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Locating Pollicott-Ruelle resonances in chaotic dynamical systems: A class of numerical scheme
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A class of numerical methods to determine Pollicott-Ruelle resonances in chaotic dynamical systems is
proposed. This is achieved by relating some existing procedures that make use of the Pade´ approximants, and
interpolating exponentials to both the memory function techniques used in the theory of relaxation and the filter
diagonalization method used in the harmonic inversion of time correlation functions. This relationship leads to
a theoretical framework in which all these methods become equivalent and which allows for new and improved
numerical schemes.
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I. INTRODUCTION

The Frobenius-Perron~FP! operator plays a central role i
the statistical analysis of chaotic dynamical systems by
ing the time evolution of distribution functions~probability
densities! in phase space. In flows, it leads to a continu
differential equation known as the Liouville equation. T
FP propagator admits a Hilbert space representation as a
tary operator, whose spectrum must therefore belong to
unit circle. The structure of the corresponding spectral
composition and the nature of the phase space dynamic
intimately connected. Besides, this same structure de
mines the behavior of time correlation functions and th
frequency spectral densities. For instance, the FP operato
the motion on ann-torus in an integrable Hamiltonian flow
has a purely discrete spectrum with eigenvalues given
eikVt, wherek is anyn vector of integer numbers andV is
the n vector of the torus fundamental frequencies; time c
relation functions in this case are quasiperiodic, and the
responding spectral densities presentd-function singularities
at certain frequency values from the setv5kV. On the
other hand, in a mixing dynamical system, if we exclude
eigenvalue 1~which is simply degenerate and corresponds
the invariant measure!, the spectrum is continuous; time
correlation functions must therefore decay. In many discr
maps and continuous flows with chaotic dynamics, this
cay is exponential; however, even in this case, the correla
functions may present strong oscillatory modulations; th
lead to bumps in the corresponding frequency spectral d
sities, which have been interpreted as resonances, i.e., p
in those functions after their analytical continuation into t
complex frequency plane. From the original theoretical wo
carried out on this problem by Pollicott@1# and Ruelle@2# for
a class~Axiom A) of chaotic dynamical systems, these s
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gularities are generally known as the Pollicott-Ruelle~PR!
resonances. If, as in this class of systems, the location of
singularities in the complex frequency plane is an intrin
property of the dynamical system, i.e., independent of
observable monitored, then these resonance poles ma
considered to be in correspondence with the generalized
genvalues of the FP operator@3#. This interpretation requires
extensions of this operator, which hold for either positive
negative times, and which makeU a nonunitary propagato
whose spectral decomposition may be written in terms of
biorthonormal basis set of its left and right eigenstates
physical way of defining the generalized eigenvalue probl
is as an usual Hilbert space spectral analysis of the coa
grained dynamics in the limit of zero coarse graining. Th
particular way establishes a correspondence between
coarse-grained Liouvillian dynamics in a chaotic flow a
the classical diffusion equation for disordered systems@4#.
Such a correspondence is the origin of a new approac
carry out the statistical analysis of the eigenvalue spect
of a quantum system whose classical limit is chaotic, wh
is an extension of the field theoretical methods used
quantum disordered systems@5#. In this way, the roles played
by the FP operator and its resonances are important not
in the statistical analysis of classical chaotic systems but
in that of their quantum counterparts@6#.

The determination of the leading PR resonances is a n
essary step in those statistical analyses. In general, in ord
extract them, one has to resort to numerical approxim
schemes. However, the numerical approaches followed so
are few and not always well founded both mathematica
and physically. The theoretically most complete treatme
are also the most involved numerically. The methods ba
on the diagonalization of a coarse-grained FP operator in
Hilbert space of square integrable functions belong to t
class. In the limit of zero coarse graining and a compl
basis set, one would obtain the resonances from the ei
values. In order to obtain this limit accurately, repeated
©2002 The American Physical Society08-1
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agonalization of a very large matrix~e.g., 810038100 for
the simple standard map@7#! at different values of the
coarse-graining parameter are required; in some cases
parameter is already set by the matrix dimension@8#. A dif-
ferent approach also in this class uses a periodic orbit re
sentation of the Fredholm determinant of the FP opera
which can be expressed in terms of the traces of this oper
at different times; the location of the resonances are t
obtained from the zeros of the corresponding Zeta func
@3,9,10#. The scheme requires the knowledge of a large nu
ber of periodic orbits, which can become a very difficult ta
in many real systems.

We already know that the decay behavior of the tim
correlation function between two observables and the an
ticity properties of the corresponding frequency spectral d
sities are intimately related to the generalized eigenvalue
the FP operator. This is the origin of a category of method
which one actually carries out an analytical continuation
the spectral density into the complex frequency plane in
der to find the poles associated to the resonances contrib
simultaneously to the two observables chosen. Only a
examples that follow this approach can be found in the
erature. It was first followed by Isola for the He´non map@11#
and later by Baladiet al. @12# for intermittent systems. As
will be seen in this paper, the variational method proposed
Blum and Agam@7# also belongs to this class. This schem
unlike the class of methods discussed in the previous p
graph, requires very small computational efforts. For
stance, Isola@11# finds the leading resonances of the He´non
map from a@L,M # Padéapproximant to the spectral densi
with 16<L1M<26; similarly, Blum and Agam@7# obtain
the leading resonances of the cat and standard maps a
eigenvalues of a 434 matrix. However, the mathematica
and physical foundations of this approach are not as dee
in the previous methods. This is seemingly due to the lack
a general theoretical framework from which one can der
not only these approximate numerical schemes, but also e
and convergence criteria. Finding such a framework is
main goal of this work. It was achieved by relating the
methods to the memory function techniques used in the g
eral theory of relaxation@13#, or to the filter diagonalization
approach followed in the location of quantum resonan
@14,15#. A different class of numerical methods to determi
PR resonances comes out from this theoretical framewo

