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Efficient Plane Detection in Multilevel Surface
Maps

V. Prieto-Marañón, J. Cabrera-Gámez, A. C. Domínguez-Brito,
D. Hernández-Sosa, J. Isern-González, E. Fernández-Perdomo

Abstract—An automatic system aimed at producing a compact
tridimensional description of indoor environments using a mobile
3D laser scanner is described in this paper. The resulting
description is made up of a Multi-Level Map (ML map) and
a series of planar patches extracted from the map. We propose a
novel plane detection algorithm, based on the efficient RANSAC
algorithm, that operates directly over the data structures of an
ML map and does not need to rely on the low level laser data
cloud. The mobile 3D scanner is built from a Hokuyo laser range
sensor attached to a 2DOF pan-tilt, which is installed on top
of a 3DX Pioneer mobile robot. The 3D spatial information
acquired by the laser sensor from different poses is used to
build a large single map of the environment using the SLAM
6D library. Experimental results demonstrate that the system
described is capable of efficiently building compact and accurate
3D representations of complex large indoor environments at
multiple semantic levels.

Index Terms—3D Maps, plane detection, multilevel surface
maps, laser scanner, SLAM6D

I. INTRODUCTION

EFFICIENT use of robots in a tridimensional environment,
be it indoor or outdoor, requires identification of struc-

tures and objects present in the world. These objects and
structures can often be described in terms of simpler forms
or primitives at different semantic levels. For example, indoor
primitives based on planes can be used to characterize most of
the elements conforming the environment. Their descriptions
and relative locations can be used to define the internal
representation or map that is to be used by the robots acting
in the environment.

Maps are built from information acquired from one or more
sensors. Numerous different sensors can be used to capture
information in a 3D scenario from cameras (monocular, stereo
or time-of-flight) or range sensors (sonars and lasers). Maps
may be topological or metric, but metric maps are the preferred
option when geometrical features from the environment, such
as distances, volumes or surfaces, are needed.

The problem of building maps in large and unknown envi-
ronments while the system orients itself, widely known as the
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SLAM problem, has been intensively studied by the robotics
community over the last ten years [1]. Basically, the problem
lies in incrementally adding new information to a map whilst
estimating the relative displacements between observations
and recognizing areas that have already been explored and
are present in the map. This problem in two dimensions has
been largely studied and —in general terms— is nowadays
considered solved. The latest achievements in SLAM, together
with the availability of faster sensors and processors, have
fostered an interest for extending the SLAM problem to 3D
scenarios with 6DoF observers, a context formerly termed as
unfeasible due to its high computational demands.

In the present work, we describe an approach that allows us
to construct 3D maps for large indoor scenarios using a mobile
robotic system equipped with a laser sensor mounted on a
pan-tilt unit. The resulting tridimensional representation of the
environment comprises two levels of description. At the lowest
level, a Multi-Level map (ML map) [2] is built integrating 3D
scans acquired from different poses. To offset odometry errors,
we address the inherent SLAM problem using the SLAM 6D
software developed by Nüchter et al. [3]. From the ML map
the system can detect planar patches using an algorithm that
is an optimized adaptation for plane detection of the efficient
RANSAC (eRANSAC) method [4]. These planar patches will
be used to define a second level of description in the 3D map
of the environment from which structures of higher semantic
level such as walls, doors, tables, etc, could be detected.

This paper is set out as follows: after discussing related
works in section II, the data acquisition system will be
described in section III. Section IV shows how the ML
maps are built. The plane detection algorithm in ML maps
will be explained in section V. Finally, several experimental
results and conclusions are discused in sections VI and VII
respectively.

