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Abstract. Classic LR(1) parsing methods have the problem of producing 
too large parsing tables for programming language grammars. An alternative 
is to build an automaton that combines the lookahead symbol with reading 
the parsing stack from its top, to determine the next parsing action. 
The building procedure for such a parser and its use for parsing are presented 
through an example grammar. Results from an experimental implementation 
of the parser generator show important reductions in automaton size in com- 
parison with standard LR methods. Some discussion is presented, suggesting 
that the theoretical drawbacks of the method are of relatively little practical 

importance. 

1 Introduction 

LR(1)[10] is a very important class of context-free grammars, from both the theoreti- 
cal and practical viewpoints. It is the largest class of grammars in which (bottom-up) 
parsing can progress as the input text is read in a left-to-right scan, with only one 
symbol lookahead. It is thus of practical interest to be able to automatically build ef- 
ficient parsers for such a class of grammars. But classic LR(1) parsing methods[l, 14] 
have the disadvantage of producing unacceptable large automata in relation to gram- 
mar size. This is specially relevant when building parsers for programming language 
grammars. 

We take here another approach for LR(1) parsing, which is originally based on 
the e~mily of precedence parsing methods[l, 11]. These methods were very popular 
for ttmir efficiency until the advent of LR methods, that greatly surpassed them in 
parsing power. Since then, precedence has been almost forgotten, and much research 
effort has concentrated into reducing the storage needs of parsers while preserving 
their LR(1) parsing power, without much success. Thus, the currently recognized 
method of choice is LALR(1)[3, 14], where a practical compromise is found by re- 
ducing automata size at the cost of some parsing power. We propose here to further 
investigate whithin the previous theoreticM framework, to obtain LR(1) parsing 
power while preserving the precedence methods efficiency. 

* Supported by a grant from the Government and the Caja Insular de Ahorros of the 
Canary Islands. Future correspondence should be addressed to: Departamento de In- 
forms Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain. e-mail: 
fort es@f i. upcan, es. 
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1.1 Our  a p p r o a c h  for  LR(1 )  parsing 

Precedence parsing basic idea is that the most important information for parsing is 
very frequently near the top of the stack--always considering bottom-up parsing. 
Thus simple and weak precedence[12, 15, 8], for instance, use the (top-of-stack, 
lookahead) symbol pair to build precedence relations, and then to use them to know 
whether to shift or reduce. These methods fail when the needed information is deeper 
in the stack. A partial solution is given by bounded-context methods[4, 6, 11], in 
which a deeper--although limited in advance search in the stack is made. These 
methods also have the problems of deciding what rule to reduce, and most precedence 
methods impose strong restrictions on the right-part of grammar rules. In most cases 
empty rules are forbidden. 

In essence, what we need in a bottom-up parser is some procedure to tell us what 
parsing action to perform next: shift, reduce according to the i-th rule, or error. In 
classic LR methods the relevant stack information is "condensed" in a state, and a 
(state, lookahead) table gives the answer. The variety of such stack classes leads to 
a big number of states in an LR(1) table. 

After all, the basic idea of precedence parsing remains true. Let us examine 
what happens if we bring this idea to its end. In an LR(1) grammar we should be 
always able to decide the next parsing action upon the current stack-plus-lookahead 
contents. Experience with precedence methods tells us that very frequently we only 
need to read a few symbols in the stack, plus the lookahead, to make a decision. For 
some unfrequent cases we would need to look deeper in the stack. Thus, in principle, 
it is possible to build an automaton that begins reading the stack from its ~op to 
decide, in combination with the lookahead symbol, which parsing action to perform 
next. For the above reason, this automaton should be quite small in its depth, and we 
should frequently use only a few of its states. In this paper it is shown how to build 
such an automaton. For a more detailed description of the construction procedure, 
see [5]. 

2 A d i s c r i m i n a t i n g  a u t o m a t o n  

Our method for building an action-decision automaton is to begin building a (re- 
verse) recognizing automaton for the stack, where each state has the information 
of what parsing actions are compatible with the portion of the stack read so far 
from its top. As soon as the next (lower) stack symbol or the lookahead symbol is 
enough to decide the parsing action to perform, no further states are built, since the 
parsing action will be unique from this point on. There is an exception, necessary 
to assure valid reductions: when the only possible action is to reduce, and the rule 
right-part (i.e. the handle at the top of the stack) has not been completely read yet, 
state construction should continue until the left end of this right-part, just to check 
its correctness. 

