extracted dynamic features. The
proper filter bank number per single feature is empirically
fixed to be one. During the next step, a sub-band set is aug-
mented in one element, and now the spectrogram is split in
three regular partitions. Next step includes a four regular par-
tition set, and so on. The procedure is done unless the best
evaluation measure overcomes a given threshold €. The
resulting amount of p providing the best performance is
selected as the optimal number of dynamic filter-banked
features.

ii. Relevance-based splitting: Nevertheless, the above explained
heuristic splitting approach does not take advantage of the
information about the irregular energy spatial distribution
of the spectrogram. In fact, it would be desirable to accom-
plish sub-band partitions enclosing spectral components
with alike time-evolving behavior (i.e., holding similar infor-
mation). To this purpose, the sub-band partition set can be
determined by introducing the concept of Stochastic Variabil-
ity measuring the amount of useful information for OSA
detection within every spectral component. So, the higher
measured variability the more relevant spectral component
for OSA detection.

In this study, an unsupervised measure of time-variant rele-
vance is assessed. Specifically, the time-evolving principal compo-
nent analysis is extended to the dynamic feature modeling by
stacking the input observation matrix in the following manner:

1 ol 1
sl sl ... sl
2 &2 2
= Sios o SE M FT
E=|. . . . |'BeR 3)
M M M
St S oS¢

where vector s}' corresponds to fth short-term spectral component
estimated from the ith spectrogram matrix, S}, which is related to
the ith object, with i € M.

Consequently, the amount of stochastic variability of the spectral
component set is accomplished by calculating the singular value
decomposition over observation matrix in Eq. (3). So, the following
time-variant relevance measure is carried out (Sepulveda-Cano
etal, 2011):
8E:1) =[x 2(v) - (FT)| ?.8(Ey; T) € BT (4)
being y(7) = E{Mf vp(T)| - Vf € F}. where {/} is the relevance eigen-
value set of matrix Z,, and scalar-valued () is the respective ele-
ment at T moment, with t=1, ..., FT that indexes every one of the

relevance values computed for the whole time-variant data set.
Notation E{-} stands for the expectation operator.

To determine distinctly the relevance related to each one of the
time-variant spectral components, measure vector given in Eq. (4)
can be rearranged into a matrix, termed relevance matrix, as
follows:

G(Sy) = [8(Ey; 1,t)---8(E);f,t)---8(E); F, t)}T,G(Sy) e R™F (5)

where every row corresponds to a sectioned version of vector g
(Ey; 1), defined as:

8Ef.0) = [X((F = DT+ 1) .. x(6) ... x(T).8(Ey:f, 1) e R™T (6)

So, vector g(=,; f;t) in Eq. (6) plainly holds the respective contribu-
tion of the time-variant spectral component sy along the fixed mo-
ments of time. Therefore, to summarize the contribution of a
single spectral component, a simple average is accomplished, i.e.,

8(s;) = E{g(Ey:f, 1) : vt} g(sy) eR

Fig. 1 illustrates the stepwise implementation of the time-evolving
principal component analysis, which is extended for achieving the
spectrogram splitting based on the stochastic variability measure
of the spectral component set.

At the end of the multivariate procedure (see Fig. 1a), a vector
Y =1g(s1)... g(sp)...g(sF)l, is achieved that contains stochastic
variability measured for the whole spectral component set, {ss.
Due to the low-pass restriction inherently to HRV time series, then
it should be assumed a high correlation level between every single
pair of adjacent spectral components {s; sp1: Vf< AF}, conse-
quently, those frequencies where the measured stochastic variabil-
ity gets a local minima along the frequency axis, i.e., miny{y(f)},
should be considered as good candidates of boundaries of the
searched sub-band partition set, {AF,}, as outlined in SubFig. 1b.

It must be noted that the main difference between both consid-
ered splitting approaches is given in terms of the relevance mea-
sure needed for feature selection. In case of heuristic approach,
the measure is of wrapper type and corresponds to the OSA accu-
racy, while the second approach uses a filter measure that is based
on stochastic variability.

3. Experimental setup

Supported on the set of extracted filter-banked dynamic fea-
tures, the proposed methodology for automatic OSA detection ap-
praises the next stages: (a) preprocessing, (b) t-f representation
enhancement, (c) Filter-bank feature generation based on multi-
band spectral splitting, and (d) OSA detection.

