
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277339229

Fast computation of bare soil surface roughness on a Fermi GPU

Article in Computers & Geosciences · May 2015

DOI: 10.1016/j.cageo.2015.05.013

CITATIONS

6
READS

90

5 authors, including:

Some of the authors of this publication are also working on these related projects:

ADRES/DRESC View project

Neural Network View project

Xiaojie li

Chinese Academy of Sciences

27 PUBLICATIONS 78 CITATIONS

SEE PROFILE

Changhe Song

Xi'an Electronic Science and Technology University

6 PUBLICATIONS 72 CITATIONS

SEE PROFILE

Sebastian Lopez

Universidad de Las Palmas de Gran Canaria

133 PUBLICATIONS 933 CITATIONS

SEE PROFILE

Jose F. Lopez

Universidad de Las Palmas de Gran Canaria

33 PUBLICATIONS 133 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xiaojie li on 11 March 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/277339229_Fast_computation_of_bare_soil_surface_roughness_on_a_Fermi_GPU?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/277339229_Fast_computation_of_bare_soil_surface_roughness_on_a_Fermi_GPU?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ADRES-DRESC?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Neural-Network-23?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojie_Li10?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojie_Li10?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojie_Li10?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Changhe_Song?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Changhe_Song?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Electronic_Science_and_Technology_University?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Changhe_Song?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Lopez?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Lopez?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Lopez?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Lopez65?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Lopez65?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Lopez65?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojie_Li10?enrichId=rgreq-eadf2d2b2c5c8b9b55ce9674b167ea9f-XXX&enrichSource=Y292ZXJQYWdlOzI3NzMzOTIyOTtBUzo4Njc4NjE1MjIzMDUwMzBAMTU4MzkyNTcxOTk4OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Computers & Geosciences 82 (2015) 38–44
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
Chinese

E-m
journal homepage: www.elsevier.com/locate/cageo
Fast computation of bare soil surface roughness on a Fermi GPU

Xiaojie Li a,b,n, Changhe Song c, Sebastian López d, Yunsong Li c, José F. López d

a Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
b Space Science and Engineering Center, University of Wisconsin, Madison, WI 53706, USA
c State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
d University of Las Palmas de Gran Canaria, Institute for Applied Microelectronics, Las Palmas de Gran, Canaria, Spain
a r t i c l e i n f o

Article history:
Received 27 August 2014
Received in revised form
2 April 2015
Accepted 20 May 2015
Available online 27 May 2015

Keywords:
Bare soil surface roughness
Correlation length
Graphics Processing Unit (GPU)
x.doi.org/10.1016/j.cageo.2015.05.013
04/& 2015 Elsevier Ltd. All rights reserved.

esponding author at: Northeast Institute of
Academy of Sciences, Changchun 130102, Ch
ail address: lixiaojie@iga.ac.cn (X. Li).
a b s t r a c t