The following explanation of the automaton construction procedure will be de- 
veloped through the use of the following Lit(l)  example grammar, where S is the 
augmented start symbol, and "t-" and "-~" represent the begin and end markers for 
the input text, respectively. Each rule is given a reference number, shown between 
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parentheses. 

S---* ~- E (1) 
E.--*E § T (2) 
E---~T (3) 
T---*FR (4) 

(5) 
R ~  * F R  (6) 
F--*(E) (7) 
f - - ,a  (s) 

For our automaton initial state we should consider al l the possible legal parsing 
actions: shift and all the rules for reduction. Let us consider some cases. For instance, 
it should consider the possibility of being in a stack-plus-lookahead configuration 
where "(" is the current lookahead symbol: according to the grammar, the only 
possible action is to shift, i.e. to push "(" on top of the stack and read the next 
symbol. In this case, this decision can be made just by looking at the "(". For another 
possibility, consider having "a" as the top-of-stack symbol: the only possible parsing 
action is to reduce "a" to "F" according to rule 8. On the other hand, when the 
top-of-stack symbol is "R",  we should check that the following (looking backwards) 
symbol in the stack is " F ' - - t h e  only legal possibility--and decide the reducing rule 
according to the next stack symbol: rule 6 for ".",  or else rule 4. Let us see how to 
automatically develop such a decision process. 

2.1 S i t u a t i o n s  

To build the automaton we will make use of situations. A situation conveys all 
the needed information for all its compatible stack-plus-lookahead configurations. A 
situation like 

F--* (.E) (3) § 

means that, according to the current automaton state, stack exploration may be .... 
amongst other possibilities indicated by the other situations at the same state 
between "(" and "E)"  in rule "F--~(E)" and that, if current lookahead is "+", we 
should reduce according to rule 3. For instance, the following rightmost sentential 
form is compatible with that situation: 

~- F * (T+_a) § a -~ 

where the underlining indicates that "§ is the current lookahead symbol, and thus 
the corresponding stack-plus-lookahead configuration is 

[- F *  (T+ 

We can see that, effectively, according to rule 3, "T" should be reduced to "E". 
After some more reductions, we will find the sentential form 

~- F * ( E)-{-a -{ 

where "(E)" will be reduced to "F ' :  this is why rule "F--*(E)" appears in the 
situation, since we may need to read its right-part "(" in order to decide amongst 
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other competing actions. Finally, we should note that the situation lookahead "+" 
is located, according to the original sentential form, between the dot and the right 
end of the rule. 

Let us now consider this last configuration. After having read--in reverse o r d e r -  
")", "E", and "(", we should be in a situation containing "F---* �9 (E)". Obviously, 
there should exist a situation indicating reduction with rule 7 when lookahead is 
"§ But it is important to note that, in this case, the situation lookahead lies just 
to the right of the situation right-part. We will indicate this particular circumstance 
by marking the lookahead with an apostrophe: ,,+1,,. An additional consideration 
in this case---although not necessarily for all the situations with the dot on the left 
of the right-part-- is that the handle to reduce is the situation right-part itself. It 
is important to note this circumstance in order to check the presence of the full 
right-part in top of the stack before performing its reduction. We mark the situation 
rule number for this purpose. With these two considerations, the referred situation 
should be written 

f - ~ - ( E )  (7') +'  

2.2 A partial stack-recognizing automaton 

Before explaining how to build the full decision automaton, let us see how to build a 
recognizing automaton for simpler cases. For instance, let us try to build a recogniz- 
ing reverse automaton for all the legal stack contents where the stack-plus-lookahead 
configuration indicates reduction with rule 5, i.e. "R-*e". The resulting automaton 
will not be a minimum-state automaton, for we wish to distinguish two states when 
their sets of compatible lookaheads are different, in order to use this information 
later, when building the full automaton. 

