Convergent Synthesis of trans-Fused Oxane Ring Systems Based on NiII/CrII-Mediated Cross-coupling Reactions

M. Teresa Díaz,a Ruby L. Pérez,a Elsa Rodríguez,a José L. Ravelo,b Julio D. Martín*a

a Instituto de Investigaciones Químicas, Américo Vespucio, s/n, Isla de la Cartuja, 41092 Seville, Spain
b Instituto de Bio-orgánica, Universidad de La Laguna, Carretera de la Esperanza, 2, 38206 La Laguna, Tenerife, Spain

Fax +34 954460565; E-mail: jdelgado@cica.es

Received 18 December 2000

Abstract: A general method for the convergent assembly of polyether structures has been developed based on a NiII/CrII-mediated cross-coupling reaction of alkenyl iodides with aldehydes. The present method allowed coupling to oxane rings via acetal cyclization and reductive etherification reactions.

Key words: coupling reactions, tetrahydropyrans, polyethers, toxins

The reductive intramolecular coupling of hydroxy-ketones in reactions with silane-Lewis acids (SI-LA) to generate oxane rings in C-linked oxacycles is affected by the conformational preference of the hemiacetal intermediates.1 This finding implies that the convergent synthesis of trans-fused polyethers may be conducted on driving ring closure of hydroxy-ketones to oxane rings under thermodynamic conditions. Recently, we have shown2 that SI-LA-induced reductive cleavage of the anomeric center in allyl spiroketals can be conducted chemo-, regio- and stereoselectively to give C-linked oxacycles. As a part of a larger project to synthesize trans-fused polyethers related to ciguatoxin and congeners,3 both reductively conducted possibilities are being considered4 (Scheme 1). In this communication, we report on results related to the 5 → 1 cyclization approach based on very simple models. Our synthetic plan began with the NiII/CrII-mediated coupling5 between fragments 9 and 10 followed by oxidation to the α,β-unsaturated ketone 8. These reactions establish all the requisite framework which should allow us to study sequentially the double SI-LA reductive process.

Schemes 2 and 3 summarize the synthesis of the starting models, alkenyl iodide 27 (Scheme 2) and aldehyde 33 (Scheme 3). The synthesis of the allyl intermediate 18 began with 2-deoxyribose (11), which was converted into olefin 12 by a Wittig reaction followed by reductive protection involving 1,3-dioxacetalization and silylation. DIBAL-H reduction led to alcohol 12 (73% overall yield). Sharpless asymmetric epoxidation6 of 12 using (−)-diethyl tartrate as the chiral auxiliary gave the epoxide 13 in 90% yield. Iodination of the tosyl derivative followed by base treatment gave, after benzylation,7 compound 16 (89% overall yield, three steps). Vinyl fragmentation followed by oxidation of the resulting hemiacetal gave the lactone 17 (61% yield). The equatorial C-glycosidation to give 18 was stereoselectively accomplished by addition of allylmagnesium bromide to the lactone 17 followed by silane reduction.8 Compound 18 was alternatively synthesized via lactone 21 following a protocol identical with that used for 17 to 18 conversion. Lactone 21 was prepared from the D-glucopyranoside derivative 20, with the free hydroxyl group being removed under Barton9 conditions. Vinyl fragmentation in 18 followed by dibromolefination of the resulting aldehyde11 gave the vinyl dibromide 23 which was converted to the acetylene derivative 24 by further treatment with n-Buli. Removal of the silyl group from 24 then led to the alchol 25 which was converted to the acetate 26. Iodoboration13 of 26 gave the alkenyl iodide 27.14

Scheme 1
The completion of the synthesis is shown in Scheme 4. The NiII/CrII-mediated coupling of 27 with 33 proceeded smoothly to yield the two expected allylic alcohols, which were oxidized to the α,β-unsaturated ketone 34. Subsequent ozonolysis led to diketone 35. Base-induced hydrolysis of diketone 35 gave hemiacetal 37. Debenzylation of 35 gave hemiacetal 36. Hemiacetals 36 and 37 were independently converted to the common bis-hemiacetal 38.

O-Methylation of bis-hemiacetal 38 under the base conditions reported by Mori gave the methyldiacetal 39, which was doubly reduced by SI-LA treatment to the tetracyclic diol 40, further protected as its dibenzyl ether derivative 41.