Fig. 2 shows the experimental outline of OSA detection and the
methods subject to investigation. Testing of proposed methodol-
ogy is carried out on dynamic features that are calculated for
HRV time series, which is computed from electrocardiographic
recordings (ECGs).

3.1. Electrocardiographic recording database

The analyzed data come from the public Physionet database
(www.physionet.org). The whole-night ECG recordings contain all
the events that occur during a night including apnoeas, arousals,
movements, and also some wakefulness episodes. Every one of ap-
noea events was labeled either as obstructive or mixed. One-min
segments containing hypopnoea were also scored as apnoea
events. Apnoea scoring was carried out on the basis of standard cri-
teria by an expert sleep clinician. The subjects in the Physionet
database were classified into three classes: A, B, and C. A recordings
is regarded to class A (Apnoea) if it contains, at least, one hour with
an apnoea index of 10 or more, and at least 100 apnoea episodes.
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Fig. 1. Time-evolving principal component analysis extended to the spectral component modeling for multi-band splitting.

The class A subjects were fifteen men and one woman, with a mean
age of 50 years (29-63). A recording is regarded to class B (termed
borderline) if it contains, at least, one hour with an apnoea index of
5 or more, and between 5 and 99 min with apnoea. Recordings
containing fewer than 5 min of disordered breathing were put in
the normal (control, or class C) group. The C group consisted of
six male and five female subjects with a mean of 33 years
(27-42) (Haitham, Angari, & Sahakian, 2007).

Although the whole Physionet database contains a total of 70
ECG signals, the learning set for present study holds only 50
recordings that are selected in accordance with (Mendez et al.,
2010). Particularly, database ECG signals with a large number of
ectopic beats (more than 10% of the beats within the recording
length) are not included in the present research. So, 25 recordings
are chosen to be used as a classification training set, whereas a sec-
ond group with the other 25 recordings is used as a validation set.
As a result, the training set consists of 4950 apnoeic 1-min seg-
ments and 7127 non-apnoeic 1-min segments, while the testing
set holds 4428 apnoeic and 7927 non-apnoeic 1-min segments.

3.2. Preprocessing and t-f representation enhancement

ECG recordings are digitized at 100 Hz with 16 bit resolution.
Basically, automatic OSA diagnosis requires the extraction of HRV
time series from each ECG recording, which in this case can be esti-
mated more precisely if an accurate recognition of the QRS com-
plex fiducial points is achieved. In this work, QRS complex
detection is carried out by the method proposed in (S6rnmo & La-
guna, 2005), that includes linear filtering, followed by a non linear
transformation, and adaptive decision rules, as well. Further
smoothing of anomaly valued peaks of assembled beat-to-beat
interval time series is achieved (Lado et al., 2009). Then, the HRV
time series is normalized, termed y'(t), as recommended in
(Kudriavtsev, Polyshchuk, & Roy, 2007):

20y(t) — E{y})

Concrete examples of estimated HRV time series are shown in Fig. 3.
In particular, Fig. 3a shows a 10-min HRV of a normal subject during
sleep, while Fig. 3b shows 10-min HRV of an OSA subject, respec-
tively. As already fixed in (Haitham et al., 2007), OSA subjects tend
to have more regular HRV pattern than normal ones have.

Next, enhancement of HRV time series is carried out by using t-
frepresentation. Thus, based on spectral HRV signal properties, the
spectrogram is computed employing a sliding Hamming window
with the following parameter estimation set (Sepulveda-Cano
et al.,, 2011): 32.5 ms processing window length, 50% of overlap-
ping, and 512 frequency bins.

As explained before, both HRV frequency bands of interest are
considered for the OSA detection: LF and HF. The former band is as-
sumed to reveal the mixture of the sympathetic and parasympa-
thetic activity while the HF band reflects just the parasympathetic
branch activity of automatic nervous system.

Nevertheless, to illustrate the difficulty of addressed problem,
Fig. 4 shows few 1-min HRV segments, belonging to normal and
pathological classes, along with their respective estimated spectro-
grams. It can be seen that there are some normal segments whose
pattern resembles like pathological ones, and vice versa. Although
energy of pathological representative spectrograms is concen-
trated around the lower frequencies, their main LF accumulation
has a time-variant behavior. In turn, normal labeled t-f representa-
tions display more active HF components, but with patterns chang-
ing also along the time.