II. RELATED WORK

Different approaches have been adopted to allow au-
tonomous mobile robots to build tridimensional maps of the
environment. Several methods use a tridimensional grid that
splits space into portions called voxels, whose values reflect
the occupancy of the corresponding space volume [5]. Other
authors have proposed using elevation maps, due to their
much lower memory requirements. In elevation maps, the
environment is represented by using a two dimensional grid
where each cell represents the elevation, i.e. terrain height, at
the corresponding point. These maps enable us to model large
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Fig. 1. An example of scenario with several surfaces crossing at different
heights.

environments as shown in [6]. However, elevation maps are
ill-suited to modeling scenarios containing structures crossing
at different heights over the vertical of a point (see figure 1).
Two examples are a table indoors or a bridge outdoors. In
order to avoid this limitation, Triebel et al. [2] propose mul-
tilevel surface maps as an extension to elevation maps. These
multilevel maps include, at every cell of a bidimensional grid,
a list of the traversable surfaces that exist in the corresponding
vertical. An improvement of the multilevel surface maps can
be found in [7] where they are formally described using a
probabilistic approach.

Detecting shapes in tridimensional data sets has been stud-
ied from different points of view. Starting from a 3D data
point cloud, in [8], a 2 1

2 dimensional structure was built
based on an incremental triangulation algorithm. Similarly, in
[9], the authors developed a plane detection method using a
more accurate range noise model for 3D sensors to derive from
scratch the expressions for the optimum plane which best fits
a point-cloud and for the combined covariance matrix of the
plane’s parameters. The parameters in question are the plane’s
normal and its distance from the origin. In other works, plane
detection is addressed by using the information extracted from
imaging sensors. A range imaging sensor is used in [10], with
the aim of segmenting images of indoor environments in terms
of horizontal and vertical planes by means of the Normalized-
Cuts algorithm. An approach by Hähnel, Burgard and Thrun
is presented in [11]. This work describes an algorithm for full
3D shape reconstruction of indoor and outdoor environments
with mobile robots by approximating environments using flat
surfaces. Other authors [12] present a method for obtaining the
location, size and shape of main surfaces in an environment
from points measured by a laser scanner onboard a mobile
robot. The most likely orientation of the surface normal is
first calculated at each point, from points in an adaptive-
radius neighboring region. In other cases, stereo cameras are
used, for example in [13], where an architecture for detection
and estimation of planar surfaces in the scene from calibrated
stereo images is presented.

III. DATA ACQUISITION

In this work, the data acquisition system is formed by a laser
sensor coupled with a pan-tilt, both installed onboard a mobile

robot. The laser sensor is a Hokuyo UTM-30LX with a scan
width of 270◦ and 30m detection range. The pan-tilt unit is a
PTU 46-17.5 from Directed Perception. It has two degrees of
freedom and it is used for scanning space in three dimensions.
A Pioneer P3-DX has been used as a mobile platform and as
the odometry data source.

The data acquisition system works in a move-and-stop way.
The robot is moved to a new pose and then a 3D scan is
taken. The pan-tilt is oriented with a pan angle α and, then,
while the pan-tilt sweeps between the tilt start angle γs and the
tilt end angle γe, the laser sensor takes range measurements
from the environment. The laser sensor returns one scan every
25 msecs. The tilt angular speed is adjusted to obtain an
angular separation between consecutive scans of ρ degrees at
the maximal speed allowed by the hardware.

To integrate new laser measurements into the map we need
to know the laser sensor orientation at all moment. The hard-
ware used does not have a hardware synchronization system,
so we have developed a software synchronization mechanism
that allows us to acquire new laser measurements while the
pan-tilt is moving between γs and γe. This synchronization
system avoids having to stop the pan-tilt every time the laser
initiates the acquisition of a new scan. The synchronization
algorithm takes into account the pan-tilt’s initial position when
the laser scan starts and calculates the vertical elevation angle
for every measurement returned by the sensor. The scan data
timestamp ts corresponds to the moment at which the laser
sensor starts acquiring a new scan. The resolution of the
Hokuyo UTM-30LX sensor is 1440 steps per revolution. The
timestamp of range measurement mp corresponding to step p
is:

tp = ts +
p

1440f
(1)