Surface roughness is an important factor in bare soil microwave radiation for the observation of the
Earth. Correlation length and standard deviation of surface height are the two statistical parameters that
describe surface roughness. However, when the number of data points is large, the calculation of surface
roughness parameters becomes time-consuming. Therefore, it is desired to have a high-performance
computing facility to execute this task. A Graphics Processing Unit (GPU) provides hundreds of com-
puting cores along with a high memory bandwidth. To carry out a parallel implementation of the al-
gorithms, Compute Unified Device Architecture (CUDA) provides researchers with an easy way to execute
multiple threads in parallel on GPUs. In this paper, we propose a GPU-based parallel computing method
for 2D surface roughness estimation. We use an NVIDIA GeForce GTX 590 graphics card to run the CUDA
implementation. The experimental input data is collected by our in-house surface roughness tester
which is designed based on the laser triangulation principle, giving sample data points of up to 52,040.
According to the experimental results, the serial CPU version of the implementation takes 5422 s
whereas our GPU implementation takes only 47 s, resulting a significant 115� speedup.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Surface roughness is a description of the randomness or irre-
gularity of the microtopography of a terrain. The standard devia-
tion of surface height (s) and the surface correlation length (l)
describe the statistical variation of a surface height relative to a
reference surface for a random component. Measurement of sur-
face roughness is one of the key topics in soil erosion research in
the sense that is an important parameter in order to determine
soil hydrological characteristics and soil properties. While obser-
ving the earth using a microwave radiometer, surface roughness
represents a key factor to analyze (Zheng and Zhao, 2010; Mittal
and Singh 2010; Hong, 2010). Several research instances can be
found in literature on determining surface roughness parameters.
Seppke et al. (2010) and Wang et al. (2011) utilized satellite images
for inversion of soil roughness parameters, got s¼0.3–3 cm, cl¼3–
35 cm. Oh et al. (2007) and Thomas (2003) developed a retrieval
method of soil moisture and surface roughness from backscatter
measurements of vegetation canopy. Moreover, Tang et al. (2009)
applied a digital image processing method to obtain roughness
Geography and Agroecology,
ina.
parameters of triangular prisms, the measurement results showed
that roughness less than 0.35 mm over an area of 60 cm�60 cm
could be recognized. The contact method was also employed by
Rosario et al. (2008) and Šařec et al. (2007) to measure the surface
roughness parameters for different soils. Moreover, some authors
of the current papers presented some surface roughness testing
apparatus and the corresponding testing methods (Li et al., 2012)
that features rapid testing speed and high testing precision, re-
quires no manual work and obtains three-dimensional parameters
for the surface. By a single scan, a total number of data points in
500 mm�600 mm range of 40,000–100,000 can be obtained.
However, calculations of the correlation length and the standard
deviation of a surface height based on these data points present a
huge workload and require a large computing time. Therefore, a
high performance computing environment becomes imperative to
overcome this issue.

With the advent of Graphics Processing Units (GPUs), in-
herently parallel problems can be effectively accelerated. Modern
GPUs possess hundreds of parallel processor cores and are capable
of executing tens of thousands of threads in parallel. Unlike tra-
ditional CPUs, GPUs are not optimized for single thread perfor-
mance. Instead, they are optimized for executing a large number of
threads simultaneously. Mateo-Lázaro et al. (2014) presented an
application that visualized three-dimensional geological struc-
tures with digital terrain models by a GPU. Yang et al. (2014)

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2015.05.013
http://dx.doi.org/10.1016/j.cageo.2015.05.013
http://dx.doi.org/10.1016/j.cageo.2015.05.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.05.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.05.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.05.013&domain=pdf
mailto:lixiaojie@iga.ac.cn
http://dx.doi.org/10.1016/j.cageo.2015.05.013

X. Li et al. / Computers & Geosciences 82 (2015) 38–44 39
implemented reverse time migration using GPU programming,
combining staggered finite difference scheme with convolutional
perfectly matched layer (CPML) boundary condition. Huang et al.
(2013) focused on an innovative implementation of the Direct
Sampling method which exploits the benefits of Graphics Pro-
cessing Units (GPUs) to improve computational performance.

In this paper, we develop a GPU-based method to calculate the
soil surface roughness parameters with a total of 52,040 data
points. We reach a speedup factor of 115� , including GPU I/O
interface, as compared to a single threaded CPU version. This pa-
per is organized as follows. Section 2 outlines the methodology
followed in our study. The GPU implementation is described in
detail in Section 3. The experiment at the field test site and the
GPU based data calculation of the surface roughness parameters
are described in Section 4. Finally, Section 5 concludes the findings
of the paper.
Fig. 1. Single point laser triangulation measurement principle.
2. Methodology

When an electromagnetic wave is incident on the boundary of
a random surface present between two semi-infinite media, a
portion of the incident energy is scattered backwards and the rest
is transmitted into the lower medium. The scattered amplitude
along the specular direction decreases while those along the other
directions increase as the surface gets rougher. When surface
roughness reaches a certain value, the surface emissivity becomes
irrelevant to the observation angle. Surface roughness influences
the surface scattering process and thus affects the radiation
brightness temperature received by a radiometer antenna, which
is an important factor in the analysis of soil microwave radiation.