The paper is organized in the following way. In Sec.
we will present the results of the memory function meth
which are more relevant to our study. These techniques
usually applied to the Hamiltonian, the Liouvillian, and
the general relaxation operators@13#. In deterministic dy-
namical systems, this would imply dealing with the Liouvil
operator. However, in this case the memory function sche
does not perform the analytic continuation required in
determination of the PR resonances, unless a coarse-gra
version of that operator is used. If, instead, one choose
analyze the FP operator, this coarse graining is not nee
but in this case we will require a particular implementati
of the memory function methods to deal with propagato
This is all performed in Sec. II. We will show, for instanc
how the Pade´ approximants appear naturally in this schem
04620
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Filter diagonalization@14,15# is another approach which i
specifically adequate to our problem. This is a particular f
mulation of the harmonic inversion problem as an eigenva
equation. In Sec. III, we give an account of this method a
show its total equivalence with the memory function schem
The results of these two sections set up a theoretical fra
work for a new class of numerical schemes to determine
resonances in chaotic systems. Besides, we prove in Se
that all these procedures are equivalent linear formulation
the nonlinear numerical problem, known as interpolation
exponentials@12,16#. This connection provides new tools t
perform a better analysis of issues such as convergence
numerical stability, which are relevant to establish the re
ability of the numerical approach presented here to locate
PR resonances. From such analysis improved schemes
be designed, as the one that we propose in this section b
on a least-squares-fit method. The application of these m
ods is illustrated in simple dynamical systems in Sec.
Finally, a summary is presented in Sec. VI.

II. THE MEMORY FUNCTION TECHNIQUE

As mentioned in the Introduction, the direct application
this technique to deterministic dynamical systems would
ply dealing with a coarse-grained Liouville operator. If, i
stead, one chooses to analyze the Frobenius-Perron ope
the coarse graining is not generally needed. In this sec
we will proceed to perform the required particular impl
mentation of the memory function methods to deal with t
propagator.

First of all, we have to make the following choice for th
scalar product between observables:

^ f ug&5E f * gdm, ~1!

wherem is the natural invariant measure for the dynamics.
certain cases, as when the relevant chaotic dynamics t
place in a strange attractor, the invariant measure shoul
defined with respect to a conformal measure; in practice,
integral in Eq.~1! may be evaluated in this case using t
ergodic property of the invariant measure and averaging o
a long enough trajectory that has already reached the sta
ary dynamics. In other words, one assumes that this tra
tory is dense in the attractor set.

The time evolution of the system is ruled by i
Frobenius-Perron operatorU. In the case of maps this corre
sponds to one iteration step; for flows,U may correspond
either to the Poincare´ map or to a given finite-time step. W
then have

u f ~n11!&5Uu f ~n!&. ~2!

Making use of this notation, the autocorrelation functi
C(n) for an observablef reads

C~n!5^ f ~0!u f ~n!&5^ f ~0!uUnu f ~0!&. ~3!

We define a resolventG(v) of U by writing
8-2
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G~v!u f ~0!&5 (
n50

`

eivnu f ~n!&5 (
n50

`

~eivU !nu f ~0!&,

Im v.0. ~4!

Therefore,

G~v!5
1

12eivU
. ~5!

In the memory function formalism@13#, one chooses a
particular stateu f &[u f (0)&, and considers the diagonal m
trix elementGf f(v)5^ f uG(v)u f &. This is an analytic func-
tion in the upper half plane of the complex frequencyv. Its
singularities, generally in the form of single poles atv
5v i , can appear in the lower half plane. The eigenvalue
U in terms of these poles are thereforee2 iv i. Recursive pro-
jective techniques, first developed by Zwanzig@17# and Mori
@18#, are then implemented to expressGf f(v) as a continued
fraction. The process starts out by defining two complem
tary generalized projection operatorsP05u f 0&^ f̃ 0u/^ f̃ 0u f 0&
and Q0512P0, with the identificationsu f 0&[u f & and ^ f̃ 0
u[^ f u. This partition is then used to derive a Dyson-ty
equation,

P0G0P05
P0

P0G0
21P02P0G0

21Q0G1Q0G0
21P0

, ~6!

with G0[G(v) and G15(Q0G0
21Q0)21; from this equa-

tion one readily obtains

^ f̃ 0uG0u f 0&5
^ f̃ 0u f 0&

2

^ f̃ 0uG0
21u f 0&2e2iv^ f̃ 1uG1u f 1&

, ~7!

where u f 1&5Q0Uu f 0& and ^ f̃ 1u5^ f̃ 0uUQ0. The procedure
can now be repeated for the diagonal element^ f̃ 1uG1u f 1&
appearing in Eq.~7!; from successive iterations a hierarch
of left ^ f̃ nu and rightu f n& states and corresponding projectio
operatorsPn5u f n&^ f̃ nu/^ f̃ nu f n& is constructed according t
the recursion scheme

u f n&5Uu f n21&2an21u f n21&2bn21
2 u f n22&,

^ f̃ nu5^ f̃ n21uU2an21^ f̃ n21u2bn21
2 ^ f̃ n22u, ~8!

with ^ f̃ nu5u f n&50 for negativen, and where

an5
^ f̃ nuUu f n&

^ f̃ nu f n&
; bn

25
^ f̃ nu f n&

^ f̃ n21u f n21&
; b051. ~9!