3.3. Feature extraction by spectral splitting scheme

This section discusses in detail the implementation of the inves-
tigated spectrogram splitting approaches as previous step for dy-
namic filter-banked feature generation.

Discussed multi-band scheme is carried out by one of the fol-
lowing approaches: (i) heuristic and (ii) relevance-based.

3.3.1. Heuristic approach

y(t) = : , teT. To get an optimal linear grid of sub-band partitions over each
maxy {y} — miny {y} one of spectrogram bands of interest (LF and HF), an iterative
| |
\ \
Preprocessing I | t—f Representation Multi-Band Scheme ! OSA Detection
| |
! - Heuristic Splitting | - Classification
- Normalization — -Spectrogram ——
! P & - Relevance Approach | ! - Validation
| |
| |
ONR Sy(t, f) {AFu} ]! k-nn
| \
| Filter-Bank Dynamic Feature Generation Tn !

Fig. 2. Schematic representation of an automated system for OSA detection based on analysis of filter-banked dynamic features.
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Fig. 3. Examples of 10-min segment of HRV time series labeled as normal (a) and apnoeic subjects (b), respectively.

searching process is to be carried out, which requires for an
evaluation metric of every new extracted filter-banked feature.
As such a measure, the average classification accuracy of OSA
detection is introduced. Since the classifier optimization is out of
the present study’s scope, a simple k-nearest neighbor (k-nn) clas-
sifier is provided, followed by the well-known cross-validation
methodology.

The heuristic approach of spectral splitting is implemented by
the Algorithm 1, which produces as outcomes the number of filters
ng and the number of dynamic features p providing the maximum
accuracy of OSA detection.

Fig. 5 shows the performed accuracy for searching the best com-
bination of filter bank parameters (nrand p). Evaluation measure of
accuracy is calculated separately for each band of interest: LF (see
Fig. 5a) and HF (see Fig. 5b). At this point, it can be seen that the
tuning procedure of used k-nn classifier is not a critical step, since
the attained values of accuracy are quite similar within the studied
range of filter bank parameters.

As a result, a training set of p=10 dynamic FCC features is
achieved using triangular response filters (ng= 10) with 10% over-
lap: the first 5 ones are regarded to the LF, and the remain 5 fea-
tures are regarded to HF.

Algorithm 1. Heuristic approach-based algorithm for frequency
band selection

Input: HRV time series observation set, i € M
Output: Filter bank parameter set, {p,nr}

foreach i < 1 to M do
- Compute HRV signal spectrogram: S, € RFXT,
end
- Parameter initialization ¢ = 10%; nr = 2; np e = 20;
while Accmar — AcCmin < € [[ np < NFmas do
- Split the frequency axis into nr sub—bands by means of nr triangular response filters.
- Compute ng dynamic FCC features.
foreach p < 1 to nr do
- Create a feature subset corresponding to the first p FCCs;
- Perform accuracy for actual feature subset by using k—nn classifier i.e. Acc(nr,p);
end
- AcCmar = max{Acc};
- Acemin = min{Acc};

- np++;

end

- Select the frequency bands (nr and p) forlthe sub—band partition set AF,, when the performed

accuracy is maximized.

3.3.2. Spectral splitting based on stochastic variability

The main core of this approach is the relevance matrix calcula-
tion, given by Eq. (5). Depicted in Fig. 6 relevance matrixes of HRV
spectrogram reveal a large difference in terms of dynamic behavior
between both considered bands of interest. Generally, the stochas-
tic variability contribution of every one of the stationary spectral
components, measured by Eq. (6), should remain constant
throughout the time axis. In this regard, neither LF band (See
Fig. 6b) nor HF band (Fig. 6a) entirely hold the stationary assump-
tion. Former relevance matrix patterns stochastic variability of
spectral components with some lack of uniformity. Rather, the lat-
ter case exhibits a regular stochastic variability but within fixed
time intervals, i.e, a piecewise stationary behavior might take
place. From the above observations, one may confirm the differ-
ence between both HRV bands of interest in terms of stochastic
properties.

