PHYSICAL REVIEW E 66, 046208 (2002

Locating Pollicott-Ruelle resonances in chaotic dynamical systems: A class of numerical schemes
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A class of numerical methods to determine Pollicott-Ruelle resonances in chaotic dynamical systems is
proposed. This is achieved by relating some existing procedures that make use of tlagfractenants, and
interpolating exponentials to both the memory function techniques used in the theory of relaxation and the filter
diagonalization method used in the harmonic inversion of time correlation functions. This relationship leads to
a theoretical framework in which all these methods become equivalent and which allows for new and improved
numerical schemes.

DOI: 10.1103/PhysReVE.66.046208 PACS nunid)er05.45.Ac, 05.45.Mt

I. INTRODUCTION gularities are generally known as the Pollicott-RugRR)
resonances. If, as in this class of systems, the location of the
The Frobenius-Perrof-P) operator plays a central role in singularities in the complex frequency plane is an intrinsic
the statistical analysis of chaotic dynamical systems by rulproperty of the dynamical system, i.e., independent of the
ing the time evolution of distribution function@robability = observable monitored, then these resonance poles may be
densitie$ in phase space. In flows, it leads to a continuity considered to be in correspondence with the generalized ei-
differential equation known as the Liouville equation. The genvalues of the FP operaf@]. This interpretation requires
FP propagator admits a Hilbert space representation as a urixtensions of this operator, which hold for either positive or
tary operator, whose spectrum must therefore belong to thgegative times, and which makeé a nonunitary propagator
unit circle. The structure of the corresponding spectral dewhose spectral decomposition may be written in terms of the
composition and the nature of the phase space dynamics asforthonormal basis set of its left and right eigenstates. A
intimately connected. Besides, this same structure detephysical way of defining the generalized eigenvalue problem
mines the behavior of time correlation functions and theiris as an usual Hilbert space spectral analysis of the coarse-
frequency spectral densities. For instance, the FP operator fgfained dynamics in the limit of zero coarse graining. This
the motion on am-torus in an integrable Hamiltonian flow particular way establishes a correspondence between the
has a purely discrete spectrum with eigenvalues given byoarse-grained Liouvillian dynamics in a chaotic flow and
e’ wherek is anyn vector of integer numbers ard is  the classical diffusion equation for disordered systd#is
the n vector of the torus fundamental frequencies; time cor-Such a correspondence is the origin of a new approach to
relation functions in this case are quasiperiodic, and the coearry out the statistical analysis of the eigenvalue spectrum
responding spectral densities presésftinction singularities  of a quantum system whose classical limit is chaotic, which
at certain frequency values from the set=k€. On the s an extension of the field theoretical methods used for
other hand, in a mixing dynamical system, if we exclude thequantum disordered systeif&. In this way, the roles played
eigenvalue Iwhich is simply degenerate and corresponds taby the FP operator and its resonances are important not only
the invariant measujethe spectrum is continuous; time- in the statistical analysis of classical chaotic systems but also
correlation functions must therefore decay. In many discretén that of their quantum counterpaffts].
maps and continuous flows with chaotic dynamics, this de- The determination of the leading PR resonances is a nec-
cay is exponential; however, even in this case, the correlatiosssary step in those statistical analyses. In general, in order to
functions may present strong oscillatory modulations; thesextract them, one has to resort to numerical approximate
lead to bumps in the corresponding frequency spectral derschemes. However, the numerical approaches followed so far
sities, which have been interpreted as resonances, i.e., polege few and not always well founded both mathematically
in those functions after their analytical continuation into theand physically. The theoretically most complete treatments
complex frequency plane. From the original theoretical workare also the most involved numerically. The methods based
carried out on this problem by Pollicdtt] and Ruellg 2] for  on the diagonalization of a coarse-grained FP operator in the
a class(Axiom A) of chaotic dynamical systems, these sin-Hilbert space of square integrable functions belong to this
class. In the limit of zero coarse graining and a complete
basis set, one would obtain the resonances from the eigen-
*Electronic address: jmgomez@ull.es values. In order to obtain this limit accurately, repeated di-
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agonalization of a very large matriée.g., 810x 8100 for  Filter diagonalization[14,15 is another approach which is
the simple standard maf7]) at different values of the specifically adequate to our problem. This is a particular for-
coarse-graining parameter are required; in some cases thHiulation of the harmonic inversion problem as an eigenvalue
parameter is already set by the matrix dimengi®h A dif- equation. In Sec. lll, we give an account of this method and
ferent approach also in this class uses a periodic orbit repr&how its total equivalence with the memory function scheme.
sentation of the Fredholm determinant of the FP operatorThe results of these two sections set up a theoretical frame-
which can be expressed in terms of the traces of this operatdfOrk for a new class of numerical schemes to determine PR
at different times; the location of the resonances are theféSonances in chaotic systems. Besides, we prove in Sec. IV
obtained from the zeros of the corresponding Zeta functiorihat all these procedures are equivalent linear formulations of
[3,9,10. The scheme requires the knowledge of a large numthe nonlinear numerical problem, known as interpolation by

ber of periodic orbits, which can become a very difficult task€xPonential§ 12,16. This connection provides new tools to
in many real systems. perform a better analysis of issues such as convergence and