From these results one can easily prove that the states^ f̃ nu
and u f n& form a biorthogonal set, i.e.,^ f̃ nu f m&50 for n5” m
and that the values of the elementsan and bn can all be
obtained from those of the autocorrelation functionC(n).
The operatorsPn andQn512Pn are not self-adjoint in gen
eral. However, the previous analysis only requires them
satisfyPn

25Pn andQn
25Qn .
04620
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The recursive procedure leads to the following express
for the diagonal matrix element of the resolvent as a con
uedJ fraction

R~z![Gf f~v!5
b0

2

12a0z2

b1
2z2

12a1z2

b2
2z2

12a2z2
•••,

~10!

wherez5eiv.
From Eqs.~3! and ~4! we find readily the expression re

lating this diagonal elementR(z) to the corresponding auto
correlation functionC(n),

R~z!5 (
n50

`

C~n!zn. ~11!

The correspondence that we have just found between
power series in Eq.~11! and the continued fraction in Eq
~10! is well known in the theory of continued fractions@19#,
where a theorem establishes that under general conditi
such a correspondence is indeed one-to-one. This imp
that the rational function defined by thepth approximant,

R(p)~z!5
a01•••1ap21zp21

11b1z1•••1bpzp
, ~12!

to the continued fraction~10!, which is obtained by taking
an5bn50 for n>p, has the autocorrelation value
C(0), C(1), . . . ,C(2p21) as its first 2p Taylor coeffi-
cients atz50. As a matter of fact, these are the only valu
of the autocorrelation function required in the determinat
of the elementsan andbn , which are needed to obtain from
them thepth approximantR(p)(z), as can be deduced from
their definition in Eq.~9! and from the recursive relations i
Eq. ~8!.

Let us assume for a moment that the autocorrelation fu
tion has the following form as a sum ofp exponentials

C~n!5(
i 51

p

cizi
n . ~13!

In this case the continued fraction expression forR(z) trun-
cates exactly at thepth approximant; in other words,R(z)
has an exact rational representation in the form of Eq.~12!.
Then, the poles of this rational function are thep complex
numberszi

21 , their corresponding residues being2cizi
21 .

The analytic theory of rational functions shows that the co
verse is also true@16#; namely, if the pth approximant
R(p)(z) can be computed from the first 2p values of an au-
tocorrelation functionC(n), then each one of these 2p val-
ues satisfy exactly Eq.~13! with zi andci given, as before, in
terms of the poles and the residues ofR(p)(z). By fixing the
values of the 2p parameters (zi ,ci) from the first 2p values
of C(n), we are indeed performing an interpolation ofC(n)
by a sum ofp exponentials@12,16#.

The memory function scheme just presented gives
physical support to the use of the Pade´ approximants in the
representation of the power series forR(z) in Eq. ~11!. For
instance, from the preceding analysis we have
8-3
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R(p)~z!5
a01•••1ap21zp21

11b1z1•••1bpzp
5 (

n50

2p21

C~n!zn1O~z2p!.

~14!

ThereforeR(p)(z) gives the@p21,p# Padéapproximant to
R(z). In the location of PR resonances, Pade´ approximants
were first used by Isola in the He´non map@11# and later by
Baladi et al. @12# in an intermittent system.

Unlike the method of interpolating exponentials or
equivalent form as a Pade´ approximant toR(z), which can
only provide the values of the leading resonances partici
ing in a given observable, the memory function approa
makes also possible, in principle, the calculation of the c
responding generalized eigenstates. Indeed, it is not har
prove~this is the essence of the Lanczos method@13#! that in
the biorthonormal basis set given by the states

uFn&5^ f̃ n21u f n21&
21/2u f n21&,

^F̃nu5^ f̃ n21u f n21&
21/2^ f̃ n21u, ~15!

the evolution operatorU admits the following tridiagona
complex-symmetric matrix representation:

U↔S a1 b1

b1 a2 b2

b2 a3

� bn

bn an

�

D . ~16!

Again, if C(n) has the form given in Eq.~13! as a sum of
p exponentials, the above matrix truncates exactly intop
3p block, i.e.,an5bn50 for n>p; from the eigenvalues
zi , we obtain the location ofp resonances, which coincide
exactly with that found from the poles of thepth approxi-
mant R(p)(z) in Eq. ~12!. The corresponding right~left!
eigenvectors, which are written as linear combinations of
right ~left! states of the biorthonormal basis set given befo
provide a representation of the right~left! generalized eigen
vectors associated to the resonances found.

In a real dynamical system the correlation function is e
pected to be dominated by a few leading resonances,
many others may intervene with small contributions. B
sides, statistical fluctuations are always present in any e
mate ofC(n) from the system orbits. Under such circum
stances truncation of the memory function recursive sche
is required, but one has to choose carefully the orderp to
obtain the location of these resonances with enough a
racy. We will come back to this important issue later.