Initially, we have to consider a set of situations where the dot is at the end of 
the right-part, with all the possible Follow(R) as lookahead. Thus we initially have 
the following set of situations: 

(5') 4' 
(5') +' 
(5'))' 

When several situations like the previous ones differ on just the lookahead symbols, 
we use the convenient shorthand: 

R--,. (5') +')'  

When the rule to reduce is not empty, the first automaton states should obviously 
be devoted to recognize its right-part from right to left, and then for recognizing all 
its possible left contexts. In our example, with an empty right-part, the automaton 
immediately begins recognizing this rule left context. For this purpose, in general, 
we have to consider, for each situation where the dot is on the left of the right-part, 
all the rules containing in their right-parts the situation left-part nonterminal, that 
are compatible with the situation lookahead. For instance, for a situation like 

(5') +' 
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we have to consider "T---~FR" and "R--* * FR" ,  from which the following inferred 
situations are obtained: 

T- -~F .R  (5) + '  
R--* * F .  R (5) + '  

This mechanism permits to know what symbols can follow, in order to be able to 
progress in the automaton construction. Performing this closure process we get the 
following set of situations associated with the initial state: 

R-~.  (5') 4' +' )' 
T - - . F . R  (5) -t' + ' ) '  
R - * * F . R ( 5 )  -~' +') '  

Clearly, in our example the only possibility is to have "F"  as the next (topmost, in 
this case) stack symbol, since "F"  is on the left of the dot in all the s i tuat ions--  
situations with the dot at the left end are now useless for transitions. Thus we have 
a transition from initial state through "F"  to a second state, with the following 
situations: 

T---*. FR (5) -t' +'  )' 
R-~ �9 .FR (5) 4' +'  )' 

The second set of situations clearly indicates that  the next stack symbol can legally 
be "*". The first set needs a closure computation, producing: 

E---*E + .T (5) 4' + '  )' 
E--*. T (5) -t' + '  )' 
S--* I- .E (5) -t' + 
E - , . E + T ( 5 ) +  
F.-*(.E) (5) + ) 

We finally conclude tha t  from this second state there are transitions with " . " ,  "+" ,  
"~-", and "(" to other states, whose sets of situations are obtained from these ones 
after a dot displacement one symbol to the left. 

Proceeding in this way, the reader can verify that  the recognizing automaton 
can be completely built. When two states have equal sets of situations, we consider 
them to be the same state although this criterion might be refined. Final states are 
those containing "S--*. }- E" situations, as the one obtained through the previous 

"~-" transition. 
In an analogous way, we could build the recognizing automaton for every rule in 

the grammar.  Let us now consider another case: how to build a recognizing automa- 
ton for all the legal stack contents where the stack-plus-lookahead configurations 
indicate that  the next parsing action is to shift. For this purpose, we just  have to 
consider every rule in the grammar,  and every position of the dot before a terminal 
symbol in its right-part--i .e,  the current lookahead symbol. Here is the exhaustive 
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listing for all these possibilities, 

Since some situations have the 
computation should be performed, resulting 
tions: 

From now on, and following the 
built. 

where we code a shift action with a "(0)": 

S--~.t- E (O) t- 
E - * E .  +T (0) + 
R--* . *FR (0) * 
F--*(E.) (0))  
F - * . ( E )  (0) ( 
F---+ . a (0) a 

dot at the beginning of their right-parts, a closure 
in the following additional set of situa- 

T---*F. R (0)* 
R---+ * F .  R (0) * 
T---*. F R  (0) (a 
R---* * . F R  (0) (a 
E.--~E + .T (0) (a 
E-+"  T (0) (a 
S--* I- .E (0) (a 
F---~(.E) (0) (a 

same procedure, the recognizing automaton can be 

2.3 A s i mp l e  d i s c r i m i n a t i n g  a u t o m a t o n  

Let us now consider the following problem. We are given all the possible stack-plus- 
lookahead configurations where the possible parsing actions are to shift, or to reduce 
according to precisely rule 5. Our task is to classify each configuration as belonging 
to one or another class, i.e. we have a two-option discrimination problem. 

If the grammar is LR(1), a trivial solution is to build both stack-recognizing 
automata,  one for reducing using rule 5, another for shifting. We can read each stack- 
plus-lookahead configuration from top to bot tom of the stack, using both automata.  
In most cases, one of the automata  will be unable to recognize the current stack, thus 
indicating the other automaton's  action as the correct one. Anyway, it is possible 
that  in both au tomata  a final state is reached. But since the grammar is LR(1), the 
situation lookaheads in both final states should be disjoint, for it is not possible to 
have the same (stack, lookahead) pair for both actions, and thus we are also able to 
discriminate, in this case upon the lookahead. 