We already know that the decay behavior of the time_numerical stability, .which are relevant to establish the reli-
correlation function between two observables and the anal@Pility of the numerical approach presented here to locate the
ticity properties of the corresponding frequency spectral denP’R resonances. From such analysis improved schemes may
sities are intimately related to the generalized eigenvalues ¢t€ designed, as the one that we propose in this section based
the FP operator. This is the origin of a category of methods ifP" & least-squares-fit method. The application of these meth-
which one actually carries out an analytical continuation ofods is illustrated in simple dynamical systems in Sec. V.
the spectral density into the complex frequency plane in orfinally, a summary is presented in Sec. VI.
der to find the poles associated to the resonances contributing

simultaneously to the two observables chosen. Only a few Il. THE MEMORY FUNCTION TECHNIQUE
examples that follow this approach can be found in the lit- . . ) . L
erature. It was first followed by Isola for the’ Hien mag[11] As mentioned in the Introduction, the direct application of

and later by Baladet al. [12] for intermittent systems. As this technique to deterministic dynamical systems would im-

will be seen in this paper, the variational method proposed by!y dealing with a coarse-grained Liouville operator. If, in-

Blum and Agan{7] also belongs to this class. This scheme,Stead, one cho_os_es to analyze the Frobenlus-Perrc_Jn operator

unlike the class of methods discussed in the previous pardl€ coarse graining is not generally needed. In this section

graph, requires very small computational efforts. For in-W€ W|II_ proceed to perform thg required particular |_mple.—

stance, Isold11] finds the leading resonances of thénide mentation of the memory function methods to deal with this

map from a[L,M] Padeapproximant to the spectral density Propagator. . .

with 16<L+M<26: similarly, Blum and Aganj7] obtain First of all, we have to make the following choice for the

the leading resonances of the cat and standard maps as fdlar product between observables:

eigenvalues of a A4 matrix. However, the mathematical

and physical foundations of this approach are not as deep as <f|g>:f f*gdu, (1)

in the previous methods. This is seemingly due to the lack of

a general theoretical framework from which one can derive

not only these approximate numerical schemes, but also errgvherew is the natural invariant measure for the dynamics. In

and convergence criteria. Finding such a framework is théertain cases, as when the relevant chaotic dynamics takes

main goal of this work. It was achieved by relating theseplace in a strange attractor, the invariant measure should be

methods to the memory function techniques used in the gersiefined with respect to a conformal measure; in practice, the

eral theory of relaxatiofil3], or to the filter diagonalization integral in Eq.(1) may be evaluated in this case using the

approach followed in the location of quantum resonanceg€rgodic property of the invariant measure and averaging over

[14,15. A different class of numerical methods to determinea long enough trajectory that has already reached the station-

PR resonances comes out from this theoretical framework.ary dynamics. In other words, one assumes that this trajec-
The paper is organized in the following way. In Sec. II, tory is dense in the attractor set.

we will present the results of the memory function method The time evolution of the system is ruled by its

which are more relevant to our study. These techniques arferobenius-Perron operattk. In the case of maps this corre-

usually applied to the Hamiltonian, the Liouvillian, and to sponds to one iteration step; for flows, may correspond

the general relaxation operatof$3]. In deterministic dy- either to the Poincarmap or to a given finite-time step. We

namical systems, this would imply dealing with the Liouville then have

operator. However, in this case the memory function scheme

does not perform the analytic continuation required in the [f(n+1))=U[f(n)). 2

determination of the PR resonances, unless a coarse-grained

version of that operator is used. If, instead, one chooses thlaking use of this notation, the autocorrelation function

analyze the FP operator, this coarse graining is not neede(n) for an observablé reads

but in this case we will require a particular implementation

of the memory function methods to deal with propagators. C(n)=(f(0)[f(n))=(f(0)|U"[f(0)). 3

This is all performed in Sec. Il. We will show, for instance,

how the Pad@pproximants appear naturally in this scheme. We define a resolver®(w) of U by writing
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< > The recursive procedure leads to the following expression
G(w)|f(0))=2>, e“"f(n))=>, (e'“U)"f(0)), for the diagonal matrix element of the resolvent as a contin-
n=0 n=0 uedJ fraction

Im w>0. (4 b2 b2z2 b2z2
R(2)=G¢i(w)= e
Therefore, (@) (@) l1-apz— 1—a,z— 1—ayz—
(10

1

= — (5) wherez=¢'°,

1-e'“U From Egs.(3) and (4) we find readily the expression re-
lating this diagonal elemerR(z) to the corresponding auto-
correlation functionC(n),

G(w)

In the memory function formalisnj13], one chooses a
particular statdf)=|f(0)), and considers the diagonal ma-
trix elementG¢;(w) =(f|G(w)|f). This is an analytic func- i
tion in the upper half plane of the complex frequeneylts R(z)= > C(n)z". (11)
singularities, generally in the form of single poles at n=0
= w;, can appear in the lower half plane. The eigenvalues
U in terms of these poles are therefere “i. Recursive pro-
jective techniques, first developed by Zwanid] and Mori
[18], are then implemented to expreSg(w) as a continued \hare 5 theorem establishes that under general conditions,
fraction. The process starts out by defining two complemeng,c, 5 correspondence is indeed one-to-one. This implies
tary generalized projection operatoRy=|fo)(fol/(fo/fo)  that the rational function defined by tith approximant,
and Qo=1— Py, with the identificationgfq)=|f) and(f,
|=(f|. This partition is then used to derive a Dyson-type
equation,