III. FILTER DIAGONALIZATION SCHEME

Filter diagonalization is a particular procedure to solve
problem of fitting a signalC(n) to a sum of complex expo
nentials as in Eq.~13!. In this approach, this harmonic inve
sion problem is reformulated as an eigenvalue problem
an effective evolution operatorU. The original formulation
04620
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of this scheme@14# is simplified if, as in our case, the signa
C(n) is sampled on an equidistant grid@15#. Then using our
notation, the matrix representation forU is realized in the
basis set of Fourier-type states

uCn&5 (
m50

p21

eimwnUmu f &, n51,2, . . . ,q, ~17!

where theq real phaseswn belong to an intervalwmin,wn
,wmax contained in 2p.wn>0. Then the generalized ei
genvalue problem to solve is

UV5SVZ, ~18!

where theU andS are complex symmetric matrices, whos
elements are given by

Smn5~Cm , Cn!,

Umn5~Cm , UCn!. ~19!

In these equations the symbol (d,d) defines a complex
symmetric inner product, i.e., without complex conjugatio
The columns of the matrixV give the eigenvectors

uxn&5(
m

VmnuCm&, ~20!

and Z is the diagonal matrix with the complex eigenvalu
zi . Both S andU usually have rapidly decaying off-diagona
elements, which can all be calculate from the correlat
valuesC(n). Then the eigenvalueszi lying near a segmen
(eiwmin,eiwmax) of the unit circle in the complex plane may b
obtained by solving Eq.~18! in the basis set of Eq.~17!
restricted toq different values of the real phaseswn belong-
ing to the intervalwmin,wn,wmax. The numberq should
be large enough to extract all the leading eigenvalues in
region of the complex plane. The amplitudesci are then
calculated from the eigenvectors asci5( f ,x i)

2 @15#.
Let us show now the close relationship between mem

function and filter diagonalization schemes. On one ha
note that the use of the complex symmetric inner prod
(d,d) in the latter may be avoided if one defines, as in t
memory function approach, a left functional space expan
here by the states

^C̃nu5 (
m50

p21

eimwn^ f uUm, n51,2, . . . ,q. ~21!

If the observablef is a real function of the phase space va
ables~the case of complexf will be discussed later!, thenS
andU matrix elements have the usual form,

Smn5^C̃muCn&,

Umn5^C̃muUuCn&. ~22!

On the other hand, we have shown in the preceding sec
that the memory function scheme can be cast as an ei
value problem of a tridiagonal matrix. This matrix is a re
resentation of the evolution operatorU in a biorthonormal
8-4
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basis set whose states are obtained through a recursive
cedure. From Eqs.~8! and~15! we note that for any orderp,
these states can be written as linear superpositions,

uFn&5 (
m51

p

gnmUm21u f &, n51,2, . . . ,p,

^F̃nu5 (
m51

p

gnm^ f uUm21, n51,2, . . . ,p, ~23!

with coefficientsgnm obtained recursively. Therefore, if w
abandon the recursive scheme and instead of the states^F̃nu
and uFn&, we take directly

u f ~n!&5Unu f &, n50,1, . . . ,p21,

^ f̃ ~n!u5^ f uUn, n50,1, . . . ,p21, ~24!

to expand the left an right functional spaces, we arrive t
generalized eigenvalue problem equal in form to Eq.~18!
and where thep3pU andS complex symmetric matrices ar
now

Smn5^ f uUm21Un21u f &5C~m1n22!,

Umn5^ f uUm21UUn21u f &5C~m1n21!. ~25!

The columns and rows of the matrixV give, respectively, the
right and left eigenvectors,

uxn&5 (
m51

p

Vmnu f ~m21!&,

^x̃nu5 (
m51

p

Vmn̂ f̃ ~m21!u. ~26!

The variational approach followed by Blum and Agam@7# to
locate the leading PR resonances in the standard and
turbed cat maps is a 434 implementation of this eigenvalu
problem.

Notice that the two basis sets defined in Eqs.~21! and~24!
are particular choices of the general form given in Eq.~23!,
i.e.,gmn5dmn andgmn5eimwn, respectively. Therefore, bot
eigenvalue problems can be made equivalent if there ex
an invertible linear transformations between statesuFn& and
uCn&. This occurs ifq, the number ofwn phases in Eq.~17!,
is chosen asq5p, and the valueseiwn sample conveniently
the whole unit circle. The number of correlation pointsC(n)
required to set up the correspondingp3p eigenvalue prob-
lems is always 2p.

The methods described in this and previous sections
be easily generalized to cross-correlation signalsCg f(n)
5^g(0)u f (n)&. In this case, the states expanding the rig
and left eigenstates are, respectively,

u f ~n!&5Unu f ~0!&,

^g̃~n!u5^g~0!uUn, ~27!
04620
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which lead to the same kind of generalized eigenvalue pr
lem. As a matter of fact, the filter diagonalization analysis
a complex observablef corresponds in our notation to
cross-correlation functionCg f(n) with g5 f * . If a full mul-
tichannel cross-correlation matrixCi , j (n) is available for a
set of observablesf i , the basis set expanding the right an
left spaces may be obtained as direct sums of those co
sponding to each observablef i ~see also Refs.@14,20#!.