Estimated values of mean and variance of vector y(f) for each
band of interest are also shown in left side of Fig. 6a and b. Over
both vector representations, the boundaries of the achieved sub-
band partition set are drawn. As in the case of heuristic splitting,
the proper filter bank number per each feature is empirically fixed
to be one. Algorithm 2 describes the implementation of the spec-
trogram splitting based on stochastic variability.

Algorithm 2. Algorithm for the frequency band selection by
relevance analysis

Input: HRV time series observation set, i € M
Output: Filter bandwidth set AF,
foreach i - 1 to M do
- Compute HRV signal spectrogram: S, € RT*F,
- Rearrange spectrogram matrix into a vector € R***'7;

end

- Create a matrix concatenating the t—f maps vectors &, € RM*F7T
- Create the relevance map G(S,) € R"*",
- Create the relevance vector for the frequency axis v(f) € RF*!;

- Obtain the local minima in the relevance vector minys{vy(f)}, for the sub-band partition set

AF,.

Table 1 summarizes the obtained optimal frequency bands for
both considered approaches of spectral splitting. As a result, the
whole training set holds 10 dynamic features for the heuristic case,
and 7 for the spectral splitting based on stochastic variability, i.e.,
takin into account that each time-evolving spectral component is
given by 120 samples, the achieved dynamic feature training space
holds a dimension ¥ € R'%120 and x ¢ R”*12°, respectively.
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Fig. 4. Representative examples of estimated 1-min HRV spectrograms: (a) normal labeled segment and (b) apnea labeled segment.

Examples of attained filter-banked dynamic features are shown
in Fig. 7 that are estimated for both spectral splitting approaches,
heuristic (see Fig. 7a and b) and relevance-based (see Fig. 7c and
d). Dynamic features are related to normal and apnea classes as
well as to both considered bands of interest (HF and LF).

3.4. Classification performance of OSA detection

Generally, OSA detection based on HRV time series recordings is
carried out in two steps (Mendez et al., 2010): (i) segment classifi-
cation, and (ii) patient scoring of all-night recordings.

3.4.1. Segment classification

Throughout the following training procedures, the metric to ad-
just the different schemes of considered multi-band splitting is the
OSA classification accuracy of each non-overlapping 1-min HRV
segment, which is estimated using a simple k-nn classifier. Several

reasons account for the widespread use of this classifier: it is
straightforward to implement, it generally leads to good recogni-
tion performance thanks to the non-linearity of its decision bound-
aries, and its complexity is assumed to be independent of the
number of classes.

Nonetheless, due to a huge dimension, which is inherent to the
achieved dynamic feature training space, the k-nn classifier requires
a high computational cost with large memory amount. So, strong
dimension reduction of such large training feature set should be car-
ried out. Since there is a need for finding feature groups that are
highly correlated (as it is the case with dynamic feature-derived
data), the principal component analysis is used throughout this
study as unsupervised method to perform dimensionality reduction
over the input training set in hand (See Section 2).

The tuning of used k-nn classifier is carried out by calculating
the optimal number of neighbors in the sense of performed clas-
sification accuracy. For classifier testing purpose, selected training
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Fig. 5. On calculating the optimal filter bank parameters by using classification accuracy of OSA detection.
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Fig. 6. Measured relevance matrixes in terms of stochastic variability.
Table 1
Attained optimal sub-band set within the filter-banked feature extraction is carried out.
Band of interest Approach Sub-bands (Hz) p
LF Heuristic 0.04 — 0.054, 0.052 — 0.066, 0.064 — 0.078, 0.076 — 0.09, 0.088 — 0.1. 5
Relevance 0.04 — 0.07, 0.07 — 0.10, 0.10 — 0.15. 3
HF Heuristic 0.15-0.22, 0.21 — 0.29, 0.28 — 0.36, 0.35 — 0.42, 0.41 — 0.5. 5
Relevance 0.15 — 0.23, 0.23 — 0.34, 0.34 — 0.46, 0.46 — 0.5. 4

database set holds 25 recordings coming from 13 apnoea, 4 bor-
derline, and 8 control subjects that never had been seen during
training stage. Fig. 8 illustrates the estimated performance in
dependence on the number of considered principal components,
which are mutually linear independent combinations of original
variables, when varying the number on nearest neighbors. Per-
formed accuracy for each one of the multi-band splitting ap-
proaches is estimated in two cases: when combining dynamic
features coming from both bands of interest into a single training
set, or when each band set is considered separately. In either
case, an adequate number of neighbors can be adjusted to be
k =29, whereas the needed number of latent components is 26
to get the best accuracy values. Henceforth, those values are fixed
as working k-nn classifier parameters for further training of both
considered multi-band splitting approaches.