Scheme 3 Preparation of aldehyde 33. Reagents and conditions: (a) 1.5 equiv of PhCH(OMe)2, 0.01 equiv of CSA, DMF, 50°C, 3 h, 85%. (b) 3.0 equiv of Dibal-H, CH2Cl2, 0°C, 24 h, 97%. (c) 1.2 equiv of TsCl, 1.5 equiv of DMAP, 1.5 equiv of TMSOTf, CH2Cl2, 20°C, 2 h, 65%. (d) 1.5 equiv of Dibal-H, CH2Cl2, 20°C, 12 h; ii, 1.5 equiv of Ac2O, 2.5 equiv of Et3N, DMAP catalyst, CH2Cl2, 20°C, 2 h, 93%. (e) 1.5 equiv of NaIO4, MeOH: H2O (8:1), 0°C, 3 h, 98%; iii, 1.4 equiv of TBSOTf, 2.0 equiv of Et3N, CH2Cl2, 0°C, 1 h, 98%; iv, 2.5 equiv of Ac2O, 2.5 equiv of Et3N, DMAP catalyst, CH2Cl2, 20°C, 1 h, 53% (three steps).

For the synthesis of aldehyde 33 (Scheme 3), diol 28 was selectively protected involving 1,3-benzylidene ketalization followed by Dibal-H reduction to give 30. Tosylation and displacement of the tosyl group with cyanide provided 32 which was further reduced to the aldehyde 33 (62% overall yield).

Scheme 2 Preparation of intermediate 27. Reagents and conditions: (a) i, 1.2 equiv of PhCH(OMe)Me, THF, 80°C, 5 h, 99%; ii, 1.5 equiv of MeC(O)(OMe)2, CSA cat., CH2Cl2, 40°C, 12 h, 93%, iii, 1.4 equiv of TBSOTf, 2.0 equiv of Et3N, CH2Cl2, 0-25°C, 1 h, 98%; iv, 2.5 equiv of Dibal-H, Et2O, 0-25°C, 5 h, 81%. (b) 0.3 equiv of Ti(O-i-Pr)4, 0.2 equiv of (-)-diethyl tartrate, 3.0 equiv of t-BuOOH (5-6 N in decane), 4 Å MS, CH2Cl2, -20°C, 24 h, 90%. (c) 1.1 equiv of TsCl, 0.05 equiv of 4-DMAP, 2.0 equiv of Et3N, CH2Cl2, 0-25°C, 3 h, 98%. (d) 2.3 equiv of NaI, 2.0 equiv of NaHCO3, butanone, 60°C, 2 h, 97%. (e) i, 2.0 equiv of t-BuLi, Et2O, -78°C, 30 min, 94%; ii, 1.1 equiv of BnBr, 1.1 equiv of NaH, (n-Bu)4NI cat., THF-H2O-acetone (1:1:1), 25°C, 12 h, 91%; ii, H2, Pd (C) 5% cat., EtOAc, 12 h, 99%; iii, 1.5 equiv of (n-Bu)4NIO4, CH2Cl2, 0-25°C, iv, 3.0 equiv of PCC, 0.3 equiv of NaOAc, 3 Å MS, CH2Cl2, 25°C, 12 h, 80%. (g) i, 1.2 equiv of allylmagnesium bromide, THF, -78°C; ii, 1.5 equiv of Et3SiH, 1.5 equiv of TMSOTf, CH2Cl2, -78°C, 5 h, 68%; (h) i, 1,6 equiv of NaH, 3.3 equiv of CS2, 1.8 equiv of Me3SiCl, imidazole cat., THF, 0-20°C, 1 h; ii, 1.5 equiv of Bu3SnH, AIBN cat., toluene, 110°C, 36 h, 87% (two steps); iii, 0.1 equiv of AcOH, 0.5 equiv of HCl 1N, 60°C, 48 h, 69%; iv, 3.0 equiv of (COCl)2, 9.0 equiv of DMSO, 15.0 equiv of Et3N, CH2Cl2, -78-0°C, 2 h, 70%. (i) i, 1.1 equiv of allylmagnesium bromide, THF, -78°C; ii, 1.5 equiv of Et3SiH, 1.5 equiv of BF3·Et2O, CH2Cl2, 0°C, 2 h, 64% (two steps). (j) i, Na, NH3 liq, THF, -60°C, 2 h, 70%; ii, 1.5 equiv of 2,2-dimethoxypropane, POCl3 cat., DMF, 20°C, 12 h, 60%; iii, 1.2 equiv of t-BuMe2SiCl, 2.5 equiv of imidazole, CH2Cl2, 20°C, 48 h, 96%. (k) i, 1.5 equiv of 4-methylmorpholine N-oxide, OsO4 cat., H2O-THF (1:1), 20°C, 12 h; ii, 1.5 equiv of NaOAc, MeOH: H2O (8:1), 0°C, 90% (two steps); iii, 4.0 equiv of Ph3P, 2.0 equiv of CBr4, 5.0 equiv of Et3N, CH2Cl2, hexane, 0°C, 3 h, 97%. (l) 1.0 equiv of n-BuLi, THF, -78°C, 2 h, 65%. (m) i, 1.3 equiv of n-BuLi, THF, 0°C, 2 h, 98%; (a) 1.5 equiv of Ac2O, 2.5 equiv of Et3N, DMAP cat., CH2Cl2, 20°C, 2 h, 89%; (o) i, 1.2 equiv of B-I-9-BBN (1.0 M in hexane), n-pentane, -20-20°C, 8 h, then 0.02 equiv of AcOH, 0°C, 30 min, then NaOH, H2O, 35%, 0°C, 30 min; ii, 1.5 equiv of 2,2-dimethoxypropane, POCl3 cat., CH2Cl2, 20°C, 12 h; iii, 1.5 equiv of Ac2O, 2.5 equiv of Et3N, DMAP catalyst, CH2Cl2, 20°C, 1 h, 53% (three steps).
Scheme 4 Synthesis of compound 41. (i) Reagents and conditions: (a) i, 4.0 equiv of CrCl₂, 0.1 equiv of NiCl₂, DMSO, 20°C, 12 h, 86%; ii, 3.0 equiv of oxaly chloride, 9.0 equiv of DMSO, 20°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%. (b) O₃, CH₂Cl₂, -78°C, 30 min, then 3.0 equiv of Ph₃P, 20°C, 1 h, 56-60%. (c) 1.1 equiv of K₂CO₃, MeOH, 45°C, 3 h, 75-80%. (e) 2.5 equiv of NaH, 5.0 equiv of MeI, DMF, 0°C, 2 h, 96%.

