
Programming by Integration in Robotics⋆

José L. Fernández-Pérez, Antonio C. Domı́nguez-Brito, Daniel Hernández-Sosa,
and Jorge Cabrera-Gámez

IUSIANI - Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
{jfernandez,adominguez,dhernandez}@iusiani.ulpgc.es, jcabrera@dis.ulpgc.es

Abstract. This document presents the first operating version of Cool-
BOT, a component oriented software framework for programming ro-
botic systems. CoolBOT has been designed having in mind the idea of
programming by integrating software components, in order to reduce the
developing effort typically invested when programming robots. CoolBOT
also fosters some interesting features, such as asynchronous execution,
asynchronous inter communication, data-flow-driven processing, and cog-
nizant failure systems. A simple demonstrator illustrates the benefits of
using the proposed approach.

1 Introduction

Developing and integrating software for controlling robotic systems is costly due
to the complexity inherent in these systems. There is a need for tools that permit
a reduction in the programming effort, aiming at the generation of modular and
robust applications, and promoting software reuse. The techniques which are of
common use today in other areas are not adequate to deal with the complexity
associated with these systems [1]. Some authors [2] have made already similar
considerations identifying the building of software architectures as the way the
robotics community has mainly chosen to address the problem. Other authors
[3][4] are working on more generic programming tools like frameworks, which are
neutral in terms of control and system architecture. We think it is in this last
group where the work presented in this document should be situated.

In the following sections we will introduce CoolBOT, a component-oriented
software framework aimed to programming robotic systems based on a port
automata model [5][6] that fosters controllability and observability of software
components. Thus, in the next section, Sect. 2, a short introduction to the frame-
work will be given, where their main concepts and abstractions will be briefly
explained. Next, in Sect. 3 a simple demonstrator is commented in some detail,
and finally, in Sect. 4 we will comment some of the conclusions we have drawn
from this work.

⋆ This work has been partially supported by the research project PI2003/160 funded
by the Autonomous Government of Canary Islands (Gobierno de Canarias - Conse-
jeŕıa de Educación, Cultura y Deportes, Spain), and by the ULPGC research projects
UNI2004/11 and UNI2004/25.

2 CoolBOT

CoolBOT [7] is a C++ component-oriented framework for programming robotic
systems that allows designing systems in terms of composition and integration of
software components. Each software component [8] is an independent execution
unit which provides a given functionality, hidden behind an external interface
specifying clearly which data it needs and which data it produces. Components,
once defined and built, may be instantiated, integrated and used as many times
as needed in other systems.

In CoolBOT, components are modelled as Port Automata [5][6]. This con-
cept establishes a clear distinction between the internal functionality of an active
entity, an automaton, and its external interface, sets of input and output ports.
Fig. 1 displays the external view of a component where the component itself is
represented by a circle, input ports, ii, by the arrows oriented towards the circle,
and output ports, oi, by arrows oriented outwards. Fig. 2 depicts an example
of the internal view of a component, concretely the automaton that models it,
where circles are states of the automaton, and arrows, transitions between states.
Transitions are triggered by events, ei, caused either by incoming data through
an input port, or by an internal condition, or by a combination of both. Double
circles indicate automaton final states. CoolBOT components interact and inter
communicate each other by means of port connections established among their
input and output ports. Data are transmitted through port connections in dis-
crete units called port packets. Port packets are also classified by their type, and
usually each input and output port can only accept a specific set of port packet
types.

CoolBOT introduces two kinds of variables as facilities in order to support
the monitoring and control of components: observable variables, that represent
features of components that should be of interest from outside in terms of control,
or just for observability and monitoring purposes; and controllable variables,
which represent aspects of components which can be modified from outside, in
order to be able to control the internal behavior of a component. Additionally,
to guarantee external observation and control, CoolBOT components provide
by default two important ports: the control port and the monitoring port, both
depicted in Fig. 3. The monitoring port: which is a public output port by means
of which component observable variables are published; and the control port,
that is a public input port through which component controllable variables are
modified and updated. Fig. 4 illustrates graphically a typical execution control
loop for a component using these ports where there is another component as
external supervisor.

Internally all components are modelled using the same default state automa-
ton, the default automaton, shown in Fig. 5, that contains all possible control
paths that a component may follow. In the figure, the transitions that rule the
automaton are labelled to indicate the event that triggers each one, some of
them correspond to internal events: ok, exception, attempt, last attempt and fin-
ish. The other ones indicate default controllable variable changes: nsr, nsre, nss,
nsd, np, and nex. Subscripts in nsi indicate which state has been commanded: r

i1

in

o1

om

Fig. 1:
Component

external view

1 s2 s4 s6 s8 s9

s5

s3 s7

e 1 e 2 e 6
e

s
4

e 5

e 3

e 10

e 8

e 7

e 11

e 9

e 12

e 13

e 14

Fig. 2: Component internal view

1i

in

o1

ok

c m

Fig. 3: The control
port, c, and the
monitoring port, m

(running state), re (ready state), s (suspended state), and d (dead state). Event
np happens when an external supervisor forces a priority change, and event nex
occurs when it provokes the occurrence of an exeption.