Single point laser triangulation principle generally uses direct-
type and oblique-type structures. Direct type's principle is shown
in Fig. 1.

In Fig. 1, the emitted laser beam is focused by the convergent
lens and strikes the surface of the measured object. The scattered
light is incident on the receiving lens and, after that, it is detected
by the photoelectric detector. According to the similarity of the
triangles AOB and A′OB′

a
b h

z
hctag /sin 1θ θ− ′

=
′ ()

where h′ is the spot on an imaging surface displacement for the
measured plane displacement z; a is the distance along the optical
axis of the lens, from the incidence point on the surface to the
intersection point on the receiving lens in mm; b is the distance in
millimeters from the receiving lens behind main surface to the
center of the imaging surface; and θ is the angle in degrees be-
tween the laser beam optical axis and the receiving lens optical
axis.

Eq. (1) leads to

z
ah

b h ssin co 2θ θ
= ′

− ′ ()

Fig. 2 shows the surface roughness tester developed by microwave
remote sensing lab, which belongs to the Northeast Institute of
Geography and Agroecology, Chinese Academy of Sciences. Based
on the laser triangulation principle (Xu et al., 2002), a linear laser
is emitted on the tested object and the image of the reflected light
is received by camera array. A measurement of the 3D area can be
obtained through an image processing algorithm and a coordinate
transformation. For a single scan, the scanned regions are 500 mm,
600 mm and 400 mm with corresponding directional resolutions
of 0.78 mm, 1.00 mm, and 0.83 mm in x direction, y direction and z
direction respectively. For each directional measurement, the
scanning time is 20 s.
This completes the apparatus based measurements. The next
step is to perform measurements on the surfaces in a 3D local
coordinate system. Based on this data sample, and once these
measurements have been completed, the calculation of the soil
surface roughness parameters can be carried out.

Soil surface can be characterized mainly by three parameters;
the standard deviation of surface height (rms height, s), the sur-
face correlation length (l), and the auto correlation function. The s
describes random surface characteristics, while the correlation
length and the correlation function describe periodicity of the
surface (Ulaby et al., 1987). Fig. 3(a) and (b) shows random height
variations superimposed on either a periodic or a flat surface.

The standard deviation of a surface height (s) and the surface
correlation length (l) are defined as follows (Ulaby et al., 1987):
a.
 Standard deviation of a surface height:
Consider a surface in the x–y plane whose height at a point (x, y) is
z(x, y) above the x–y plane. For a statistically representative seg-
ment of the surface, with dimensions Lx and Ly , centered at the
origin, the mean height of the surface is

z
L L

z x y dx dy
1

,
3x y L

L

L

L

/2

/2

/2

/2

x

x

y

y∫ ∫¯ = ()
()− −

and the second moment is

z
L L

z x y dx dy
1

,
4x y L

L

L

L
2

/2

/2

/2

/2
2

x

x

y

y∫ ∫¯ = ()
()− −

The standard deviation of the surface height σ , is then expressed
as

⎤⎦z z
N

z N z
1

1 5i

N

i
2 2

1
2

1

2 2
1
2() (∑σ = ¯ − ¯ = [

−
(() −)̄

()=

where z z
N i

N
i

1
1

¯ = ∑ = and N is the number of samples.

b.
 Surface correlation length

For the discrete case, the normalized autocorrelation function is
given by

j
z z z z

z 6

i
N

i i i j i j

i
N

i

1
j 1

1 1

1
2

ρ () =
∑ (− ¯)(− ¯)

∑ ()
=
− +

+ − + −

=

In the result produced by the microwave radiometer and the
radar detector, the scattering values are spread over a 2D area.
Hence, it makes sense to calculate the 2D correlation coefficient.
The equation was given by

Fig. 2. (a) Structure of surface roughness tester (1. Power Mobile Unit, 2. Adjust the support unit, 3. Imaging unit, 4. Computer). (b) Picture of surface roughness tester.