(16) Data for selected compounds included in Scheme 4: α,β-Unsaturated ketone 34: Oil. [α]D 20 +0.02 (c 0.55, CHCl3). 1H NMR (500 MHz, CDCl3) δ 7.32-7.26 (5H, m, ηH), 5.98 (1H, s, CH), 5.78 (1H, s, CH), 4.62 (1H, d, J = 11.7 Hz, ηCH), 4.58 (1H, dd, J = 4.9, 9.8, 9.8 Hz, H-5), 4.39 (1H, d, J = 11.7 Hz, H-3), 3.82 (1H, brd, J = 11.5 Hz, H-15), 3.79 (1H, ddd, J = 2.5, 10.8 Hz, H-1), 3.71 (1H, dd, J = 3.0, 8.9, 8.9 Hz, H-11), 3.58 (1H, dd, J = 10.8, 10.8 Hz, H-1), 3.56 (1H, dd, J = 4.1, 9.4, 11.6 Hz, H-3), 3.48 (1H, dd, J = 3.0, 9.8, 9.3 Hz, H-6), 3.35 (1H, dd, J = 2.7, 11.5, 11.7 Hz, H-15), 3.14 (1H, dd, J = 5.2, 9.4, 10.8 Hz, H-2), 3.09 (1H, dd, J = 3.0, 15.8 Hz, H-10), 3.08 (1H, dd, J = 5.0, 8.9, 9.3 Hz, H-12), 2.75 (1H, dd, J = 8.9, 15.8 Hz, H-10), 2.66 (1H, brd, J = 2.2, 14.7 Hz, H-7), 2.32 (1H, ddd, J = 4.5, 4.5, 11.3 Hz, H-4), 2.28 (1H, brd, J = 12.4 Hz, H-13), 2.18 (1H, dd, J = 8.9, 14.7 Hz, H-7), 2.03 (3H, s), 1.70-1.65 (1H, m, H-14), 1.63-1.56 (1H, m, H-14), 1.47 (1H, dd, J = 11.3, 11.3, 14.3 Hz, H-14), 1.43 (3H, s), 1.44-1.38 (1H, m, H-13), 1.36 (3H, s). 13C NMR (125 MHz, CDCl3) δ 199.6 (Cq, C9), 170.1 (Cq, C7), 144.8 (Cq, C8), 138.4 (C9), 128.4 (CH), 127.8 (CH), 127.7 (CH), 126.6 (CH), 99.2 (Cq, C7), 77.6 (CH), 77.6 (CH), 76.8 (CH), 74.1 (CH), 70.8 (CH), 70.4 (CH), 68.5 (CH), 67.8 (CH), 62.6 (CH), 49.0 (CH), 35.2 (CH), 33.4 (CH), 29.7 (CH), 29.1 (CH), 25.3 (CH), 21.1 (CH), 19.1 (CH). HRMS, calcd for C33H32O8, m/z 504.20968. Found, m/z 504.20963.