In this equation, f represents the laser beam rotation
frequency. If t0 is the instant when the pan-tilt began its
tilt movement, then the time difference or delay lp till the
measurement mp was taken is:

lp = tp − t0 (2)

The pan-tilt’s tilt speed is adjusted so that tilt angle changes
in ρ degrees while the laser beam completes a revolution.
Thus:

υ = ρ · f (3)

Thus, if lp is known, then, by using the pan-tilt’s trapezoidal
acceleration scheme, we can calculate the tilt angle γ at
which each measurement mp was taken. The pan-tilt uses a
trapezoidal acceleration scheme to achieve any velocity that is
greater than the so called base speed vb. The pan-tilt unit is
considered to be able to accelerate instantaneously from zero
to any speed up to vb. Then γ is calculated by interpolation
using this scheme.

The spatial coordinates c = (cx, cy, cz), corresponding to
the 3D point where the laser beam impacts, must be calculated
for each measurement returned by the laser sensor. Thus, it is
necessary to look for a transformation function f such that:
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Fig. 2. Data acquisition system envisioned as a kinematic chain. The system
is made up of a laser sensor (in red color, upper side) coupled over a two
degrees of freedom pan-tilt. In the figure, the base reference system is showed.

c = f(α, γ, λ,mp, u) (4)

If λ is the laser motor, i.e. beam, angle and u = (ux, uy, uz)
are the coordinates from the pan-tilt and laser sensor local-
ization. The transformation f can be easily found posing
this problem as a direct kinematic problem. From this point
of view, our system has three distinct joints. The first and
second joints coincide with the pan-tilt’s motors. The third
joint corresponds to the laser sensor motor, considering the
laser beam as another link of the chain (figure 2). The
transformation f can then be determined by means of the
Denavit-Hartenberg method [14].

A. SLAM

As equation 4 clearly shows, it is necessary to know the
pan-tilt and laser sensor 3D orientation in order to merge
the 3D scans taken from different places in a single map.
The location of each pose is approximated by using the robot
odometry. However, as is commonly accepted, odometry errors
may grow without limit due to wheel sleepage or calibration
errors. Specifically, one can expect odometry errors to increase
rapidly with distance and turns. Hence, this error must be
corrected in order to create a consistent map. To solve this
issue, we first collected all the 3D scans and then the whole
scan set was processed using the SLAM 6D package [3],
[15]. The SLAM 6D project includes software to register 3D
point clouds into a common coordinate frame. We used this
registration software to correct the localization of the poses.
This software matches 3D scans and it considers 6DoF for the
robot pose: x, y and z coordinates and the roll, yaw and pitch
angles. As a result, corrected poses are returned. We used the
corrected poses to solve equation 4.

IV. ML MAP BUILDING

The first description level of the environment is based on
Multilevel Surface Maps (MLSM) [2] and it is built using the
3D scans processed by the SLAM 6D package.

MLSM consists of a 2D grid where every cell ci,j stores
a structure list. Each element of this list is represented as the
mean µk

i,j and the variance σk
i,j of the measured heights at the

position of the cell in the map. Triebel et al.’s work [2] is aimed
at obtaining an environmental representation that allows for
robot navigation in tridimensional environments with several
traversable surfaces at different overlapped heights. So, in that
work, each list element (called surface patches) represents
whether the space at the height indicated by the mean µk

i,j ,
with an uncertainty equal to the variance σk

i,j , is traversable or
not. Our objective, however, is to obtain a map that allows us
to model and identify the objects present in the environment.
Accordingly, in our map each list element, called block,
represents a section of an object surface. This enables us to
obtain a map that represents a compact discretization of the
environment. This new approach introduces some differences
during map building.

Within our ML maps, each cell ci,j stores a list of blocks
bki,j . Each measure p = (px, py, pz) returned by laser sensor
is incorporated in a block so px ≥ j · cell_size and px < (j +
1) · cell_size and py ≥ i · cell_size and py < (i+1) · cell_size.
The cell_size parameter expresses the map resolution. Each
block is represented by a tuple (h, σ, d, π), where h is the
height, σ the variance, d the depth and π the plane containing
it (this last parameter will be explained in the next section).
There are two block types:

1) Horizontal blocks represent a section of the external
upper or lower surface of an object, for example: a floor
section or a ceil part, a table board, etc. This kind of
blocks has a depth equal to zero.