Fig. 3. Random height variations superimposed on a (a) periodic surface and
(b) flat surface.

X. Li et al. / Computers & Geosciences 82 (2015) 38–4440
j
z z z z

z z 7

i k
M

i i k k

i
M

i i
x x y y j j

1, 1

1
2 0.5, 0.5i k i k2 2

()()
ρ () =

∑ − ¯ − ¯

∑ (− ¯)
|

()

= =

=
(−) +(−) ∈(− +)

Where j is the value that we give to calculate the different
correlation coefficients.

The surface correlation length l usually is defined as the dis-
placement x′ for which ρ(x′) is equal to 1/e, i.e. ρ(l)¼1/e. The unit
of l is mm.

The correlation length of a surface provides a reference for
estimating the statistical independence of two points on that
surface. If the two points are separated by a horizontal distance
greater than l, then their heights may be considered to be (ap-
proximately) statistically independent one to each other.
3. GPU implementation

3.1. C code implementation

The C code implementation computes the correlation coeffi-
cients in four independent steps, which are described as follows:
i.
 Calculate the distances between any two points (xi, yi) and (xk,
yk) in the X–Y plane, where i, k¼1,2,…N.
ii.
 Consider any distance values within the range of (j�0.5, jþ0.5)
to be integer j, record the total number of point pairs that have
a distance j and denote the number as M, where j¼1,2,…300 in
our study case. When recording the point pairs, the z value of
each point is also accumulated as it will be used in the next
step.
iii.
 Compute the mean height value of the point pairs that have a
distance of j. This step has to wait for M to be ready in step (ii).
iv.
 Calculate the correlation coefficients based on Eq. (7).

As can be seen, the distances between any (xi, yi) and (xk, yk)
can be computed in parallel. The determination of whether the
distance is j can also be executed in parallel. However, the C code
failed to explore the parallel feature. In order to improve the
processing speed of the calculation of bare soil surface roughness,
we propose to utilize the GPU to explore the parallelism and ac-
celerate the C code.

3.2. CUDA implementation

The CUDA is selected to implement the GPU-based surface
roughness parameter computation scheme because of its easy
deployment and high computing performance (Sharma et al.,
2009). Moreover, it is best suited to NVIDIA GPU implementations
(NVIDIA, 2011; Mielikainen et al., 2012; Satria et al., 2012) as
compared to other computing techniques such as OpenCL and
Direct Compute.

A generic CUDA program consists of three parts. The first part
refers to the data transfer from the host CPU memory to the
dedicated GPU memory which is also called device or global
memory. The second part involves code execution on GPU, per-
formed inside a kernel. The third part refers to the copying of
output data from GPU back to the host CPU memory. The launch of
these three parts is sequential. Execution inside a GPU kernel oc-
curs in parallel.

The parallel execution in GPUs is accomplished by executing
thousands of threads that is the basic atomic unit of parallelism.
Threads are organized into a three-level hierarchy as shown in
Fig. 4. The grid is the highest-level element, which presents the
resources of the kernel. Blocks are subparts of the grid and con-
stitute the multiprocessor-level elements. Each block has its pri-
vate shared memory which cannot be accessed by other blocks but
can be shared internally among all the threads which reside within
that block. The threads are stream-processor level elements and
they possess their own local memory and registers.

The Intel i7 970 processor is selected as our CPU platform and
the NVIDIA GTX 590 board as the GPU platform. Specifications of
both are listed in Table 1.