The default automaton is said to be “controllable” because it can be brought
externally in finite time by means of the control port to any of the controllable
states of the automaton, which are: ready, running, suspended and dead. The
rest of states are reachable only internally, and from them, a transition to one
of the controllable states can be forced externally. Having a look to Fig. 5 we
can see how CoolBOT components evolve along their execution time. Basically,
the default automaton organize the life of a component in several phases which
correspond to different states: starting, devised for initial resource allocation;
ready, the component is ready for a task execution; running, here the component
executes its specific task; suspended, execution has been suspended temporally;
end, a task execution has just been completed.

Furthermore, there are two pair of states conceived for handling faulty sit-
uations during execution which are part of the support CoolBOT provides for
error and exception handling. One of them devised to face errors during resource
allocation (starting error recovery and starting error states), and the other one
dedicated to deal with errors during task execution (error recovery and running
error states). Moreover, exceptions constitute a useful concept present in numer-
ous programming languages (C++, Java, etc.) to separate error handling from
the normal flow of instructions in a program. Importing this concept of excep-
tion, a CoolBOT component may define a list of component exceptions to signal
and handle erroneous, exceptional or abnormal situations during execution.

Analogously to modern operating systems that provide IPC (Inter Process
Communications) mechanisms to inter communicate processes, CoolBOT pro-
vides Inter Component Communications or ICC mechanisms to allow compo-
nents to interact and communicate among them. CoolBOT ICC mechanisms
are carried out by means of input ports, output ports, and ports connections.
There are several types of output and input ports supported by CoolBOT
which combined adequately implement different protocols of interaction between
components. Specifically the framework offers the following protocols: a pro-
tocol for event signaling, an active sender/passive receiver protocol, a passive
sender/active receiver protocol, a protocol for sharing memory between com-
ponents, a protocol for connections transporting packets of multiple types, a
sending-with-priority protocol and a request/answer protocol.

. .
 .

. .
 .

external

supervisor

component

control

i1

i
n

monitoring

o1

o
m

Fig. 4: A typical
component control loop

starting ready end deadrunning

starting
error

starting
error

recovery

suspended

recovery
errorrunning

error

ok
ok

ok

exception

exception

last

last

attempt

attempt

attempt

attempt

(∅ | timer)

(∅ | timer)

nsr

nsr

nsr

nsre

nsre

nsrenss

nsd

nsd

nsd

nsd

nsd

finish

np

np

np

np
nex

nc

nc

nc

nc

Fig. 5: The Default Automaton.

CoolBOT components are classified into two kinds: atomic and compound
components. Atomic components have been mainly devised in order to abstract
low level hardware layers to control sensors and/or effectors; to interface and/or
to wrap third party software and libraries; and to implement generic algorithms.
Compound components are compositions of instances of several components
which can be either atomic or compound. The functionality of a compound com-
ponent resides in its supervisor, depicted in Fig. 6, which controls and observes
the execution of its local components through the control and monitoring ports
present in all of them. The supervisor of a compound component concentrates
the control flow of a composition of components, and in the same way that in
atomic components, it follows the control graph defined by the default automa-
ton of Fig. 5. All in all, compound components use the functionality of instances
of another atomic or compound components to implement its own functional-
ity. Moreover, they, in turn, can be integrated and composed hierarchically with
other components to form new compound components.

2.1 Development Process

The process of developing CoolBOT components and systems is resumed on Fig.
7 in six steps. (1) Definition and Design: in this step the component is completely
defined and designed. This comprises deciding if it is atomic or not, functionality
– user automaton–, thread use, resources, output and input ports, port pack-
ets, observable and controllable variables, exceptions, timers and watchdogs. (2)
Skeleton Generation: There is already a small set of developed components, and
component examples in the form of C++ classes illustrating the most common
patterns of use. It is possible to start from one of them as skeleton, or generate a
new one from a component skeleton description language by means of a compiler.
(3) Code Fulfilling: Using the component´s skeleton obtained in the previous step

HIERARCHY

....

CONTROL

....

....
....

monitoring

control

supervisor

components
local

....

local
component

supervisor
monitoring

control monitoring

component
compound

component
compound

monitoring control

Fig. 6: Compound components.