With the results in this section, we conclude in our goal
finding a unified physical framework for certain schemes f
lowed to find PR resonances, which make use of techniq
such as the Pade´ approximants and the diagonalization
small dynamically adapted eigenvalue problems. This fram
work clearly allows for a better analysis of issues such
convergence and numerical stability, which are relevant
establish the reliability of this numerical approach in locati
the PR resonances. These and other related aspects w
discussed in the following sections.

IV. INTERPOLATION BY EXPONENTIALS
AS AN EIGENVALUE PROBLEM

In Sec. II, we have already anticipated that when we tr
cate the hierarchy of equations appearing in the mem
function scheme, we are, in fact, carrying out an interpo
tion of the correlation function by a finite sum of expone
tials @16#. In this section we will proceed to give a gener
proof of such a statement, namely, we will show that t
method of interpolating exponentials can be recast as a
eralized eigenvalue problem equivalent to that of the prec
ing section.

Suppose we want to solve the harmonic inversion pr
lem by interpolating a given set of correlation dataC(n) by
the sum ofp complex exponentials,( i 51

p cizi
n , where the

unknown parameters are thep, amplitudesci , and thep
numberszi . If we use the 2p first values ofC(n), those
parameters can be obtained, in principle, from the solution
the set on nonlinear equation,

C~n!5(
i 51

p

cizi
n , n50,1, . . . ,2p21. ~28!

Using these 2p correlation values we can obtain thep3p
matricesS andU defined in Eq.~25!. From this equation and
the set~28!, we derive the following expressions to be sat
fied by these matrices:

S5WÁW,

U5WÁZW , ~29!

where W and Z have matrix elementsW i j 5cj
1/2zi

j 21 , Z i j

5zid i j ; and WÁ denotes the transpose matrix. We fina
obtain from Eq.~29!

UW215SW21Z, ~30!

which is identical to the eigenvalue problem of the preced
section. SinceW and Z on one hand, andS and U on the
other depend on the same number of parameters (2p), the
8-5
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eigenvalue problem in Eq.~30! is equivalent to the system i
Eq. ~28!.

A similar eigenvalue problem can be set up such that i
equivalent to the interpolation of the elements of a mu
channel cross-correlation matrixCi j (n)5^ f i(0)u f j (n)& by a
sum of the samep exponentials, i.e.,

Ci j ~n!5 (
k51

p

ci j ,kzk
n , n50,1, . . . ,2pi j 21,

i , j 51,2, . . . ,q, ~31!

with the restrictionci j ,k5ãikajk .
The existence of solution to the problem in Eq.~30! may

be guaranteed by requiring that bothS and U should be
nonsingular matrices. A singularS matrix would reveal linear
dependences in the basis set, and this will always occur w
the orderp, i.e., half the number of correlation data, used,
larger than the true number of exponentials required to
pandC(n). A singularU would imply a zero eigenvaluezi ,
which is usually linked to a singularS matrix. One can get
rid off these linear dependences by reducing the numbe
correlation data and thus the number of states, untilS be-
comes nonsingular. In the recursive method of the mem
function scheme, if the (p11)3(p11)S matrix becomes
singular for p5po , then the coefficientbpo

vanishes, thus
truncation occurs naturally. The same results are obtaine
one performs a singular value decomposition ofS @14#. In
practice, in a real dynamical system, although the correla
function may be expected to be dominated by a few lead
resonances, many others may intervene with small contr
tions. Besides, statistical fluctuations are always presen
any estimate ofC(n) from the system orbits. Under suc
circumstances there may not exist an orderp such that
bp vanishes exactly orS becomes exactly singular. In ver
favorable situations one may identify an optimal orderpo
if a sharp decrease of the magnitude of eitherbp or the
(p11)3(p11) determinantuSu is observed atp5po . We
will see later that in chaotic dynamical systems, such a
havior is not generally found, and one should proceed v
carefully. In any case, the optimal order is usually mu
smaller than the number of correlation data which can
determined. This fact allows for the implementation of me
ods to reduce the statistical noise inC(n), so that the 2p
values used to set up the eigenvalue problem become m
accurate. The standard procedure is to perform a le
squares fit.

A general scheme for this procedure can be designe
analyze a full cross-correlation matrix; however, for simpl
ity, we only present here the case of a single correlat
signal. Our goal is then to perform an optimal fit ofq corre-
lation values by a sum ofp exponentials, withq@p. There
are different solutions to this problem depending on the e
function j to minimize @21#. Here we will make the choice

j5 (
n50

q21 UC~n!2(
i 51

p

cizi
nU2

, ~32!

whereC(n) is the known correlation signal.
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Let us show now that this nonlinear problem can be ag
reformulated as a linear one in which an eigenvalue prob
must be solved self-consistently. By minimizingj with re-
spect to the parametersci and zi , we obtain the system o
equations

(
n50

q21

zi
n«n50, i 51,2, . . . ,p,

(
n50

q21

ncizi
n21«n50, i 51,2, . . . ,p, ~33!

where

«n5C~n!2(
i 51

p

cizi
n ~34!

is the error between the known correlation values and th
fit. We now rewrite the system~33! in the form

(
n50

2p21

zi
n«n5ui , i 51,2, . . . ,p,

(
n50

2p21

ncizi
n21«n5v i , i 51,2, . . . ,p, ~35!