In the process of converting C codes to CUDA codes, it is
worthwhile to pay attention to the handling of the grid point (i, j).
In CUDA codes, the loops for spatial grid points (i, j) are replaced
by index computations using thread and block indices:

i threadIdx x blockIdx x blockDim x. . . 8= = + * ()

j threadIdx y blockIdx y blockDim y. . . 9= = + * ()

where threadIdx and blockIdx are the thread index and the block
index, respectively, blockDim is the dimensional size of a block.
Thus each grid point (i, j) will be handled by a thread in the pro-
posed CUDA code.

We used gcc -lstdcþþ -O3 for the original C codes, with GNU C

Fig. 4. The three-level hierarchy.

Table 1
Device parameters of the GPU and CPU.

CPU GPU

Model Intel i7
970

NVIDIA GTX 590

Number of cores 6 16 multiprocessors (MP) 32 stream pro-
cessors (SP) per MP

Frequency (GHz) 3.2 1.215
L1 cache (KBytes) 6 * 64 48 or 16
L2 cache (KBytes) 6 * 256 768
Shared memory
(KBytes)

n/a 16 or 48

Table 3
The time usage when more L1 cache is enabled.

Time usage (s) Speedup

CPU 5422 1
GPU 818 7�

Global
memory

X. Li et al. / Computers & Geosciences 82 (2015) 38–44 41
library version 2.12-1.107. The CUDA codes were compiled using
nvcc (NVIDIA CUDA compiler) version of 5.5 and executed on a
NVIDIA GTX590 GPU board with compute capability of 2.0. The
compiler options thus are �O3 �arch sm_20 -fmad¼false -m64
�maxrregcount 63 �restrict. The maxregcount value 63 indicates
the number of registers allowed per thread, which was randomly
picked at this moment. Besides, the thread block size was chosen
as 64 at this stage.

In our experimental study, the original C implementation took
5422 s, while the first unoptimized CUDA version consumed
1132 s, which means, a simple parallel acceleration of GPU has
brought a speedup of 5, as is listed in Table 2.

3.2.1. Further improvement by allowing more L1 cache space
As has been mentioned above, the GPU scheme was evaluated

by running the CUDA codes on one GPU of the GTX590 board. As is
listed in Table 1, the data cache could be configured as 16 KB
software-managed cache called shared memory and 48 KB hard-
ware cache (L1) or the other way around. By default, the L1 cache
is set to be 16 KB. Since the shared memory is not used in the
current version, the L1 cache is thus configured to be up to 48 KB
for a better cache of the data by setting the command “cuda-
FuncCachePreferL1” in the CUDA codes. It turned out that the
larger L1 cache space helps to speed up the CUDA codes as shown
in Table 3.
Table 2
The time usage of different computation platforms.

Time usage (s) Speedup

CPU 5422 1
GPU 1132 5�
As can be seen, the time usage of the GPU-based im-
plementation was reduced to 818 s from 1132 s. The larger L1
cache helps to improve the hit rate, therefore, the final speed is
improved. It should be noted that the cost of enabling larger L1
cache is smaller than shared memory space. However, there is no
shared memory usage in the current version and even when the
shared memory is used in our next version, the 16 KB shared
memory is large enough for the method we used based on our
evaluation.

3.2.2. Further improvement by using the shared memory
To calculate the mean values of zi and zk in a more efficient way

on a GPU, we further developed a method that adopts the faster
shared memory of a GPU, which is discussed as follows.

If the distance is r, the corresponding thread maintains two
local variables to store the local sum of zi and zk . When all these
threads are finished, the local sums are buffered to the shared
memory. Then the local sums in the shared memory are accessed
and summed up again by each of these threads to calculate D1 and
D2. As a result, each of these threads have a local copy of D1 and D2.
This process is also illustrated in Fig. 5. The value of N is calculated
in the same way as with D1 and D2. Thus the mean values are
calculated by dividing D1 and D2 by N.