Oﬁ'he correspondence that we have just found between the
power series in Eq(11) and the continued fraction in Eq.
(10) is well known in the theory of continued fractiofis9],

a'0+ e +ap,12p_l

1+ Bzt -+ By2°

(12

Po 6) to the continued fractiori10), which is obtained by taking
PoGy 1Py~ PyGy 1Q0G1Q0Gy Py a,=b,=0 for n=p, has the autocorrelation values
C(0), C(1),...,C(2p—1) as its first p Taylor coeffi-
with Gg=G(w) and Glz(QoGngo)*l; from this equa- cients atz=0. As a matter of fact, these are the only values

POGOP0=

tion one readily obtains of the autocorrelation function required in the determination
- 5 of the elements,, andb,, which are needed to obtain from
(ol Golfo) = (folfo) @ them thepth approximantR(P)(z), as can be deduced from
ol*olto (Fol Gy Y fo)—e2e(T1|Gy|fy) their definition in Eq.(9) and from the recursive relations in
Eq. (8).
where |f;)=QoU|f,) and <“f“l| —(%,|UQ,. The procedure Let us assume for a moment that the autocorrelation func-

can now be repeated for the diagonal elem@iG,|f,) tion has the following form as a sum pfexponentials

appearing in Eq(7); from successive iterations a hierarchy p
of left (f,| and right|f,,) states and corresponding projection C(n) =i21 cizj . (13
operatorsP,,=|f)(f,|/(f,|f,) is constructed according to
the recursion scheme In this case the continued fraction expressionRgz) trun-
1F)=U|fo 1) —ay 4|f >—b2 10 ) cates exactly at _thpth approxima.nt; i.n other word$}(z2)
n n-1/ “n-1lTn-1/" Fn-1lTn=2/» has an exact rational representation in the form of (&8g).
~ ~ ~ ~ Then, the poles of this rational function are thecomplex
(Fol=FdlU—a,_ 1 (Foa| =051 (Foal, ®) numberszi’pl, their corresponding residues bz]iﬁg:iziel.
The analytic theory of rational functions shows that the con-

with (fa| =|fn)=0 for negativen, and where verse is also trug16]; namely, if the pth approximant

F.JUlf) Folfo) R(P)(z) can be computed from the firsp2values of an au-
n=¥; ﬁ=~L; bo=1. (9) tocorrelation functiorC(n), then each one of thesg2al-
(Falfr) (fn-alfn-1) ues satisfy exactly Eq13) with z, andc; given, as before, in

_ - terms of the poles and the residuesRS?)(z). By fixing the
From these results one can easily prove that the stdig¢s yalues of the p parametersz ,c;) from the first 2 values
and|f,) form a biorthogonal set, i.e(f,|f,)=0 forn¥m  of C(n), we are indeed performing an interpolation@n)
and that the values of the elemertts and b,, can all be by a sum ofp exponential§12,14.
obtained from those of the autocorrelation functiG(n). The memory function scheme just presented gives a
The operator®,, andQ,=1— P, are not self-adjoint in gen- physical support to the use of the Paafgproximants in the
eral. However, the previous analysis only requires them teepresentation of the power series ®¢z) in Eq. (11). For
satisfy P2=P,, andQ3=Q,,. instance, from the preceding analysis we have
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Qg+ tay 2Pt 2p-1 of this schem¢14] is simplified if, as in our case, the signal
R(P)(z)= Pt = C(n)Z"+0O(Z%P). C(n) is sampled on an equidistant gfiti5]. Then using our
1+Biz+ .-+ ByzP  n=0 notation, the matrix representation for is realized in the
(14) basis set of Fourier-type states
ThereforeR(P)(z) gives the[p—1,p] Padeapproximant to p-1
R(2). In the location of PR resonances, Paggroximants |P.)= > emenymf), n=12,...q, 17
m=0

were first used by Isola in the Hen map[11] and later by

Baladiet al. [12] in an intermittent system. where theq real phasesp, belong to an intervalp,; <
Unlike the method of interpolating exponentials or its q real pnasespy, 9 min™®n
< @mayx CONtained in Zr>¢,=0. Then the generalized ei-

equivalent form as a Padgpproximant toR(z), which can ;

only provide the values of the leading resonances participagenvalue problem to solve is

ing in a given observable, the memory function approach uv=Svz, (18
makes also possible, in principle, the calculation of the cor-

responding generalized eigenstates. Indeed, it is not hard tehere theU and S are complex symmetric matrices, whose
prove(this is the essence of the Lanczos methi@l) thatin ~ elements are given by

the biorthonormal basis set given by the states S, —(V. W)

D) =F o) Y0 1),
| n) < n 1| n 1> | n 1) Umn:(quy U‘I’n). (19)

D | —/F —-1/2/%
(@nf=(Fa-alfa-0) " K Fn-al, (15 In these equations the symbo®(®) defines a complex
the evolution operatot) admits the following tridiagonal ~SYMmMetric inner product, i.e., without complex conjugation.

complex-symmetric matrix representation: The columns of the matri¥ give the eigenvectors
2 by X0} =2 Vind Voo, (20
by a, b m
b, as andZ is the diagonal matrix with the complex eigenvalues
Ue . b, : (16) z; . Both SandU usually have rapidly decaying off-diagonal
elements, which can all be calculate from the correlation
b, a, valuesC(n). Then the eigenvalueg lying near a segment