But it is clear that  this solution is unnecessarily costly. We could combine both 
au tomata  into only one, in principle able to recognize both types of stacks. In this 
automaton,  each state knows--from its sets of s i tuat ions--  whether the two com- 
peting actions, or just only one of them, are still possible, according to the stack 
portion read so far. Furthermore, since our objective is to discriminate, we do not 
need to completely build a recognizing automaton,  but only those states where the 
actions are not unique. 

In our example, according to the initial sets of situations for each automaton,  
reducing rule 5 is only possible when lookahead is "-4, +" ,  or ")", and shift is only 
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possible for lookahead values '%", "§  "*", ")", "(", or "a". Thus, we can decide 
that,  if lookahead is "-t" we have to reduce using rule 5, and if it is '%' ,  "*", "(", 
or "a" we have to shift. Only from lookaheads "§ and ")" we cannot decide what 
action to perform. But if we extract the situations with precisely these lookahead 
values from both automata,  we obtain the following: 

- Automaton for reducing rule 5: 

R-* .  (5') + '  )' 
T ~ F . R  (5) + ' ) '  
R---~ . F . R (5) -t-' )' 

- Automaton for shifting: 

E.--.E. q-T (0) q- 
F---.(E.) (0))  

We see that ,  for those cases in consideration, just  by looking now at the top-of-stack 
symboll we can decide: if it is "F" we have to reduce rule 5, and if "E" we have to 
shift. 

If we were left with some situations for which we could not yet decide, we should 
continue state construction--considering only the remaining competing s i tuat ions--  
until finally obtaining a decision. This is the case in our example with the two 
competing reductions for rules 4 and 6, where we only have a transition from the 
initial state with "R", and then only a transition with "F"  to the following state: 

T--*. F R  (4 ~) -~' +~)~ 
.FR (6') +')' 

E.--.,E + .T (4) -~' + ' ) '  
E--*-T (4) -t' + ' ) '  
S ~  ~- .E (4) -~' + 
E - * . E + T ( 4 )  + 
F--.*(.E) ( 4 ) ) +  

We can now derive the known result that,  when the next stack symbol is "*" we 
have to reduce according to rule 6, or else for "+" ,  "~-", or " ( " - - the  only remaining 
legal possibilities--we have to reduce according to rule 4. 

2 . 4  A f u l l  d i s c r i m i n a t i n g  a u t o m a t o n  

From the previous sections it should be clear now how to build the full discriminating 
automaton for all the possible parsing actions for any legal stack-plus-lookahead 
configuration. We just  have to join into a single initial state all the situations for 
all the parsing actions, and perform their closure computation. At any state, we 
discriminate first according to the lookahead symbol, and for the remaining actions 
we try to discriminate according to the next stack symbol. For those remaining 
situations for which we are at this state unable to discriminate their actions--because 
each legal lookahead plus the stack read so far are still compatible with several 
actions--,  we build the transitions to other states through the next stack symbol, 
and repeat the procedure for the new states. 
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If the grammar  is n o t  LR(1), the construction procedure will find some final 
(bottom-of-stack) state, where no discrimination is possible upon the lookahead 
symbol. 

If we apply this building procedure to our example grammar,  we obtain the 
actions and transitions of Fig. 1, where "LA" indicates actions upon the current 
lookahead symbol, and "ST" indicates actions or transitions upon the next  stack 
symbol. For each state, the competing actions are indicated between brackets. Those 
states with only one possible action are needed to check the presence of the full right- 
part  on top of the stack. 

2.5 Parsing with the automaton 

For parsing according to an LR(1) grammar,  when the parser has to decide the next 
parsing action to perform, it begins every t ime using the au tomaton  from its initial 
state, first using the lookahead to possibly decide the action, or else reading next 
symbol down in the stack to decide or to make a state transition. 

To illustrate parsing with the automaton,  let us consider again the rightmost 
sentential form 

k F * (T+a)  + a -q 

Since the current lookahead "+" is not useful for deciding at the initial state, we 
take a transition upon the top-of-stack symbol "T" to state 3, where the next stack 
symbol "(" indicates a reduction with rule 3. Now we have the configuration 

F F ,  (E+ 

and begin again from state 1, where we take a transition upon "E"  to state 2, where 
a shift is indicated by the current lookahead "+" .  The next lookahead is "a",  which 
indicates in initial state a shift. Now the initial state indicates a reduction with rule 
8 upon the top-of-stack "a". We now have the configuration 

k F * ( E + F ) _ _  

and we take a transition from initial state upon "F"  to state 6, where the current 
lookahead ")" indicates reduction of "e" to "R" according to rule 5. The reader can 
check that  parsing continues in this manner  until a reduction with rule 1, which 
always indicates a successful end of parsing, if the current lookahead is "-t". 