Subsequently the distances are computed and checked again to
determine which threads should continue in the accumulation
processes in Eq. (9). The accumulation process also employs the
method as we developed to achieve D1 and D2. The computations
Shared
memory

Register

Fig. 5. The summation process of heights of different points; different colors in-
dicate that these points are processed by different threads. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 4
The time usage when the shared memory is used.

Time usage (s) Speedup

CPU 5422 1
GPU 124 44�

Table 5
The time usage when memory coalescing is used.

Time usage (s) Speedup

CPU 5422 1
GPU 83 65x

150

200

250

300

 U
se

d
(u

ni
t:s

)

X. Li et al. / Computers & Geosciences 82 (2015) 38–4442
for different distances are assigned to be performed in different
blocks.

The distance between x y,i i() and x y,k k() is calculated and
checked twice in our GPU-based implementation. As a matter of
fact, we have also considered saving the determined result into an
array which can be used directly in the latter steps. However,
saving the result into an array occupies additional memory space.
An array with a size ofM (M�1)/2 is needed forM points. WhenM
is large, the method will suffer from lack of memory space. In
addition, the read/write time of the array will also be involved. We
therefore prefer more computation instead of more memory
accesses.

After using the shared memory of the GPU, the speedup is
shown in Table 4. As can be seen, the speedup of the GPU-based
implementation has been boosted into 44� with the adoption of
the shared memory. This is achieved in part by the buffering
scheme we designed above and the high accessing speed of the
shared memory as it is located on chip. The authors thus argue
that the use of shared memory is very important to achieve high
speedups in the development of a GPU program.

3.2.3. Further improvement with memory coalescing
The input data is a three-dimensional data array which was

originally stored in a text file. The location of a point x y,() is stored
in a line along with its height information z x y,(). Different points
are stored in different lines of the file. It is easy to see that the
original layout of the data does not satisfy the memory access
pattern required by the coalesced memory access, as the access of
the x values for different points are interlaced. The uncoalesced
memory access causes a waste of the bandwidth of the global
memory and thus affects the final performance of our GPU-based
implementation.

To solve this problem and enable coalesced memory accesses,
the array is reorganized into a column wise fashion in the global
memory when reading from the text file, which means the x va-
lues of all points are stored continuously in the memory, followed
by all the y values and then all the z values for every point. A
pictorial layout of the data structure is shown in Fig. 6 and the
result for this version is listed in Table 5.

As can be seen in Table 5, the GPU time usage was reduced to
83 s and the speedup reached 65� after we reorganized the data
layout. This is because when several threads of the GPU try to
access the data values of several points that are next to each other,
the coalesced memory access technique is able to converge these
accesses into a big one so as to reduce the global memory access
overhead. It should also be noted that it is also important to ensure
the memory addresses are aligned when allocating the memory
spaces to enable fully coalesced memory access.

3.2.4. Further improvement with best block size per grid
As the CUDA architecture automatically schedules the
Fig. 6. A pictorial layout of the data structure.
execution of different blocks, we simply set the number of blocks
to be the number of required distance calculations. In our ex-
periment, the number of blocks is 300, which is the number of
distances with different starting points. However, the decision on
the number of threads in one block, i.e. the block size, is a more
complicated task.

Firstly, the threads inside a block are scheduled based on
warps, which consists of 32 threads for the GPU we used in this
study. Therefore, the block size should be a multiple of 32 so that
all warps are fully loaded. Secondly, an optimized block size
should enable a high occupancy of the multiprocessor, which is
mainly decided by the number of active warps. Theoretically, the
multiprocessor is able to serve up to 6 active blocks and each block
is able to serve up to 8 active warps. When the actual number is
larger than these values, some blocks or warps will be inactive
until the multiprocessor is free. Besides, the size of shared memory
used in each block and the number of registers used in each thread
also affect the number of active warps in a multiprocessor. As a
result, we set the block size experimentally.