The classification performance is measured by means of the
accuracy, sensitivity and specificity, defined by:

Ac(%) = % x 100,
T
Se(%) = —"™ 100,
Nrp + Ny
L
Sp(%) = 5 x 100

where nc is the number of correctly classified patterns, nr is the to-
tal number of patterns used to feed the classifier, nyp is the number
of true positives (objective class accurately classified), ngy is the
number of false negatives (objective class classified as reference
class), nyy is the number of true negatives (reference class classified
as objective class), and ngp is the number of false positives (refer-
ence class classified as objective class).

Table 2 summarizes the best classification values performed over
non-overlapping 1-min segments, using a single tuned 29-nn classi-
fier for both considered approaches of spectral splitting. As seen,
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Fig. 7. Representative examples of extracted dynamic features by using both considered approaches of spectral splitting, (a) and (b) for heuristic; (c) and (d) for relevance-

based.

there is no statistical difference in terms of classification performed
by each one of the considered splitting approaches. In regard to each
band of interest, contribution of either spectral band is alike (some
close to 74 — 75%). But when considering both bands together, there
is just a little improvement of the achieved classification perfor-
mance (~77 — 78%).

The main reason of such a modest training contribution when
gathering both bands of interest may be the observed difference
between them in terms of stochastic behavior (See Fig. 6). For this
reason, the parallel combining k-nn classifier with median selec-
tion rule is used with aim to improve the performance of the pro-
posed approaches, thus, each dynamic feature subset is used
separately. For either multi-band splitting approach, the best per-
formance (Ac ~ 80.6%,Se ~ 76.2,Sp ~ 82.2) of the combining classi-
fier that is achieved over testing dataset is shown in Table 3.
Nonetheless, some degradation of performed sensitivity on valida-
tion set is fixed that maybe explained because of the difficulty of
properly labeling the apneic 1-min episodes by clinic professionals.

3.4.2. Scoring of all-night recordings

Every one recording is diagnosed to be related of either class
grounded on decisions that are attained for the corresponding pa-
tient set of 1-min segments. Fig. 9 shows class separation based on
OSA detection of 1-min segment within a single all-night recording
(horizontal axis corresponds to the cardinal recording number).
Obtained values using the parallel combining classifier are esti-
mated for both splitting approaches: heuristic (see Fig. 9a) and rel-
evance-based (see Fig. 9b), respectively. The circle represents the
apneic subjects, the cross stands for borderline class, and the star
stands for normal subjects. As seen for either splitting approach,
a complete separation between normal and pathologic classes
can be achieved using a minimum set of 30 apnoea segments of
1-min length per a single all-night recording. Yet, the borderline
recordings are randomly located in class A or C, so their adequate
interpretation remains an open issue. Therefore from achieved
class separation values, both discussed splitting approaches can
be implemented for OSA diagnosing.

4. Discussion

It should be remarked that the main goal of the present study is
to supply a complex of signal processing algorithms for the OSA
detection based on HRV recording analysis with the added benefit
of simplicity and interpretability of the assessed feature set. The
methodology lies on the hypothesis that using relevance-based
splitting scheme over enhanced representation of HRV signals a
set of dynamic filter-banked features can be extracted providing
an appropriate OSA segment classification accuracy as well as high
apneic patient discrimination. Although the filter-banked dynamic

features extracted from biosignal recordings had been discussed
previously for OSA detection (Sepulveda-Cano et al., 2011), the
present study is framed on analysis of spectral splitting derived
from stochastic variability of HRV time-varying spectral compo-
nent set.

The obtained results evidence the following aspects to take into
consideration:

(i) So far, discussed training approach for OSA detection has
been tested without high restrictions on the preprocessing
stage (artifact removing, denoising). Besides, attained esti-
mation of HRV time series, which is based on QRS complex
detection (S6rnmo & Laguna, 2005), provides enough accu-
racy, and therefore is suitable for automatizing the sug-
gested methodology for OSA diagnosing. Nonetheless, to
test and compare discussed OSA detection algorithms, it
becomes necessary to extend the analysis over wider num-
ber of available dataset recordings, as quoted in (Lado
et al., 2009). In this regard, the more elaborated QRS detec-
tion errors should be implemented. Specifically, ectopic
beats that often occur do not reflect autonomic nervous sys-
tem activity, and are to be a priori identified and discarded.