2.6 P a r s i n g  e r r o n e o u s  inputs 
i 

Let us consider an erroneous input similar to the previous one, where the programmer 
has forgotten to include the right parenthesis. With an erroneous form like 

I- F * (T+a  + a -I 

the parser would continue its reduction process until the following configuration 

~- F ,  ( E l  
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State 1 [ 0 1 2 3 4 5  6 7 8 ]  

LA(}- ) = Shi f t  

LA(O = Shi f t  

LA(a) = Sh i f t  

ST(a) = R e d u c e  8 

ST(E) = G o  T o  2 

ST(T) = G o  T o  3 

ST(R) = G o  T o  4 

ST()) = G o  T o  5 

ST(F) = G o  T o  6 

State 2 [0  1]  
LA(+) = Sh i f t  

LAO) = Sh i f t  

ST(}-) = R e d u c e  1 

State 3 [ 2 3 ] 

ST(}-) = R e d u c e  3 

ST(() = R e d u c e  3 

ST(+) = G o  T o  7 

State 4 [ 4 6 ] 
ST(F) = G o  T o  8 

State 5 [ 7 ] 
ST(E) = G o  T o  9 

State 6 [ 0 5 ] 
LA('~) = R e d u c e  5 

LA(+) = R e d u c e  5 

LAO) = R e d u c e  5 
LA(,) = Sh i f t  

State 7 [ 2 ] 
ST(E) = R e d u c e  2 

Sta te8  [ 4 6 ]  

ST(*) = R e d u c e  6 

ST(+) = R e d u c e  4 

ST(F) = R e d u c e  4 

ST(() = R e d u c e  4 

State 9 [ 7 ] 

ST(() = R e d u c e  7 

Fig.  1. Actions and transitions of the automaton 
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At this point, the parser goes to state 2 upon "E", and then signals an error, since 
the lookahead is not "+" nor ")", and the only remaining legal possibility for next 
stack symbol is to be "F-", but it actually is "(". 

In general, since our parser is not intended to check the correctness of the full 
stack, errors might be detected later that in the best possible case, i.e. the correct 
prefix property can not always be assured. More reductions might be done, and 
several symbols might be shifted beyond the first possible point of error detection. 
Anyway, reductions are always legal in the sense that the right-parts are always 
verified, and for this reason errors are always detected. 

But, what is possibly more important, since in a sense our automaton performs 
somehow like precedence methods, the well known error recovery procedures for 
these methods can be easily adapted[7]. It can also be of interest to investigate how 
new powerful methods for error processing specially adapted to bounded context 
grammars[13, 2] could be applied. 

3 Validity of the method  

Some considerations concerning the validity of the proposed method may be in order, 
specially a justification of its LR(1) parsing power. 

During a bottom-up parsing for an LR(1) grammar, the next parsing action is 
unique for each legal stack-plus-lookahead configuration: 

- To shift. This should correspond to rules such as A---+otafl, where a correponds 
to the current lookahead. This is represented by the initial state's situations 
A---*a. a~(O)a. 

- To reduce a rule such as A--*a(i). This can only happen when current lookahead 
a E Follow(A). This is represented by the initial state's situation A--*a. (i')a'. 

As we have seen for the example grammar, for each such possible parsing action we 
can build a top-to-bottom recognizing automaton for all its compatible legal stacks, 
i.e. those stacks permitting some rightmost sentential form in accordance with the 
action. It is important to note that situations contains all the basic information to 
build the rest of the automaton that recognize the rest (from the current point of 
exploration to the bottom) of compatible legal stacks, for as we have seen situations 
allow to infer the new situations needed to build the next transitions and states. 

We have also seen that a top-to-bottom recognizing automaton for precisely 
the set of all legal stacks can be built, by merging all these initial-situation derived 
automata. It is cleat that this automaton can always indicate the next parsing action 
after having read the whole stack, since then the lookahead symbol will always suffice 
to discriminate amongst the would-be different actions--LR(1) property. 