(e'¢min e'®may) of the unit circle in the complex plane may be
obtained by solving Eq(18) in the basis set of Eq(l7)
Again, if C(n) has the form given in Eq13) as a sum of  restricted toq different values of the real phases belong-
p exponentials, the above matrix truncates exactly info a ing to the intervalem,in< en<@max- The numberg should
X p block, i.e.,a,=b,=0 for n=p; from the eigenvalues be large enough to extract all the leading eigenvalues in that
z;, we obtain the location gb resonances, which coincides region of the complex plane. The amplitudesare then
exactly with that found from the poles of theth approxi-  calculated from the eigenvectors @s=(f, x;)? [15].
mant RP)(z) in Eq. (12). The corresponding rightleft) Let us show now the close relationship between memory
eigenvectors, which are written as linear combinations of théunction and filter diagonalization schemes. On one hand,
right (left) states of the biorthonormal basis set given beforenote that the use of the complex symmetric inner product
provide a representation of the righeft) generalized eigen- (@ ,@) in the latter may be avoided if one defines, as in the
vectors associated to the resonances found. memory function approach, a left functional space expanded
In a real dynamical system the correlation function is ex-here by the states
pected to be dominated by a few leading resonances, but
many others may intervene with small contributions. Be-
sides, statistical fluctuations are always present in any esti-
mate of C(n) from the system orbits. Under such circum-
stances truncation of the memory function recursive schemi the observabld is a real function of the phase space vari-
is required, but one has to choose carefully the omlés  ables(the case of complekwill be discussed latgr thenS
obtain the location of these resonances with enough accéndU matrix elements have the usual form,
racy. We will come back to this important issue later. ~
Snn= <\I,m|\l,n>!

Umn= (T | U[ T ). (22)

p—1
<\Tfn|=mE:Oeim%<f|um, n=12,...4. (20

lll. FILTER DIAGONALIZATION SCHEME

Filter diagonalization is a particular procedure to solve the
problem of fitting a signaC(n) to a sum of complex expo- On the other hand, we have shown in the preceding section
nentials as in Eq(13). In this approach, this harmonic inver- that the memory function scheme can be cast as an eigen-
sion problem is reformulated as an eigenvalue problem fowalue problem of a tridiagonal matrix. This matrix is a rep-
an effective evolution operatdd. The original formulation resentation of the evolution operatbrin a biorthonormal
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basis set whose states are obtained through a recursive pnwhich lead to the same kind of generalized eigenvalue prob-
cedure. From Eqg8) and(15) we note that for any ordqg, lem. As a matter of fact, the filter diagonalization analysis of
these states can be written as linear superpositions, a complex observablé corresponds in our notation to a
cross-correlation functio@g4¢(n) with g=f*. If a full mul-

P . . . ;
tichannel cross-correlation matrR; j(n) is available for a

|q)”>:mE:1 yanU™ ), n=12, . p, set of observable$;, the basis set expanding the right and
left spaces may be obtained as direct sums of those corre-
p sponding to each observalig(see also Refd.14,20).
(D= 21 Yol FIlUTM L n=12,...p, (23 With the results in this section, we conclude in our goal of
o

finding a unified physical framework for certain schemes fol-

) . i ) ) lowed to find PR resonances, which make use of techniques
with coefficientsy,, obtained recursively. Therefore,~|f We guch as the Padepproximants and the diagonalization of
abandon the recursive scheme and instead of the $@igs  small dynamically adapted eigenvalue problems. This frame-
and|®,), we take directly work clearly allows for a better analysis of issues such as

. B convergence and numerical stability, which are relevant to
[f(n)=U"f), n=0,1,...p-1, establish the reliability of this numerical approach in locating
~ the PR resonances. These and other related aspects will be
(f(m[=(flu", n=01,...p—1, (24 discussed in the following sections.

to expand the left an right functional spaces, we arrive to a
generalized eigenvalue problem equal in form to Ei)
and where th@X pU andS complex symmetric matrices are
now In Sec. I, we have already anticipated that when we trun-
cate the hierarchy of equations appearing in the memor
Sma=(fUT UM f)=C(m+n—2), function scheme, }\//ve arg, in fact, cgrr)rying g(Jaut an interpola}/
tion of the correlation function by a finite sum of exponen-
tials [16]. In this section we will proceed to give a general
proof of such a statement, namely, we will show that the
method of interpolating exponentials can be recast as a gen-
eralized eigenvalue problem equivalent to that of the preced-
p ing section.
IXo)= 2 Vi f(Mm=1)), Suppose we want to solve the harmonic inversion prob-
= lem by interpolating a given set of correlation d&én) by
the sum ofp complex exponentialsgP_;c;z, where the
~ ~ unknown parameters are thg amplitudesc;, and thep
<X“|=mE:1 Ve F(m=1)]. @8 humbersz . If we use the P first values ofC(n), those
parameters can be obtained, in principle, from the solution of

The variational approach followed by Blum and Agffiito  the set on nonlinear equation,
locate the leading PR resonances in the standard and per- P
turbed cat maps is aX44 implementation of this eigenvalue C(n)= 2 ¢z', n=01,... 1. (29)
problem. i=1