2) Vertical blocks, in turn, represent sections of vertical
surfaces of objects like walls or wardrobes.

When new measures are acquired, the height and variance of
horizontal blocks are updated using the Kalman update rule.
In vertical blocks, in turn, the height and the variance are
the height and variance of the highest measurement assigned
to the block. The depth of a vertical block is the difference
between the upper and lower measurements which fit in the
block. When new measures are acquired, the map is updated
as follows (see figure 3):

• Every time a new measurement (p, σm) is added, where
p = (px, py, pz) are the coordinates and σm is the
variance corresponding to the measurement, the cell ci,j
where the measurement fits is selected.

• In the block list of the cell ci,j we look for a block
(h, σ, d, π) that collects the new measurement. A block
collects a measurement if |pz − h| < cell_size and
|(h− d)− pz| < cell_size.

• If there is a block that collects the measurement and this
block is horizontal and |pz − h| < 3 ·σ, then the height
and variance of the block is updated using Kalman’s
update rule. In this case, the block remains horizontal.
If, in turn, the block is horizontal but we obtain that
|pz − h| ≥ 3 ·σ, then the block becomes a vertical one
with h = max(pz, h) and d = |pz − h|

• If the block that collects the measurement is vertical then
we simply update the block height or depth as needed.
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• If the new measurement is simultaneously collected by
two blocks (h1, σ1, d1) and (h2, σ2, d2), then both blocks
will be joined into a single vertical block and the old
blocks are removed.

• If the measurement is not collected by any block, or the
block list of the cell is empty, then a new horizontal block
will be created with h = pz and σ = σm, and added to
the list of cell ci,j .

V. PLANE DETECTION

In this project, we have developed an algorithm called
efficient RANSAC in Multilevel Surface Maps (eRMSM), as a
modification of the efficient RANSAC (eRANSAC) algorithm
[4]. While eRANSAC works in point clouds, eRMSM works
directly over the block structures of an ML map and it focuses
on detecting just planes.

If M is an ML map that collects a set of blocks bki,j , (i, j) is
the cell index pair where the block falls in and k is the block
index in the cell’s list, then the eRMSM algorithm detects
and returns a set of planes Π = {Π1, · · · ,Πn} in the map.
Furthermore, each block is labeled with an index i which
indicates that the block matches plane Πi. Matching between
a block and a plane implies that the block is close enough to
the plane and that the block is part of a block setting with
a similar orientation to the plane. When the algorithm stops,
each block bki,j will be represented as (h, σ, d, π) where π is
the index of the matching plane. A block that does not match
any plane will have π = 0.

Iteratively, the algorithm produces candidate planes that are
hypothesis of real planes. Each candidate plane (CP) obtains
a score that is defined as a function of the blocks matching
the plane. As in eRANSAC, at the end of each iteration the
CP with the highest score is accepted as a valid plane only if
the probability of not overlooking a better candidate is high
enough. However, in the eRMSM algorithm we have changed
the estimation of this probability. In our algorithm, the number
of CP needed to accept a plane as valid is significantly reduced
as we will demonstrate in the sequel. When a CP Π is accepted
as a valid plane, each block that matches the plane is labeled
with the index i of the plane. Once a CP has been accepted,
any other CP that matches the accepted plane is removed from
the CP list.