But the key point is that in almost all practical LR(1) grammars a small section 
of the full recognizing automaton is enough to decide the parsing action. In fact, the 
construction procedure for the discriminating automaton begins building such a rec- 
ognizing automaton, but only generates its useful discriminating section--preserving 
its full right-part section. So, in a state, when there is a situation whose lookahead 
uniquely determines the parsing action, this situation's subsequent situations are not 
generated. The same happens for the rest of state situations, when their following 
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stack symbol uniquely determines the parsing action. This mechamism dramatically 
prunes the recognizing automaton, while preserving a parsing power of LR(1), since 
the same discriminating results are obtained. 

Finally, if the grammar is not LR(1), there is a stack-plus-lookahead configuration 
with at least two "legal" different parsing actions. In this case, automaton states 
might be built until a (bottom of stack) "final" state, where those different actions 
are present but lookahead is useless for discrimination. This type of state is easily 
detected. 

4 D i s c u s s i o n  f r o m  s o m e  e x p e r i m e n t a l  r e s u l t s  

An experimental parser generator has been built according to the indicated method. 
Practical results are in accordance with the foreseen parsing power and small au- 
tomata sizes. Since no classic LR(1) parser generator is yet available to us, compar- 
isons have been done with Yacc[9], the most widely used parser generator. Reverse 
automata number of states for different size grammars range from -30% to -40% 
that of the corresponding Yacc-generated automata. Some results are given in the 
following table, including those for the biggest grammar yet tested, an independently- 
obtained 1 full C language grammar for Yacc, and its modified grammar to make it 
exactly LALR(1). Although current comparisons are restricted to LALR(1) gram- 
mars, future comparisons with classic LR(1) generators--the same parsing power-- 
are clearly anticipated to be very favourable. 

Automaton no. of  states 
Grammar No. of  rules reverse LR(1)  Yacc 
Minilanguage 94 118 173 
LALR(1) C language 235 284 439 
Yacc C language 214 n/a 367 

A reason for the improvement in size may be that classic LR(0) combines parsing 
action decision with full checking of the correctness of the whole stack, with LR(1) 
considering the lookahead symbol, which results in a great increase in size. LALR(1) 
storage requirements are a little bigger than LR(0). On the contrary, the reverse 
automaton construction stops as soon as discrimination is guaranteed, and further 
simplifications, well suited to large programming language grammars, are allowed. 
An additional reason may be that it begins the discrimination process from the point 
where the information is usually more useful, as the existence of several precedence 
methods demonstrates, and thus quickly separates the rest of discriminations into 
simpler tasks. 

In theory, parsing efficiency compares disfavourably with classic parsing methods 
in the sense that they do not search in the stack; in some methods because the 
necessary information is already stored in a "state". However, the reverse automaton 
deeply searches in the stack--relatively short for programming language programs-- 
only in the worst theoretical cases. Even for those worst cases, that should not 
happen frequently: in the case of a hard left context configuration, the resulting 

1 From the comp.compilers Usenet newsgroup database. 
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nonterminal will normally be different for the alternative actions, being enough for 
subsequently not to search so deeply. Although statistical comparisons with other 
methods are not yet available, analysis of generated automata reveals the following: 

- Shift actions--the most frequent ones--are discriminated after very few states 
(typically between 1 and 3). Thus, for these most frequent actions the parser 
reads very few symbols from the stack. 

- The number of states not in the full right-parts section (i.e. those actually needed 
to solve conflicting reductions) only represent about one third of the automaton. 
Thus conflicting Cases--those needing extra stack exploration--represent a rela- 
tively small part of cases, most of them amongst competing reductions. In terms 
of size and parsing time, this can be considered the extra cost--very small in 
relation with the improvement in parsing power--in comparison with precedence 
methods, for these also have to recognize the presence of the rule right-part on 
top of the stack. 

- Loops are very scarce. This again suggests that very rarely the automaton needs 
to search relatively deep in the stack. 

We can conclude that all the data available suggest that parsing efficiency should 
not be significatively damaged in practice. By contrast, other powerful methods, like 
classic LI~(1), build much bigger automata, whose big tables are usually compacted, 
resulting in a diminished access efficiency. This should be compared with the cost of 
analyzing a normally small part of the stack near its top. Finally, the order in which 
the possible parsing actions are checked may be improved. 