Notice that the two basis sets defined in E§4) and(24)
are particular choices of the general form given in &2p),  Using these P correlation values we can obtain tipe< p
i.e., Ymn= Omn and y,n=€"M*n, respectively. Therefore, both matricesS andU defined in Eq(25). From this equation and
eigenvalue problems can be made equivalent if there exist§ie set(28), we derive the following expressions to be satis-
an invertible linear transformations between states) and  fied by these matrices:
| ). This occurs ifg, the number ofp, phases in Eq(17),

IV. INTERPOLATION BY EXPONENTIALS
AS AN EIGENVALUE PROBLEM

Umn={(flU™ WU }|f)=C(m+n—1). (25)

The columns and rows of the matiNkgive, respectively, the
right and left eigenvectors,

. ~ i : S=W'w,

is chosen ag|=p, and the valueg'¢r sample conveniently

the whole unit circle. The number of correlation poifn) U=WT2ZW (29)
required to set up the correspondipg p eigenvalue prob- '

lems is always P. whereW and Z have matrix element¥V;;=c;’z/ ", Z,

The methods described in this and previous sections can; s : andW' denotes the transpose matnx We f||rJ1aIIy
| il

be easily generalized to cross-correlation sign@ls(n) obtaln from Eq.(29)
=(g(0)|f(n)). In this case, the states expanding the right

and left eigenstates are, respectively, Uw t=sw !z, (30)
[f(n))=U"f(0)), which is identical to the eigenvalue problem of the preceding
N section. SinceaV andZ on one hand, an® andU on the
(g(n)|={(g(0)|U", (270 other depend on the same number of parametep3, (the
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eigenvalue problem in E¢30) is equivalent to the system in Let us show now that this nonlinear problem can be again
Eq. (28). reformulated as a linear one in which an eigenvalue problem

A similar eigenvalue problem can be set up such that it iamust be solved self-consistently. By minimiziggwith re-
equivalent to the interpolation of the elements of a multi-spect to the parametecs andz;, we obtain the system of
channel cross-correlation matr@qj(n)=<fi(0)|fj(n)) by a equations
sum of the sam@ exponentials, i.e.,

q-1
p > Z'e,=0, i=12,...p,
Cij(n)=k21 Cij,kZEl n:O,l,...,$ij_1, n=0

q-1
hj=12,...4, (31) nE:‘,onciz{‘*lsnzo, i=12,...p, (33)

with the restrictionc;; = aiaj - where
The existence of solution to the problem in E§0) may
be guaranteed by requiring that bothand U should be P n
nonsingular matrices. A singul&matrix would reveal linear en=C(n)— 241 CiZ; (34)
dependences in the basis set, and this will always occur when

the orderp, i.e., half the number of correlation data, used, isjs the error between the known correlation values and their

larger than the true number of exponentials required to exfit. \We now rewrite the syster(83) in the form
pandC(n). A singularU would imply a zero eigenvalug ,

which is usually linked to a singulg® matrix. One can get 21 | _

rid off these linear dependences by reducing the number of ngo Zien=uj, 1=12,...p,

correlation data and thus the number of states, Shtile-

comes nonsingular. In the recursive method of the memory 2p-1

function scheme, if the +1)X(p+1)S matrix becomes nEO nciz{“lsnzvi , 1=12,...p, (35

singular forp=p,, then the coefficienb, vanishes, thus

truncation occurs naturally. The same results are obtained Whereui=2ﬁ;§ 2, andvi=2ﬁ;§pnciz{“1sn.
one performs a singular value decompositionSof14]. In ~ The solution to this system can be performed in the fol-
practice, in a real dynamical system, although the correlatiofyying self-consistent way. Suppose we have an initial guess
function may be expected to be dominated by a few leading; c(9 andz® for the 2p parameter; andz , obtained, for
resonances, many others may intervene with small Cont”bqhstance, from the solution of thex p eigenvalue problem

tions. B_esides, statistical fluctuations are _always present iQet up with the first B values of the known correlation func-
any estimate ofC(n) from the system orbits. Under such tion C(n). We use this guess to calculate

circumstances there may not exist an orgesuch that
b, vanishes exactly o6 becomes exactly singular. In very o P o (0

favorable situations one may identify an optimal orgher cO=3 ¢, n=041,...g9-1, (36)
. . . i=1

if a sharp decrease of the magnitude of eithgror the

(p+1)x(p+1) determinants is observed ap=p,. We  and the terms;, andv; and solve syster(85) to find the first
will see later that in chaotic dynamical systems, such a be2p errorse.=&©  With these values we obtain a corrected
havior is not generally found, and one should proceed ver noon

) . Yorm of the correlation function
carefully. In any case, the optimal order is usually much

smaller than the number of correlation data which can be cU=cl+ yrc(n)+eV—cl,
determined. This fact allows for the implementation of meth-
ods to reduce the statistical noise @(n), so that the p n=01,...9-1, (37)

values used to set up the eigenvalue problem become more . o .
accurate. The standard procedure is to perform a leastvherej=0 in this initial step andy is a parameter conve-

squares fit. niently chosen. With the firstvalues ofC("), we reset and

A general scheme for this procedure can be designed tgolve thepXxp eigenvalue problem from which we extract an
analyze a full cross-correlation matrix; however, for simplic-improved guess™ andz?; the procedure is now iterated
ity, we only present here the case of a single correlatioruntil the fix point of the map defined by EB7) is reached.
signal. Our goal is then to perform an optimal fiteptorre-  This will require a convenient choice of the paramejeiVe
lation values by a sum gf exponentials, withg>p. There  obtain in this way the best fit in the sense of the error func-
are different solutions to this problem depending on the errotion in Eq.(32), and from the solution of the last eigenvalue
function & to minimize[21]. Here we will make the choice problem the best eigenvalues and eigenvectors. One may
2 start with a small value of the number of exponentjaknd

q-1 P
_ _ N increase systematically this number fulfilling always the con-
¢ nzo C(n) 21 Gz (32) dition p<q; an optimalp=p, would be the maximum order
for which the fixed point of Eq(37) can be numerically
whereC(n) is the known correlation signal. reached.
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Let us finish this section with a brief discussion on the 5 1
physical interpretations of the left and right eigenfunctions f(x)=x>— 7 (41)
derived numerically from the schemes proposed in this work.