Before the algorithm begins, each block bki,j receives a
direction vector ν. This direction vector will be used so that
only blocks with a similar direction vector will produce a new
CP. This vector is the normal vector to a hypothetic surface
formed by the block bki,j and all the same kind of vertical
or horizontal blocks in a r radious neighborhood of the block
(see figure 4). To speed the process up, in eRMSM we use the
Chebyshev distance as the selected distance because it does not
change the result. Vector ν is calculated by using the principal
component analysis (PCA) [16]. As eRMSM does not work
over spatial coordinates, but over map blocks, we must supply,
from each block, some coordinates that allow to obtain a vector
ν ∈ R3. Two cases must be differentiated:
• Case 1: the block bki,j is horizontal. The horizontal blocks

are part of the upper or lower surface of an object such

Fig. 4. The direction vector attached to block Bi is normal to a hypothetic
surface formed by the block and all blocks of the same class (vertical or
horizontal) in a neighbourhood radius r.

as the board in a table, or even the oblique surface of an
object like a ramp. So, the direction vector that we are
looking for can have any orientation in space. In this case,
from the vertical blocks set BV = {bk1

i1,j1
, · · · bkn

in,jn
} that

exist in a setting with radius r of bki,j we can obtain
a point set PV = {p1, · · · , pn} where pi ∈ R3. Let
bkl
il,jl

= (hl, σl, dl, πl), then the corresponding point pl

is (il · cell_size, jl · cell_size, hl). PCA is applied to PV

to compute the normal vector to the surface that has the
PV elements.

• Case 2: the block bki,j is vertical. This block must be
part of a vertical object: a wall, a chair back, etc.
Hence, the direction vector in this block must be a
vector parallel to the ground then. In this case, from
the horizontal blocks set BH = {bk1

i1,j1
, · · · bkn

in,jn
} that

exist in a setting with radius r of bki,j we can obtain
a point set PH = {p1, · · · , pn} where pi ∈ R2. If
bkl
il,jl

= (hl, σl, dl, πl), then the corresponding point
pl = (il · cell_size, jl · cell_size). PCA is applied to PH

to compute the normal vector (vnx, vny) to the surface
that has the PV elements. Using this two dimensional
vector we get the vector VN = (vnx, vny, 0) which is
parallel to the ground.

Once each block has a direction vector assigned, Algorithm
1 is executed. The candidate plane list obtains the hypotheses
about planes in the environment. The detected plane list
obtains the hypotheses that have been positively tested. The
M variable represents the blocks list. Finally, pt is the lowest
probability considered valid to accept a hypothesis as a true
plane.

The candidate planes are generated randomly selecting a
block bk1

i1,j1
and two other blocks bk2

i2,j2
and bk3

i3,j3
close to

the first that have not been matched to any other accepted
plane. The neighborhood radius r is an algorithm parameter
that affects the algorithm’s behavior. If r is small, then the
three blocks may be part of the same surface, but the plane’s
orientation will be affected by errors of measurement. On
the other hand, if r is big, then the possibility of selecting
blocks that do not match the same surface increases, but if
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Fig. 3. Different cases when a new observation (numbered circles) is added to ML. For simplicity, the map is presented in 2D. (1) The new observation is
far from registered blocks, so a new block is created. (2) The new is close to the top or bottom of a vertical block. Then, its height or depth is updated. (3)
If the new observation falls inside a vertical block there are no changes. (4) The new observation is between and close enough to two registered blocks. In
this case, both blocks are merged into a single one. (5) The new observation is close to a horizontal block. If the new measure is very close to the block, the
height of the block is updated using the Kalman’s filter updated rule. If the new observation is further than 3σ wrt. the block’s, the block changes to vertical.

the blocks match the same surface, the increased distance will
compensate the measurement error. The three selected blocks
will generate a CP only if the angles between their direction
vectors are lower than a threshold θ.