Errors are always detected, but sometimes later than in the best possible case 
although compaction of tables in other methods may also negatively affect this 
feature. Nevertheless, error-free inputs are always well parsed, and reductions are 
always correct. Errors may also introduce a deeper search in the stack to be detected. 
Overall, the additional overhead for erroneous inputs does not seem to be very 
significant, considering that modern parsers should automatically treat input errors 
to continue parsing, and thus analysis and modification of the area in error must 
be performed. The relatively little importance of this extra cost, combined with an 
acceptable performance and adequacy for known error recovery methods, results in 
a good compromise. 

Construction efficiency should be much better than classic LR(1), from simple 
size comparisons. Anyway, more extensive tests and developments are under way in 
this and in other aspects to obtain more significant results. 

Finally, a great increase in size appears when trying to improve classic LR(1). 
On the contrary, the parsing power of the reverse automaton seems to be possible 
to be improved, e.g. to LR(2), at low cost. 

5 Conclus ions  

A method for generating parsers for LR(1) grammars, that builds a deterministic 
finite-state automaton that is able to determine, by reading the parsing stack from 
its top in combination with the lookahead symbol, the next parsing action, has been 
presented through the use of an example grammar. 



28 

Impor tant  reductions in au tomata  size are obtained from experimental  results in 
comparison with classic LR methods, due mainly to the facts that  the most useful 
information is normally near the top of the stack, and that  the building procedure 
stops as early as the next parsing action can be uniquely determined. Its theoretical 
drawbacks, later error detection and diminished parsing efficiency, are found to be 
of little practical importance. Further experimentation and improvements should 
indicate whether the method has to be considered of practical interest to compete 
with current LR methods. Anyway, its actual applicability for big LR.(1) grammars 
should be pointed out. 

From the theoretical point of view, we note that  a powerful parsing method has 
been obtained by extrapolating the ideas from the old family of precedence methods, 
resulting in a new approach for parsing that  deserves further research. 
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I wish to especially acknowledge my beloved wife, Maria del Mar. 

References  

1. A.V. Aho and J. D. Ullman. The Theory o I Parsing, Translation and Compiling. 
Prentice-Hall, 1973. 

2. G. V. Cormack. An LR substring parser for noncorrecting syntax error recovery. AGM 
SIGPLAN Notices, 24(7):161-169, 7 1989. 

3. F. DeRemer. Practical Translators [or LR(k) Languages. PhD thesis, M.I.T., Cam- 
bridge, Massachusetts, U.S.A., 1969. 

4. R. W. Floyd. Bounded context syntactic analysis. Comm. ACM, 7(2):62-67, 1964. 
5. J. Fortes G~lvez. A discriminating reverse automaton for LR(1) parsing. Research 

Report 91-23, Laboratoire I3S, B~t. 4, 250 Avenue Albert Einstein, F-06560 Valbonne, 
France, October 1991. A revised version has been submitted for publication in Infor- 
mation Processing Letters. 

6. R. M. Graham. Bounded context translation. In AFIPS Spring Joint Computer Con- 
ference, pages 184-205, 1964. 

7. S. L. Graham and S. P. Rhodes. Practical syntactic error recovery. Comm. ACM, 
18(11):639-650, 1975. 

8. J. D. Ichbiah and S. P. Morse. A technique for generating almost optimal Floyd-Evans 
productions for precedence grammars. Comm. ACM, 13(8):501-508, 1970. 

9. S. C. Johnson. Yacc--yet another compiler compiler. Computing Science Technical 
Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey, U.S.A., 1975. 

10. D. E. Knuth. On the translation of languages from left to right. Information and 
Control, 8(6):607-639, 1965. 

11. W. M. McKeeman, J . J .  Homing, and D.B. Wortman. A Compiler Generator. 
Prentice-Hall, 1970. 

12. C. Pair. Trees, pushdown stores and compilation. RFTI--Ghiffres, 7(3):199-216, 1964. 
13. H. Richter. Noneorrecting syntax error recovery. ACM Transactions on Programming 

Languages and Systems, 7(3):478-489, 7 1985. 



29 

14. S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer-Verlag, 1990. 
15. N. Wirth and H. Weber. EULER: A generalization of ALGOL and its formal definition. 

Parts I and II. Comm. AG'M, 9(1):13-23 and 89-99, 1966. 