whereui5(n52p
q21 zi

n«n andv i5(n52p
q21 ncizi

n21«n .
The solution to this system can be performed in the f

lowing self-consistent way. Suppose we have an initial gu
of ci

(0) andzi
(0) for the 2p parameterci andzi , obtained, for

instance, from the solution of thep3p eigenvalue problem
set up with the first 2p values of the known correlation func
tion C(n). We use this guess to calculate

Cn
(0)5(

i 51

p

ci
(0)@zi

(0)#n, n50,1, . . . ,q21, ~36!

and the termsui andv i and solve system~35! to find the first
2p errors«n[«n

(0) . With these values we obtain a correcte
form of the correlation function

Cn
( j 11)5Cn

( j )1h@C~n!1«n
( j )2Cn

( j )#,

n50,1, . . . ,q21, ~37!

where j 50 in this initial step andh is a parameter conve
niently chosen. With the first 2p values ofCn

(1) , we reset and
solve thep3p eigenvalue problem from which we extract a
improved guessci

(1) andzi
(1) ; the procedure is now iterate

until the fix point of the map defined by Eq.~37! is reached.
This will require a convenient choice of the parameterh. We
obtain in this way the best fit in the sense of the error fu
tion in Eq. ~32!, and from the solution of the last eigenvalu
problem the best eigenvalues and eigenvectors. One
start with a small value of the number of exponentialsp and
increase systematically this number fulfilling always the co
dition p!q; an optimalp5po would be the maximum orde
for which the fixed point of Eq.~37! can be numerically
reached.
8-6
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Let us finish this section with a brief discussion on t
physical interpretations of the left and right eigenfunctio
derived numerically from the schemes proposed in this wo
Let us suppose first that the observable chosenf has a finite
expansion in one or in both of the basis sets correspondin
the left or right generalized eigenvectors of the FP opera
Then it is straightforward to see that an exact truncation
der p5pe exists,pe being the number of terms in the shor
est of the two expansions. Therefore, only thepe generalized
eigenvectors participating in this shortest expansion can
obtained form these numerical schemes. More accurate
relation values will provide better approximations to the e
act eigenvectors. The observablef being an ordinary func-
tion, this situation can occur only if the eigenvectors of t
finite expansion are themselves ordinary functions and
distributions. We will present an example of this case in
following section.

However, in a general chaotic dynamical systems, b
the left and right generalized eigenvectors of the FP oper
will be complicated distributions@3# of the phase space var
ables. In this case the two expansions of the observable f
tion f will not be finite and therefore an exact truncatio
order pe will not exist. As already discussed, we can s
obtain a finite optimal orderpo , which will be determined by
the accuracy of the correlation values and by the numer
precision of the computations. The necessary choice o
finite po imposes a time cutoff to the evolution of the initi
state, and thus a limit to the phase space resolution w
which the generalized eigenvectors can be obtained. Th
fore, this class of methods provides in this case smooth
resentations of the exact eigendistributions. This will be a
illustrated in the following section.

V. NUMERICAL EXAMPLES

In this section we will illustrate the use of this new cla
of methods by locating the leading PR resonances of s
simple chaotic maps. We first choose the Bernoulli map,

xn1152xn ~mod 1!, ~38!

for which the resonance valueszi and the generalized leftx̃ i
and rightx i eigenstates of the FP operator are known a
lytically. These are, respectively~see Ref.@3#!,

zi5
1

2i
, i 50,1,2, . . . ~39!

and

x̃05u~x!u~12x!,

x̃ i5~2 ! i 21@d ( i 21)~x21!2d ( i 21)~x!#,

x i5
Bi~x!

i !
, ~40!

whered i(x) represents thei th derivative of the Diracd dis-
tribution andBi(x) are the Bernoulli polynomials. For th
observablef (x), we take the polynomial function
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f ~x!5x32
1

4
, ~41!

and the corresponding normalized autocorrelation funct
C(n)5*0

1dx f(x)Unf (x)/*0
1dx f2(x) can be computed ana

lytically from the above spectral decomposition, giving

C~n!5
14

15
z1

n1
7

45
z2

n2
4

45
z3

n . ~42!

Therefore the three resonanceszi , i 51,2,3 @Eq. ~39!# con-
tribute to this correlation function. Of course, in a gene
practical situation we will not know the exact correlatio
function but only an estimate of it, which is usually obtain
from the system orbits; in such case some statistical e
will be always present inC(n). We simulate these statistica
fluctuations by adding to the exactC(n) in Eq. ~42! a ran-
dom noisee with the Gaussian probability distribution

P~e!5
1

A2ps
expF2

1

2 S e

s D 2G . ~43!

Thus

Cr~n!5C~n!1e, ~44!

and we proceed to illustrate the effect of the noise stand
deviation s in the implementation of the methods that w
have proposed in this work to locate PR resonances.

A first parameter to determine is the optimal orderpo ,
i.e., the number of resonances contributing significantly
the correlation function. As mentioned in Sec. IV, one m
identify an optimal orderpo if a sharp decrease of the mag
nitude of either the memory function coefficientbp @Eq. ~9!#
or the determinant of the (p11)3(p11) correlation matrix
S(p11) @Eq. ~25!# is observed atp5po .

In Figs. 1 and 2 we plot, respectively, as a function ofp,
the magnitudes ofbp

2 anduS(p11)u obtained from the noisy
correlation functionCr(n) for the Bernoulli map. We clearly
observe in Fig. 1 that at the optimal orderp5po53, the
coefficientbp

2 is very sensitive tos; the same sensitivity is
observed inuS(p11)u for p>3 ~Fig. 2!. Besides, we ob-
serve that if the error in the correlation function is not sm
enough, it may wash out completely the expected sharp
crease in bothbp

2 anduS(p11)u at p5po ; the determination
of an optimal order would therefore require quite prec
correlation values (s,1024).