Algorithm 1 Plane detection in a ML map M
1: Lp ← ∅ . detected plane list
2: Lc ← ∅ . candidate plane list
3: for i = 0 to Max_cp− 1 do
4: Lc ← Lc ∪ newCandidates(r, θ)
5: b← bestCandidate(Lc)
6: sc ← SimilarOrientationSurface(b)
7: if P (surface(b), sc) > pt then
8: . matching blocks are removed:
9: M ←M −Mb

10: Lp ← Lp ∪ b . CP that matches b are removed
11: Lc ← Lc − Cm

12: end if
13: end for

In earlier algorithms, the CP is determined as the plane
that includes the three selected points (see figure 5 (a) and
(b)). By contrast, to filter the surface localization error due to
measurement errors, our method determines the CP in another
way. The plane generated from the three blocks CP cpi is
determined as a point o and a normal vector to plane VN .
The point o is selected as the barycenter of the polygon with
the three blocks as vertex and the normal vector VN as the
mean between the corresponding direction vectors. This CP
represents a better hypothesis of a real plane (figure 5 c).

The way a score is assigned to each CP in eRMSM
algorithm also varies in relation to previous works. Since our
algorithm works with blocks, rather than point clouds, it is
not possible to assign the number of matching points to CP
as a score, so we propose a new score function. We will now
give a definition of matching between a block and a plane. It
is said that a block bki,j with a direction vector VD matches a
plane Π = (o, VN ) if:

• The distance from the block to the plane is d =
dist(bki,j ,Π) < ε.

Fig. 5. Different ways to determine a candidate plane. For simplicity, in
the figure the problem is depicted in two dimensions. a) Point observations
obtained for a measures set of a straight line. b) Determining a candidate line
as the line that best fit to three points. c) Candidate line defined as the line
with a normal vector that is the mean of the direction vectors of the three
points.

• The angle between the block’s direction vector and the
normal vector to the plane is β = arg(VD, VN ) < κ.

The thresholds ε and κ are system parameters that adjust
the goodness of the accepted CP as valid planes.

Each CP receives a score depending of the area of the sur-
face that is represented by the blocks that match that plane. To
normalize the probabilistic computations, the area is measured
in “surface units" su, where su = cell_size× cell_size mm2.
Then the CP score is S =

∑
sbi

, where sbi
is the area of

the surface represented by the blocks matching the plane. The
block surface depends on whether the blocks are vertical or
horizontal. In a vertical block bv the corresponding surface is
sv = d

cell_size . When the block is horizontal it has a surface
sh = 1. This score method, instead of counting the number of
matching blocks, as in the original method, has the advantage
of being based on a real indicator of the importance of the
plane in the real world. Hence, a CP that corresponds to a
large surface has more possibilities of being found early on.

The CP generated in this way is likely to have some
deviation in orientation with respect to the corresponding
real plane. This deviation is explained by measurement errors
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or due to the inclusion of neighboring blocks that in fact
do not belong to that plane when computing the block’s
direction vector. Thus, we apply a refitness process to each
CP. Whenever a new CP is created and scored we use the set
of blocks that match the CP to adjust the CP’s orientation using
PCA. In this case, we apply PCA to the set of blocks matched
by the CP to obtain the normal vector to this set. Subsequently,
this vector is used as the new CP’s normal vector. Finally,
the modified CP is scored again. This process is recursively
applied a predetermined number of iterations or when the score
enhancement, from one iteration to the next, is lower than a
given threshold (see algorithm 2).

Algorithm 2 Plane refitness procedure
Require: CPi, the new plane candidate
Ensure: The optimized CP: CPi

1: score = score_function(CPi)
2: repeat
3: old_score = score
4: normal = get_normal(CPi → matched_blocks)
5: modify_normal_CP (CPi, normal)
6: score = score_function(CPi)
7: until score− old_score < threshold

A CP is accepted as valid only if the probability of not
overlooking a better candidate is high enough. As we can
see in [4], if ℘ is a cloud of N data points and Ψ a shape
comprising n points, then the probability of detecting Ψ in a
single iteration is

P (n) =
(
n

k

)
/

(
N

k

)
≈
( n
N

)k

(5)

If k is the minimum number of elements needed to define
a shape —k = 3 for planes— thus, the probability P (n, s)
of successfully detecting a shape after s new candidates have
been generated is

P (n, s) = 1− (1− P (n))s (6)