[1H NMR (500 MHz, CDCl3) δ 7.32-7.26 (5H, m, ηH), 4.61 (1H, d, J = 11.4 Hz, ηCH), 4.46 (1H, d, J = 11.4 Hz, ηCH), 4.10 (1H, dd, J = 4.4, 9.5, 11.8 Hz, H-5), 3.88 (1H, dd, J = 5.1, 10.7 Hz, H-1), 3.69-3.64 (1H, m, H-3), 3.68 (1H, dd, J = 10.5, 10.7 Hz, H-1), 3.63 (1H, dd, J = 5.0, 5.4, 10.1 Hz, H-11), 3.36-3.36 (2H, m, H-6, H-12), 3.20 (1H, dd, J = 5.2, 10.0, 10.5 Hz, H-2), 2.85 (1H, dd, J = 12.3, 12.5 Hz, H-7), 2.70 (1H, dd, J = 5.1, 13.5 Hz, H-7), 2.47 (1H, dd, J = 5.0, 15.1 Hz, H-10), 2.26 (1H, brd, J = 4.1, 11.4, 11.4 Hz, H-4), 1.86 (1H, dd, J = 5.0, 15.1 Hz, H-10), 1.70-1.60 (2H, m, ηH-14), 1.56 (1H, dd, J = 11.4, 11.4, 11.8 Hz, H-4), 1.53 (1H, brs, CH2-OH), 1.48 (3H, s), 1.43-1.34 (1H, m, H-13), 1.39 (3H, s). 13C NMR (125 MHz, CDCl3) δ 200.9 (Cq, C1), 137.6 (Cq, C1), 128.5 (CH), 128.1 (CH), 99.4 (Cq, C9), 77.9 (CH), 77.7 (CH), 77.0 (CH), 73.6 (CH), 70.7 (CH), 69.4 (CH), 68.1 (CH), 68.0 (CH), 62.6 (CH), 41.9 (CH), 36.7 (CH), 35.0 (CH), 29.2 (CH), 29.0 (CH), 25.1 (CH), 19.1 (CH). 39: [1H NMR (500 MHz, CDCl3) δ 6.90 (1H, brd, J = 11.0 Hz, H-5), 3.87 (1H, dd, J = 5.1, 10.8 Hz, H-1), 3.67 (1H, dd, J = 10.8, 10.8 Hz, H-1), 3.63 (1H, dd, J = 4.1, 11.0, 11.2 Hz, H-3), 3.49 (1H, dd, J = 4.0, 9.2, 11.2 Hz, H-5), 3.38 (1H, dd, J = 5.0, 11.0, 13.0 Hz, H-12), 3.36-3.33 (1H, m, H-15), 3.29 (1H, dd, J = 5.2, 11.2, 11.7 Hz, H-6), 3.26 (6H, s, 2×CH3-O), 3.20 (1H, dd, J = 5.1, 10.8, 11.0 Hz, H-2), 3.14 (1H, dd, J = 5.0, 9.5, 11.0 Hz, H-11), 2.19-2.13 (3H, m, H-4, H-7, H-10), 1.96 (1H, dd, J = 11.7, 11.7 Hz, H-7), 1.96-1.93 (1H, m, H-13), 1.93 (1H, dd, J = 11.0, 11.0 Hz, H-10), 1.75-1.70 (2H, m, 2×H-14), 1.64 (1H, dd, J = 11.2, 11.2, 11.2 Hz, H-4), 1.56-1.52 (1H, m, H-13), 1.46 (3H, s, CH3), 1.39 (3H, s, CH3). 39: 13C NMR (125 MHz, CDCl3) δ 99.3 (Cq, C9), 98.6 (Cq, C7), 98.4 (Cq, C9), 76.2 (CH), 76.2 (CH), 75.2 (CH), 70.7 (CH), 69.8 (CH), 69.1 (CH), 68.3 (CH), 62.7 (CH2), 47.3 (CH3), 47.2 (CH2), 47.2 (CH2), 34.7 (CH2), 29.5 (CH2), 29.3 (CH2), 29.2 (CH2), 28.8 (CH2), 25.9 (CH), 19.1 (CH). HRMS, calcd for C33H32O8, m/z M+ 504.20968. Found, m/z 500.20963.