If instead one makes use of the self-consistent le
squares method described in Sec. IV,po would be the order
giving the minimum value of the error functionj defined in
Eq. ~32!; in general,po coincides with the maximum orderp
for which self-consistency is achieved, i.e., for which t
fixed point of Eq.~37! can be numerically reached. In th
present case, fors,1022 this occurs always at the correc
valuepo53, which indicates the ability of the least-squar
method to reduce the negative effects of the correlat
noise.

Let us now illustrate the effect ofs in the resonance
locations. In Table I we present the resonances derived f
8-7
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the solution of the eigenvalue problem defined in Sec.
which was set up for the noisy correlation functionCr(n);
different values fors and the orderp were used. We deduc
from these results that the leading resonancez1 is quite ro-
bust against noise and nonoptimal choices of the orderp. The
accurate location of other two resonances require, howev
better selection ofp and a more converged correlation fun
tion estimate; for instance, thez2 and z3 values obtained
from the most noisy correlation (s51024) are completely
wrong.

The resonance locations obtained from the self-consis
least-squares method are given in Table II. As we alre
know, this method provides as the optimal orderpo the cor-

FIG. 1. Magnitude of the memory function coefficientbp
2 @Eq.

~9!# as a function of the orderp ~the logarithm is decimal!. These
values were obtained for the Bernoulli map from a noisy correlat
function for the observablef (x)5x32

1
4 ; the parameters gives the

standard deviation of the Gaussian random noise.

FIG. 2. Magnitude of the determinant of the correlation mat
uS(p11)u @Eq. ~25!# as a function of the orderp ~the logarithm is
decimal!. These values were obtained for the Bernoulli map. Ot
details are as in Fig. 1.
04620
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rect valuepo53. The method gives also significantly bett
resonance eigenvalues even in the case of large correla
noise (s51024), where the previous approach failed com
pletely. In conclusion, when statistical errors are presen
the estimated correlation function, of all the methods d
cussed in this work, the least-squares scheme provides
most accurate resonance values by reducing the negativ
fects of the correlation errors. In general, two factors
crease the reliability of a resonance location obtained in
way: a larger stability and a larger contribution in the obse
able chosen.

The resonance generalized eigenvectors can be also d
mined from these schemes. For the Bernoulli map, the
culated right eigenvectors are approximations to the B
noulli polynomials participating in the observable chosen
better estimate of the eigenvalue gives a better approxi
tion to the corresponding Bernoulli polynomial. Howeve
the left eigenvectors provided by these schemes are wr
representation of the true ones. The reason for such an in
rect result may lie in the observable chosen and in the v
different nature of the exact left and right generalized eig
vectors: while the right ones are functions, the left ones
distributions; this asymmetry is a consequence of the no
vertibility of the map. Therefore, the expansion of our o
servable~a polynomial! in the right eigenvector~Bernoulli
polynomial! has a finite number of terms, while this numb

n

r

TABLE I. Resonance locations of the Bernoulli map. They we
obtained from the solution of the eigenvalue problem in Sec.
which was set up for the autocorrelation function of the observa
f (x)5x32

1
4 . The parameters is the standard deviation of th

Gaussian random noise added to the exact correlation values@see
Eq. ~44!#, andp is the order of the method, i.e., the expected nu
ber of resonances contributing to the correlation function; its cor
value isp53.

s p z1 z2 z3

2 0.4909 20.3094
1024 3 0.4943 0.088110.3520i 0.088120.3520i

4 0.5370 0.4733 20.1207
2 0.4909 20.2891

1026 3 0.4998 0.2347 0.1379
4 0.5001 0.2659 0.0949
2 0.4909 20.2889

1028 3 0.5000 0.2499 0.1251
4 0.5000 0.2502 0.1251

TABLE II. Resonance locations of the Bernoulli map. The
were obtained with the self-consistent least-squares method
scribed in Sec. IV. The optimal orderp53 given by this method
was used. Other details are as in Table I.

s z1 z2 z3

1024 0.5003 0.2697 0.0850
1026 0.5000 0.2505 0.1243
1028 0.5000 0.2500 0.1250
8-8
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is infinite if such expansion is performed in the left one
When these two numbers are different, as in our case,
know from the final discussion in Sec. IV that the prese
schemes will provide a representation for the states and r
nances of the shorter expansion.

As a second example, we will consider the standard m
@22#,

xn115xn1yn ,

yn115yn1
K

2p
sin~2pxn11! ~mod 1! . ~45!

This map is area preserving and invertible. While forK50 it
is integrable, forK5” 0 presents chaotic phase space regi
that become more extensive asK increases. The system fo
lows the route to chaos known as overlapping resonan
@22,23#. We take the valueK510 in our calculations.

The exact knowledge of the PR resonances is not ge
ally possible for this system. Blum and Agam@7# proposed a
variational approach to locate the four leading ones, which
we are already aware, is ap54 implementation of the ei-
genvalue problem derived in this work. For comparison,
will take the observable chosen by these authors, i.e.,

f ~x,y!5exp~ i2px!, ~46!

whose autocorrelation function may be decomposed as
sum of the autocorrelation functions for cos 2px (Cc) and
sin 2px (Cs),

C~n!5Cc~n!1Cs~n!. ~47!