Let us suppose first that the observable chdseas a finite  and the corresponding normalized autocorrelation function
expansion in one or in both of the basis sets corresponding 1) = [ 1dx f(x)U"f (x)/fidxf2(x) can be computed ana-

the Ieft or righ_t generalized eigenvectors of the FP operatoqytica"y from the above spectral decomposition, giving
Then it is straightforward to see that an exact truncation or-

der p=p, exists,p, being the number of terms in the short-
est of the two expansions. Therefore, only fhegeneralized
eigenvectors participating in this shortest expansion can be
obtained form these numerical schemes. More accurate cofherefore the three resonanegs i=1,2,3[Eg. (39)] con-
relation values will provide better approximations to the ex-tribute to this correlation function. Of course, in a general
act eigenvectors. The observalflbeing an ordinary func- practical situation we will not know the exact correlation
tion, this situation can occur only if the eigenvectors of thefunction but only an estimate of it, which is usually obtained
finite expansion are themselves ordinary functions and norom the system orbits; in such case some statistical error
distributions. We will present an example of this case in thewill be always present i€ (n). We simulate these statistical
following section. fluctuations by adding to the exa€t(n) in Eq. (42) a ran-
However, in a general chaotic dynamical systems, botltlom noisee with the Gaussian probability distribution
the left and right generalized eigenvectors of the FP operator
will be complicated distributiong3] of the phase space vari- 1 1[€\?
ables. In this case the two expansions of the observable func- P(e)= N exp{ ;) } (43
tion f will not be finite and therefore an exact truncation
order p, will not exist. As already discussed, we can still Th,g
obtain a finite optimal ordegp, , which will be determined by
the accuracy of the correlation values and by the numerical C/(n)=C(n)+e, (44)
precision of the computations. The necessary choice of a ) )
finite p, imposes a time cutoff to the evolution of the initial @nd we proceed to illustrate the effect of the noise standard
state, and thus a limit to the phase space resolution wit§eviationo in the implementation of the methods that we
which the generalized eigenvectors can be obtained. Ther&ave proposed in this work to locate PR resonances.
fore, this class of methods provides in this case smooth rep- A first parameter to determine is the optimal orgty,
resentations of the exact eigendistributions. This will be alsd-€., the number of resonances contributing significantly to

Clm= sty Lon_ 4o 42
(N)= 152" 752~ z5%- (42)

2

illustrated in the following section. the correlation function. As mentioned in Sec. IV, one may
identify an optimal ordep, if a sharp decrease of the mag-
V. NUMERICAL EXAMPLES nitude of either the memory function coefficiemy [Eq. (9)]

or the determinant of thep(+ 1) X (p+ 1) correlation matrix
In this section we will illustrate the use of this new classS(p+ 1) [Eq. (25)] is observed ap=p, .
of methods by locating the leading PR resonances of some In Figs. 1 and 2 we plot, respectively, as a functiorppf
simple chaotic maps. We first choose the Bernoulli map,  the magnitudes df)g and|S(p+ 1)| obtained from the noisy
(39) correlation functiorC,(n) for the Bernoulli map. We clearly
observe in Fig. 1 that at the optimal orderp,=3, the
coefficientbg is very sensitive tar; the same sensitivity is
aobserved in|S(p+1)| for p=3 (Fig. 2). Besides, we ob-
serve that if the error in the correlation function is not small
enough, it may wash out completely the expected sharp de-
. crease in botﬂvg and|S(p+1)| atp=p,; the determination
zi=-, i=012... (39 of an optimal order would therefore require quite precise
2 ; )
correlation values¢<<10 7).

Xp+1= 2%y (mod 1),
for which the resonance valuesand the generalized lef;

and right y; eigenstates of the FP operator are known an
lytically. These are, respectivelgee Ref[3]),

If instead one makes use of the self-consistent least-

and squares method described in Sec. py,would be the order
Xo=0(x)6(1—x), giving the minimum value of the error functighdefined in
Eq. (32); in general p, coincides with the maximum order
Xi=(—) "8 D(x—1)—60"1(x)], for which self-consistency is achieved, i.e., for which the
fixed point of Eq.(37) can be numerically reached. In the
X _Bi(X) (40) present case, forr<10 2 this occurs always at the correct
i : ’

value p,= 3, which indicates the ability of the least-squares

. method to reduce the negative effects of the correlation
where §'(x) represents theth derivative of the Diradd dis-  noise.