.h
.o

BOT
Cool

.o

.o
.h

+

...
.

...
.

...
.

(1) Component .h
.o

Library Generation
(4) Component

Definition & Design

Integration
(5) System

System
(6) Executable

.cpp
.h

Fulfilling
(3) Code

.cpp
.h

Generation
(2) C++ Skeleton

.cpp
.h

BOT
Cool

.o

+
.h

Cool
BOT

BOT

Cool

.h

main

execu

.cpp

table

Fig. 7: The development process.

we complete the component fulfilling its code. (4) Library Generation: Then the
component is compiled obtaining a library. (5) System Integration: Next the
component may be integrated in a system alone or with other components. (6)
System Generation: And finally, the system gets compiled and an executable
system is obtained. With it, we can already test the whole integration with our
component.

3 A Simple Demonstrator

CoolBOT has been conceived to promote integrability, incremental design and
robustness of software developments in robotics. In this section, a simple demon-
strator will be outlined to illustrate how such principles manifest in systems built
using CoolBOT. The first level of this simple demonstrator is shown in Fig. 8
and it is made up of four components: the Pioneer which encapsulates the set
of sensors and effectors provided by an ActivMedia Robotics Pioneer robot; the
PF Fusion that is a potential field fuser; the Strategic PF component that trans-
forms high level movement commands into combinations of potential fields; and
finally, the Joystick Navigation component which allows controlling the robot
using a joystick. The integration shown in the figure makes the robot to avoid
obstacles while executing a high level movement command like, for example, go-
ing to a specific destination point. The second and last level of our demostrator
is depicted in Fig. 9. Note that the systems adds two new components, the Sick
Laser which controls a Sick laser range finder and Scan Alignment that per-
forms self-localization using a SLAM (Simultaneous Localization And Mapping)
algorithm [9][10].

4 Conclusions

This document describes briefly a first operating version of CoolBOT,
a component-oriented C++ programming framework supported under

potential field

high/low priority

JOYSTICK

NAVIGATIONcommands
high/low priority

PF

FUSION

PIONEER

PF

STRATEGIC

odometry reset

sonars/bumpers
sonar positions

odometry

commands

odometry

commands

commands

Fig. 8: The avoiding level

potential field

high/low priority

JOYSTICK

NAVIGATIONcommands
high/low priority

PF

FUSION

PIONEER

PF

STRATEGIC

odometry reset

sonars/bumpers
sonar positions

odometry

commands

odometry

ALIGNMENT
SCAN

SICK
LASER

laser packets
odometry

laser scans

corrections
odometry

map

commands

commands

Fig. 9: The whole system

GNU/Linux and Microsoft Windows that favors a programming methodology
for robotic systems that fosters software integration, concurrency and paral-
lelism, asynchronous execution, asynchronous inter communication and data-
flow-driven processing. The framework also promotes a uniform approach for
handling faulty situations.

References

1. Kortenkamp, D., Schultz, A.C.: Integrating robotics research. Autonomous Robots
6 (1999) 243–245

2. Coste-Maniere, E., Simmons, R.: Architecture, the Backbone of Robotic Systems.
Proc. IEEE International Conference on Robotics and Automation (ICRA’00), San
Francisco (2000)

3. Fleury, S., Herrb, M., Chatila, R.: GenoM: A Tool for the Specification and the
Implementation of Operating Modules in a Distributed Robot Architecture. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Grenoble, Francia (1997) 842–848

4. Schlegel, C., Wörz, R.: Interfacing Different Layers of a Multilayer Architecture for
Sensorimotor Systems using the Object Oriented Framework SmartSoft. Third Eu-
ropean Workshop on Advanced Mobile Robots - Eurobot´99. Zürich, Switzerland
(1999)

5. Steenstrup, M., Arbib, M.A., Manes, E.G.: Port automata and the algebra of
concurrent processes. Journal of Computer and System Sciences 27 (1983) 29–50

6. Stewart, D.B., Volpe, R.A., Khosla, P.: Design of dynamically reconfigurable real-
time software using port-based objects. IEEE Transactions on Software Engineer-
ing 23 (1997) 759–776

7. Domı́nguez-Brito, A.C., Hernández-Sosa, D., Isern-González, J., Cabrera-Gámez,
J.: Integrating robotics software. IEEE International Conference on Robotics and
Automation, New Orleans, USA (2004)

8. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley (1999)

9. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching
2d range scans. Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern
Recognition, Seattle, USA (1994)

10. Lu, F., Milios, E.: Globally consistent range scan alignment for environment map-
ping. Autonomous Robots 4 (1997) 333–349

View publication statsView publication stats

https://www.researchgate.net/publication/221431808