Finally, the number T of candidates needed to detect a shape
of a size n with a probability P (n, T ) ≥ pt, where pt is the
minimum desired probability, is

T ≥ ln(1− pt)
ln(1− P (n))

(7)

Applying equations 5, 6 and 7, and assuming that we have
as an environment a corner formed by a ground section and
two walls, if the number of points in the cloud is equally
spread over the three planes, each plane has a third of the
total points. Then, as 5 shows, the probability of detecting the
ground in a single pass is:

P (n) ≈
(

1
3

)3

≈ 0.037 (8)

Hence, according to equation 7, the number of CP that we
need to detect the ground with a probability greater or equal
to 0.99 is:

T ≥ ln(1− 0.99)
ln(1− 0.037)

> 122 (9)

Clearly, with other shapes that represent less than a third
part of the total information, the number of candidates increase
significnatly as usually happens in realistic environments,
where most surface planes represent a small portion of the total
map. In the eRMSM algorithm, we have introduced changes to
estimate the probability of not overlooking a better candidate.
These changes considerably reduce the number of CP that is
necessary to generate before a plane is accepted as valid.

In our approach, CP are not generated from any three blocks
of the map. On the contrary, each CP is exclusively generated
from three neighboring blocks with a similar orientation and
therefore similar to the orientation of the plane itself. Exploit-
ing that fact, in eRMSM algorithm, if Π is a CP where sc is
the surface of the blocks matching the plane and let so be the
total surface of all blocks with a similar orientation to Π, we
can calculate the probability of finding the plane in a single
pass as

P (sc) =
(
sc

3

)
/

(
so

3

)
≈
(
sc

so

)3

(10)

In the example of three planes forming a corner, the
probability of finding the plane corresponding to the ground
in a single pass is 1, since sc = so and then

P (sc) ≈
(
sc

so

)3

= (1)3 = 1 (11)

In this case, we have enough with only a single generated
CP against the 123 candidates needed using the previous
approach. This method can validate CP spurious planes or
planes with little significance, i. e. with a small total surface
if the blocks matching the plane represent a high percentage of
all blocks with an orientation equal or similar to the generated
CP. To avoid this, a threshold accepting candidate planes only
with a score greater than a value sm and hence with a minimal
surface suffices.

The algorithm exit condition is reached when a given
number of candidates is generated.

VI. RESULTS

The system presented in this paper has been tested in several
locations of the main building of the University of Las Palmas
de Gran Canaria’s Technological Park.

In the first test, we steered the robot through the basement
and took 24 3D scans of the corridor (see figure 6(a)). The
corridor’s estimated dimensions are 40.4m long and 4.75m
wide. The corridor has perpendicular subcorridors 11m long.

No matter how carefully the acquisition system is placed on
board the robot, it will not be parallel with respect to the floor.
This inclination or deviation from horizontal causes a ”step
effect” in horizontal and vertical planes. The system solves
this issue by self-calibration. At the beginning, a scan of the
surrounding floor is adquired (see figure 7(a)). We then use
the eRMSM algorithm to detect the floor plane. The normal
vector to this plane is used to fix the system’s inclination.
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(a) (b)

Fig. 6. (a) Test scenario #1: Corridor of the Technological Park. ULPGC. (b) Test scenario #2: Robotics Laboratory of the Technological Park. ULPGC.

(a) (b)

Fig. 7. (a) “Step effect“ in an horizontal plane (Robotics Laboratory’s floor). (b) ”Step effect“ fixed using an estimate of the acquisition system’s inclination.

(a) (b)

Fig. 8. (a) Upper oblique view of ML maps generated from 24 poses at the corridor. The line represents the robot path and the points over the line are the
poses at which the scans were taken. (b) Planes detected in the corridor map. Grey zones represent blocks that do not match any plane. Each color represents
different planes.

We can appreciate in figure 7(b) how the “step effect” has
disappeared.