(ii) The used input time series enhancement by introducing t-f
representations should be regarded as an important factor
for adequate filter-banked feature generation. In this study,
the dynamic filter-banked feature set is extracted from Fou-
rier-based spectrogram that had been reported to be appro-
priate for OSA analysis (Al-Abed, Manry, Burk, Lucas, &
Behbehani, 2009). As shown in Table 3, the best performed
values of accuracy, sensitivity, and specificity (Ac ~ 80.6%,
Se~76.2, Sp~ 82.2, respectively) by proposed spectro-
gram-based feature set are comparable with other outcomes
reached by reported OSA detection methods having simplic-
ity of computation (Al-Angari & Sahakian, 2007). Generally,
the spectrogram is desirable for signals with a slow time-
varying spectrum, but suffers from the t-fresolution compro-
mise. As the HRV dynamic pattern tends to be non-stationary,
other nonparametric tU-f representations (mostly, Wavelet
Transform or Empiric Mode Decomposition) had become a
powerful alternative to analyze HRV time series oriented to
automatic OSA screening (Mendez et al., 2010; AH. Khando-
ker & Karmakar, 2009). However, some issues should be con-
sidered prior to involve other t-f representations within the
discussed relevance-based splitting framework. Namely, the
Wavelet Packet Analysis that is free of any assumptions about
the stationarity of the biological signals had been used for
evaluation of HRV sub-frequency regions in supraventricular
tachyarrhythmia patients (Bilgin, Colak, Polat, & Koklukaya,
2009). But, when performing the fine and coarse resolution
components the resulting sub-band coefficient number
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Fig. 8. On tuning of used k-nn classifier: Accuracy performance depending upon the number of neighbors when varying the number of used principal components, for both
considered cases of spectral splitting.

Table 2
Performance outcomes for both approaches of spectral splitting using a single tuned k-nn classifier.
Approach Ac (%) Se (%) Sp (%)
Heuristic LF 74.76 £ 0.93 68.31+1.82 7841+ 0.79
HF 75.57 £0.85 68.73 £1.36 79.64 £1.03
HF + LF 77.50 £0.95 69.25 +1.62 83.31+£0.66
Relevance LF 74.38+1.18 67.73+1.72 78.09 + 0.96
HF 75.75 £ 0.58 69.60 + 1.02 79.22 £0.84

HF + LF 78.57 +£0.48 7170+ 1.10 82.99+0.76
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Table 3
Best performance outcomes assessed on testing set for both approaches of spectral splitting.
Approach Acc (%) Se (%) Sp (%)
Training set Heuristic 81.77 £0.92 82.46 +1.92 81.49+0.95
Relevance 81.17 £ 0.88 83.11£1.59 80.38 £ 0.89
Testing set Heuristic 80.61 76.22 82.27
Relevance 80.19 76.44 81.54
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Fig. 9. Recording class separation for both approaches of spectral splitting.

becomes different for each node, while the proposed method-
ology based on the spectral splitting scheme requires for an
equal number of samples per time-evolving spectral compo-
nent. Likewise, the Empirical Mode Decomposition can be
used, but paying attention that its implementation contains
heuristic and ad hoc elements that make it hard to analyze
mathematically (Daubechies, Lu, & Wu, 2011).

(iii) Several studies had established the discriminating capability

of HRV activity frequency bands between normal and sleep
apnoea patients (Abdullah, Holland, Cosic, & Cvetkovic,
2009), thus, the set of considered short-time measures needs
to be related to the time-variant features suitable estimated
by spectral sub-band methods. Namely, frequency cepstral
coefficients is introduced that allow a better energy distribu-
tion identification, emphasizing the different frequency
components improving OSA detection. It is worth noting
that assessed feature set does not require for further pro-
cessing, by instance, smooth filtering over time windows
over exceeding the assumed non-overlapping 1-min HRV
segment. This issue becomes important to get a well defined
methodology of HRV processing, as demanded in (Lado et al.,
2009). In addition, since more efforts should be done to
define the features carrying fundamental information for
the OSA classification, as quoted in (Mendez et al., 2010;
Sepulveda-Cano et al., 2011), then the set of considered fea-
tures can fulfil with this requirement because of their easier
filter-banked interpretation.