This decomposition is possible because the standard map
an inversion symmetry with respect to the point (x5 1

2 , y
5 1

2 ); therefore, the generalized eigenvectors are either s
metric or antisymmetric under this transformation. The sy
metric ones will participate inCc(n), while the antisymmet-
ric ones will do inCs(n).

Both Cc(n) and Cs(n) have been determined here fro
the system orbits with an uncertaintys,1025. We have
proceeded next to implement the self-consistent least-squ
method of Sec. IV to find the leading PR resonances. A
first result we obtain for the optimal order the valuespo
59 from Cc(n), andpo58 from Cs(n). The location of the
leading resonances is given in Table III. Since the two c
relation functions do not have common eigenvalues, the t

TABLE III. Locations of leading resonances in the standard m
for K510. The first two lines correspond, respectively, toCc(n)
andCs(n) autocorrelation functions. The resonances were obtai
from these correlation functions using the self-consistent le
squares scheme. The bottom line gives the four values obtaine
Blum and Agam@7# from their p54 variational approach.

f zi

cos(2px) 0.672 20.03060.702i 0.33260.503i
sin(2px) 20.715 0.15060.592i 20.11960.553i
ei2px @7# 0.515 20.494 20.00360.505i
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optimal order corresponding to the initial observable in E
~46! is po517; this number is much larger than the val
p54 used by Blum and Agam. If we take this smaller ord
to solve the general eigenvalue problem, the locations
we obtain for the the four resonances coincide exactly w
those found by these authors; they are also included in T
III. However, if we increasep just by 1, these values chang
significantly, which means that they are not prope
converged.

The corresponding left and right generalized eigenvec
are expected to be complicated distributions. In this case
we have discussed in Sec. IV, the eigenfunctions deri
from our numerical approach are smooth representation
them. In Fig. 3 we present the numerical left and right eig
functions associated with each of the two leading resonan
of the standard map; the first pair is symmetric and the s
ond one antisymmetric under the inversion transformati
To better illustrate the intricate structure we have selec
small regions of the available phase space.

To conclude this section we will just mention that whe
we apply these methods to the He´non map and the intermit
tent map treated, respectively, by Isola@11# and Baladiet al.
@12#, we can reproduce their resonance locations and
prove their accuracy if the self-consistent least-squa
scheme is used. Therefore, these methods work equally
with dissipative systems for which the stationary dynam
takes place in a chaotic attractor, as happens with the He´non
map.

p

d
t-
by

FIG. 3. Structure of the right~right panels! and left~left panels!
generalized eigenvectors corresponding to the real resona
zi50.672 ~top! and zi520.715 ~bottom! in the standard map
(K510). The eigenvectors in the top panels are symmetric un
the inversion transformation and participate in the cosine corr
tion functionCc ; those in the bottom panels are antisymmetric a
participate in the sine correlation functionCs . To better illustrate
the intricate structure we have selected small regions of the a
able phase space. Absolute magnitudes are represented, with h
values corresponding to brighter regions. All magnitudes
dimensionless.
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VI. SUMMARY

Among the schemes followed in the literature to loca
the leading Pollicott-Ruelle resonances of the Perr
Frobenius operator in chaotic dynamical systems, there a
few examples of remarkable simplicity, which involve eith
the use use of Pade´ approximants to perform the analytic
continuation of the spectral density functions@11,12#, or the
diagonalization of small dynamically adapted eigenva
problems@7#. In an attempt to provide a theoretical suppo
to these methods, we have analyzed their connection
other numerical schemes used in different contexts. A fi
category of such schemes includes the memory func
techniques@13# used in the general theory of relaxation, a
the methods related to this approach such as those base
the use of continued fractions and Pade´ approximants. In a
second category we have also considered the methods o
filter diagonalization approach@14,15#, which is a particular
formulation of the harmonic inversion of a time signal as
eigenvalue problem.

The analysis of these schemes led us to a theore
framework in which all them become equivalent formu
tions of the same problem: the location of the leading re
nances contributing to a give time correlation function. T
most convenient of these formulations is as an eigenva
problem from which one can obtain not only the poles, i
the resonance locations, but also a smooth representatio
the generalized eigenvectors. Besides, we have proved
all these procedures are also particular linear formulation
.
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the nonlinear numerical problem known as interpolation
exponentials@12,16#. This connection has provided us wit
new tools to perform a better analysis of issues such as
vergence and numerical stability. From such analysis
proved schemes may be designed, as the one that we
proposed based on a least-squares fit.

We have illustrated the use of this class of methods in t
chaotic maps: the Bernoulli map and the standard map. In
first example the nature of the right eigenvectors, which
known to be the Bernoulli polynomials, allows for finite ex
pansion of certain observables like the one chosen for il
tration. Then an accurate enough correlation function p
vides good approximations to the PR resonances and
corresponding right eigenvectors. The least-squares me
improves significantly these results in the case of less ac
rate correlation values.

In the standard map, for which the exact knowledge of
PR resonances is not generally possible, the more elabor
least-squares method provides resonance values which
pear to be significantly more converged than the previ
results@7#. Nice smooth representations of the eigendistrib
tions are also obtained. These indicate the relevant ph
space regions involved in the dynamics.
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