tribution andB;(x) are the Bernoulli polynomials. For the Let us now illustrate the effect of in the resonance
observablef (x), we take the polynomial function locations. In Table | we present the resonances derived from
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TABLE I. Resonance locations of the Bernoulli map. They were
obtained from the solution of the eigenvalue problem in Sec. IV,
which was set up for the autocorrelation function of the observable
f(x)=x3—%. The parametew is the standard deviation of the
Gaussian random noise added to the exact correlation videes
Eq. (44)], andp is the order of the method, i.e., the expected num-
ber of resonances contributing to the correlation function; its correct

4

% -4 value isp=3.
o
o p Z 2 Z3
-8 2 0.4909 -0.3094
1004 3 0.4943 0.0881 0.3520 0.0881-0.3520
4 0.5370 0.4733 -0.1207
.10 L | | | | 2 0.4909 -0.2891
1 2 3 4 5 108 3 0.4998 0.2347 0.1379
p 4 0.5001 0.2659 0.0949
2 0.4909 -0.2889
FIG. 1. Magnitude of the memory function coefﬁcidnﬁ [Eq. 108 3 0.5000 0.2499 0.1251
(9)] as a function of the ordep (the logarithm is decimal These 4 0.5000 0.2502 0.1251

values were obtained for the Bernoulli map from a noisy correlation
function for the observablg(x) =x3— %; the parametes gives the

standard deviation of the Gaussian random noise. rect valuep,= 3. The method gives also significantly better
resonance eigenvalues even in the case of large correlation
the solution of the eigenvalue problem defined in Sec. IVnoise (r=10"%), where the previous approach failed com-
which was set up for the noisy correlation functi@a(n);  pletely. In conclusion, when statistical errors are present in
different values forr and the ordep were used. We deduce the estimated correlation function, of all the methods dis-
from these results that the leading resonancé quite ro-  cussed in this work, the least-squares scheme provides the
bust against noise and nonoptimal choices of the qud€he  most accurate resonance values by reducing the negative ef-
accurate location of other two resonances require, however,facts of the correlation errors. In general, two factors in-
better selection op and a more converged correlation func- crease the reliability of a resonance location obtained in this
tion estimate; for instance, the, and z; values obtained way: a larger stability and a larger contribution in the observ-
from the most noisy correlationo(=10 %) are completely able chosen.
wrong. The resonance generalized eigenvectors can be also deter-
The resonance locations obtained from the self-consistemhined from these schemes. For the Bernoulli map, the cal-
least-squares method are given in Table Il. As we alreadgulated right eigenvectors are approximations to the Ber-
know, this method provides as the optimal orggrthe cor-  noulli polynomials participating in the observable chosen; a
better estimate of the eigenvalue gives a better approxima-
tion to the corresponding Bernoulli polynomial. However,
the left eigenvectors provided by these schemes are wrong
representation of the true ones. The reason for such an incor-
rect result may lie in the observable chosen and in the very
different nature of the exact left and right generalized eigen-
vectors: while the right ones are functions, the left ones are
distributions; this asymmetry is a consequence of the nonin-
vertibility of the map. Therefore, the expansion of our ob-
servable(a polynomial in the right eigenvectofBernoulli
polynomia) has a finite number of terms, while this number

log |S(p+1)]

TABLE 1l. Resonance locations of the Bernoulli map. They
were obtained with the self-consistent least-squares method de-
scribed in Sec. IV. The optimal ordgr=3 given by this method

-80 - : : : : was used. Other details are as in Table I.
1 2 3 4 5
p o Z; Z Z3
FIG. 2. Magnitude of the determinant of the correlation matrix 1074 0.5003 0.2697 0.0850
|S(p+1)| [Eq. (25)] as a function of the ordew (the logarithm is 1076 0.5000 0.2505 0.1243
decima). These values were obtained for the Bernoulli map. Other 1078 0.5000 0.2500 0.1250

details are as in Fig. 1.
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TABLE Ill. Locations of leading resonances in the standard map 0.713 ===
for K=10. The first two lines correspond, respectively,Gg(n)
andCg(n) autocorrelation functions. The resonances were obtained
from these correlation functions using the self-consistent least-
squares scheme. The bottom line gives the four values obtained b v
Blum and Agam 7] from their p=4 variational approach.

f Z;
cos(2mx) 0.672 —0.030+0.702 0.332+0.503 0.705
sin(2mx) —0.715 0.156-0.592 —0.119+0.553 0718
ei2m™ [7] 0.515 —0.494 —0.003+0.505

is infinite if such expansion is performed in the left ones.
When these two numbers are different, as in our case, we '
know from the final discussion in Sec. IV that the present
schemes will provide a representation for the states and resc
nances of the shorter expansion. =

As a second example, we will consider the standard map® 7952 =
[22],

X 0.259

FIG. 3. Structure of the rightright panel$ and left(left panel$
Xn+1=XntYn, generalized eigenvectors corresponding to the real resonances
z;=0.672 (top) and z;=—0.715 (bottom in the standard map
(K=10). The eigenvectors in the top panels are symmetric under
the inversion transformation and participate in the cosine correla-
tion functionC, ; those in the bottom panels are antisymmetric and
This map is area preserving and invertible. WhileKor O it participate in the sine correlation functi®. To better illustrate
is integrable, folK #0 presents chaotic phase space regionghe intricate structure we have selected small regions of the avail-
that become more extensive isncreases. The system fol- able phase space. Absolute magnitudes are represented, with higher
lows the route to chaos known as over|apping resonancé@lues _Corresponding to brighter regions. All magnitudes are
[22,23. We take the valu& =10 in our calculations. dimensionless.