(iv) Present study discusses the introduction of multi-band spec-

tral splitting over the HRV spectrogram to optimize the per-
formance of achieved dynamic filter-banked feature set, in
terms of improving the highest OSA detection accuracy with
the lowest possible complexity (fewest stochastic feature set
but not increasing the computational effort). Both considered
approaches of band partitioning (heuristic and relevance-
based) achieve an small feature number (10 FCC parameters
for heuristic or 7 for latter splitting approach). In addition,
since the extracted feature set is directly related to HRV

sub-bands, the discussed training methodology provides
additional benefit of easier clinical interpretation of HRV-
derived parameters.

(v) Since heuristic splitting approach does not take efficient

advantage of the distributed information over spectrogram,
the stochastic variability is introduced that measures the
amount of useful information within spectral component
set. As a result, the relevance matrix is achieved that deter-
mines distinctly the relevance related to each one of the spec-
tral components along the time axis. As shown in Table 1,
both obtained spectral grids are similar concerning the esti-
mated band partition boundaries for both considered bands
of interest. Detailed visual inspection of estimated relevance
matrix in Fig. 1 shows that the most relevant information, for
OSA detection, is the LF sub-band partition ranging from 0.07
to 0.1 Hz, as well as the HF sub-band between 0.34 and
0.46 Hz that should be related to respiratory arrhythmia.
Both found relevant sub-bands can be supported by previous
results obtained through different methodologies (Mendez
et al., 2010; Lado et al., 2009).

(vi) Another finding from assessed relevance matrix is the

observed difference between LF and HF bands of interest in
terms of stochastic behavior that can lead to a modest OSA
performance contribution when gathering both bands.
Moreover, neither LF nor HF band entirely hold the station-
ary assumption. In this line of analysis, spectral splitting
should be performed using relevance measures coming from
nonlinear analysis of time series, by instance, the entropy as
suggested in (Al-Angari & Sahakian, 2007).

(vii) Even that the classifier optimization stage is beyond the

scope of the present study, to boost the HRV segment classi-
fication accuracy, a simple parallel combining k-nn classifier
with median selection rule is used. As a result, assessed
dynamic FCC feature set reaches as much as 80% value of
accuracy, for both considered approaches of spectral split-
ting. Nevertheless, based on achieved segment accuracy,
based on the minute-by-minute classification, the results
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showed that the two considered splitting approaches are
able to separate entirely (100%) the normal recordings from
the apneic ones.

5. Conclusions

A new methodology for OSA detection is explored, which is
based on spectral splitting upon spectrogram representation, de-
rived from HRV recordings. The discussed methodology, which
supplies simplicity and interpretability of the assessed feature
set, lies on the hypothesis that using relevance-based splitting
scheme over enhanced representation of HRV signals a set of dy-
namic filter-banked features can be extracted providing an appro-
priate OSA segment classification accuracy as well as high apneic
patient discrimination. Particularly, two different splitting ap-
proaches are considered (heuristic and relevance-based). In the
former case, a given bandwidth of interest is arbitrary split in
equally spaced sub-band partitions, whereas in the case of the rel-
evance-based approach, searching for spectral components with
alike dynamic behavior is carried out, with aim to create the sub-
band partitions for the filter-banked dynamic FCC estimation, is
discussed. Attained results can be oriented in research focused
on finding alternative methods used for less costly and noninvasive
OSA diagnosing with the additional benefit of easier clinical inter-
pretation of HRV-derived parameters.

Nonetheless, with aim to improve the segment classification
performance, some aspects should be thoroughly studied. Particu-
larly, it would be of benefit to explore the needed enhancement by
using more elaborated approaches, namely wavelet-based scalo-
grams, matching pursuit, sparse representations, etc., in order to
obtain a more accurate tracking of the strong dynamics on the
HRV signals. Besides, as a future work, further efforts on testing
different measures of relevance and different band selection algo-
rithms, should be focused on extend studies to corroborate the po-
tential of another approaches for OSA diagnosis. Lastly, the
influence of different classification approaches (neural networks,
hidden markov models, etc.) should be further studied to improve
the performance of the proposed methodology for OSA diagnosis.
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