We used the Nüchter et al. SLAM 6D library [3] to cor-
rect the odometer location information returned by the robot
regarding the robot’s pose where the 24 3D scans were taken.
Once the poses are corrected, we build a map from the set of
measures taken in the 3D scans. A 3D visualization software
was developed to make spatial zooms and rotations of the map.
In figure 8(a) we can see an upper oblique view from a map of
the corridor generated using a 100mm cell size. For improved
visualization we have removed the floor and the ceiling from
the map. In addition, we can see the poses where the 3D
scans were taken from. This map allocates 44732 blocks.
Once the map has been generated, the eRMSM algorithm is

executed. With an implementation of the algorithm optimized
for a 2.4GHz quad-core processor, it is possible to identify 12
planes in 7.8 seconds.

In figure 8(b) we can see the corridor map where the blocks
that match any detected plane are depicted using different col-
ors. The largest planes in this map match about 1650 blocks.
Using the eRANSAC test it would be necessary to generate
1132 CP (see equation 7) to accept the first plane with a
probability greater than 0.9. Using our probability estimation,
the first plane hypothesis is confirmed after generating 50 CP
in 600ms. At the same scenary, we can see how the different
steps of a stair are intified by the system (see figure 9). It
is important that the lower steps are detected better than the
upper steps. The reason is that upper steps are parallel to laser
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Fig. 9. An example of stairs detection in the middle of the corridor depicted in figure 6(a). The bottom steps are closer to perpendicular to the laser beams
than the top steps, and thus they are detected better.

(a) (b)

Fig. 10. (a) Upper oblique view of ML maps generated from 8 3D scans taken at different poses in the Robotic’s Laboratory. The line represents the robot
path and the points over the line are the poses at which the scans were taken. (b) Planes detected in the Robotics Laboratory’s map. Grey zones represent
blocks that do not match any plane. Each color represents different planes.

beams, so the sensor does not receive an echo from these steps.

Figure 6(b) shows a new test scene. In this case, the scenario
is a laboratory 8.3m wide and 11.4m long. Figure 10(a) shows
a map generated using a cell size of 20mm. This map collects
196385 blocks. Fourteen different planes were detected in 4.6
seconds. As in the previous test, different colors in figure 10(b)
correspond to blocks that match different detected planes.

ML maps, as we have generated them, easily allow the
joining or fusion of different partial maps of adjacent spaces.
The laboratory shown in figure 6(b) and the corridor of figure
6(a) are contiguous rooms in the same building. Both spaces
were independently mapped using our approach, with the
results depicted in figure 10(a) and 8(a). We have been able to
generate a single map from the two data sets after the poses

were corrected using the SLAM 6D software. We can see the
resulting map in figure 11.

VII. CONCLUSIONS

This paper has described an approach to building compact
3D maps of indoor environments based on multilevel surface
maps. This kind of space representation allows us to describe
the scene with detail and balances spatial resolution and
memory cost appropriately. These multilevel maps are easily
scalable and versatile enough to provide sophisticated spatial
information without having to rely on low level data, i.e.
clouds of laser data points.

In addition, an efficient algorithm for detecting planes
using the multilevel surface maps (eRSMS algorithm) has



PRIETO-MARAÑÓN ET AL.: EFFICIENT PLANE DETECTION IN MULTILEVEL SURFACE MAPS 23

Fig. 11. Single map of the corridor and the Robotics Laboratory after merging the 3D scans independently taken at both scenarios.

been proposed. A key feature of the eRSMS algorithm that
distinguishes it from the original eRANSAC algorithm is that
it does not need to generate a high number of hypotheses
in order to identify candidate planes with high probability.
Moreover, eRSMS is easily parallelizable, an attractive feature
that may be exploited on multicore processors.

While the system described in this paper has proved reliable,
there is considerable room for improvement. Future work will
be directed towards alleviating the off-line 6D SLAM pre-
processing and the associated computational cost by using ge-
ometrical features instead of the scan point clouds. Moreover,
the multilevel maps offer interesting possibilities to attempt to
label an indoor space semantically.
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