The exact knowledge of the PR resonances is not gene
ally possible for this system. Blum and Agdi| proposed a
variational approach to locate the four leading ones, which a
we are already aware, is@=4 implementation of the ei-
genvalue problem derived in this work. For comparison, w
will take the observable chosen by these authors, i.e.,

K
Yn+1=Ynt 5_SiN2mXq1q)  (mod 1) (49

E)'ptimal order corresponding to the initial observable in Eq.
46) is p,=17; this number is much larger than the value
%=4 used by Blum and Agam. If we take this smaller order
to solve the general eigenvalue problem, the locations that
Qve obtain for the the four resonances coincide exactly with
those found by these authors; they are also included in Table
f(x,y) =exp(i2mX), (46)  lll. However, if we increase just by 1, these values change
significantly, which means that they are not properly

whose autocorrelation function may be decomposed as theonverged.

sum of the autocorrelation functions for ca®@C.) and The corresponding left and right generalized eigenvectors
sin 2mx (CY), are expected to be complicated distributions. In this case, as
we have discussed in Sec. 1V, the eigenfunctions derived

C(n)=C¢(n)+Cx(n). (47  from our numerical approach are smooth representations of

them. In Fig. 3 we present the numerical left and right eigen-

This decomposition is possible because the standard map hitctions associated with each of the two leading resonances
an inversion symmetry with respect to the poist=(3, y  of the standard map; the first pair is symmetric and the sec-
=3); therefore, the generalized eigenvectors are either synbond one antisymmetric under the inversion transformation.
metric or antisymmetric under this transformation. The sym-To better illustrate the intricate structure we have selected
metric ones will participate i€,(n), while the antisymmet- small regions of the available phase space.
ric ones will do inCgy(n). To conclude this section we will just mention that when

Both C(n) and C4(n) have been determined here from we apply these methods to the hte map and the intermit-
the system orbits with an uncertainty<10 °. We have tent map treated, respectively, by Ispld] and Baladiet al.
proceeded next to implement the self-consistent least-squargs2], we can reproduce their resonance locations and im-
method of Sec. IV to find the leading PR resonances. As @rove their accuracy if the self-consistent least-squares
first result we obtain for the optimal order the valugs scheme is used. Therefore, these methods work equally well
=9 from C.(n), andp,=8 from C¢(n). The location of the  with dissipative systems for which the stationary dynamics
leading resonances is given in Table Ill. Since the two cortakes place in a chaotic attractor, as happens with thehle
relation functions do not have common eigenvalues, the totahap.
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VI. SUMMARY the nonlinear numerical problem known as interpolation by
exponentiald12,16. This connection has provided us with

Among the schemes followed in the literature to locate, o, 4515 1q perform a better analysis of issues such as con-
the leading Pollicott-Ruelle resonances of the Perron:

Frobenius operator in chaotic dynamical systems, there are's. oo 1 e and numerical stability. From such analysis im-
P dynan ystems, ; paroved schemes may be designed, as the one that we have
few examples of remarkable simplicity, which involve either :
, . ) proposed based on a least-squares fit.
the use use of Padgpproximants to perform the analytical

continuation of the spectral density functioiid, 12, or the We have illustrated the use of this class of methods in two
P Y e chaotic maps: the Bernoulli map and the standard map. In the

diagonalization of small dynammglly adapted_ e|genvalueﬁrst example the nature of the right eigenvectors, which are
problems{7]. In an attempt to provide a theoretical SUpporthnown to be the Bernoulli polynomials, allows for finite ex-

E)oth?re?]inr:;erfggldz&m ?nggvfssga}gz dei#etrgiltr (;C(())r?tr(l,?(f:oz ]YI\;'; ansion of certain observables like the one chosen for illus-
) : . “lration. Then an accurate enough correlation function pro-
category of such schemes includes the memory function

techniqueg13] used in the general theory of relaxation andvides good approximations to the PR resonances and their
the methods related to this approach such as those based carresponding right eigenvectors. The least-squares method

n S .

the use of continued fractions and Pafsproximants. In a |?nproves 5|gn|f|cantly these results in the case of less accu-

second category we have also considered the methods of tfrw%te correlation values.

filter dia onzglizgtion approadi 4,15, which is a particular In the standard map, for which the exact knowledge of the

formulat?on of the harrlro1lgnic inve,rsio’n of a time gi nal as anPR resonances is not generally possible, the more elaborated
: 9 least-squares method provides resonance values which ap-

eigenvalue problem. be sianifi | d th h )

The analysis of these schemes led us to a theoretic ear to_be sign! icantly more converge than t € previous
framework in which all them become eauivalent formula- esults[7]. Nice smooth representations of the eigendistribu-
tions of the same problem: the location gf the leadin reso'gions are also obtained. These indicate the relevant phase

ame p o . ng space regions involved in the dynamics.
nances contributing to a give time correlation function. The
most convenient of these formulations is as an eigenvalue
problem from which one can obtain not only the poles, i.e.,
the resonance locations, but also a smooth representation of This work has been supported by “Ministerio de Ciencia
the generalized eigenvectors. Besides, we have proved thgt Tecnologma(Spain” and “FEDER fund (EU)” under

all these procedures are also particular linear formulations o€ontract No. BFM2001-3343.
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