We carried out a test with varied block size for 52,040 data
points, and the results are presented in Fig. 7. It is observed that
the best performance is achieved when the block size is 512. Note
that the GPU speed increases greatly with larger block sizes when
the block size is below 128. This is because small block sizes could
not keep the multiprocessor busy. Therefore, when the block size
is larger, the multiprocessor become busier and the program runs
faster. It is also observed that the GPU speed become similar for
the block size between 128 and 1024. This is due to the multi-
processor has already become fully busy when the block size is
128. When the block size is further increased, the number of active
warps does not change any more. However, some memory access
overhead can be concealed in the switching between active blocks
and inactive blocks. Therefore, the best performance appears
when the block size is 512.

With this configuration, the final time usage and speedup are
shown in Table 6. As can be seen, the GPU time usage is only 47 s
compared with the 5422 s of CPU time usage. By optimizing the
block size, the speedup increased from 65� to 115� .
1664 128 256 512 1024
0

50

100

Block Size

Ti
m

e

Fig. 7. Runtime for 52,040 data points with different block size.

Table 6
the time usage when the block size is set to 512.

Time usage (s) Speedup

CPU 5422 1
GPU 47 115�

Fig. 8. (a) Bare soil location A. (b) The original data of location A. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

Fig. 9. (a) Bare soil location B. (b) The original data of location B. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

Space interval (mm)

C
or

re
la

tio
n

co
ef

fic
ie

nt

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

Space interval (mm)
Fig. 10. (a). 2D correlation coefficients of location A. (b). 2D correlation coefficients of location B.

X. Li et al. / Computers & Geosciences 82 (2015) 38–44 43
4. Experiment and results

The field test was carried out at the Jilin Agricultural University,
China in April 19, 2012 using a surface roughness tester developed
by the microwave remote sensing lab of the Northeast Institute of
Geography and Agroecology, Chinese Academy of Sciences.

This was used to measure the surface state of the two farm-
lands. The pictures of location and the original data by the surface
roughness tester are presented in Figs. 8 and 9. Figs. 8(a) and 9
(a) show the bare soil surface roughness for locations A and B with
location B rougher than location A. Figs. 8(b) and 9(b) show the 3D
surface data of locations A and B that means the 3D digitization
results can be obtained by using our instrument. Different colors of
points in the figures indicate different heights of the surface.

The 2D soil surface roughness can be easily obtained from the
3D coordinates by using our GPU program. The correlation coef-
ficients for location A, with a total number of 52,040 points, are
displayed in Fig. 10(a). A correlation length of 49.09 mm is ob-
tained in this case. The standard deviation of the surface height is
12.70 mm. The GPU correlation coefficients for the location B, with
a total number of 53,869 points are displayed in Fig. 10(b). A cor-
relation length of 43.21 mm is obtained in this case and the
standard deviation of the surface height is 16.85 mm. The standard
deviation of location B is bigger than location A, and the

Table 7
The CPU- and GPU-based results for the calculation of roughness parameters.

Data points CPU time (s) GPU time (s) Speedup

47,958 4847 40 121
52,040 5422 47 115
53,869 5772 51 113
66,864 8486 80 106

X. Li et al. / Computers & Geosciences 82 (2015) 38–4444
correlation length of location B is smaller than location A, which
means location B is rougher than location A.

In order to test the applicability of our GPU program, we have
also used additional datasets. The timing results calculated at
different data points using CPU and GPU are shown in Table 7
along with the speedup for the GPU based implementation.

As observed in Table 7, the data points are from 47,958 to
66,864, which is a typical number of points for our instrument.
The results show, the computing time on GPU are reduced to less
than 80 s from more than 2 h on a CPU, it means the GPU im-
plementation is suitable for on-site test. And great improvements
in the speedup which are more than 100� are achieved using the
GPU architecture.

This implementation takes into account the data transfer
overhead while calculating the speedup. Unlike many other im-
plementations, the data transfer time only takes a small portion of
the overall time since the input is composed by 3N floating point
numbers, where N is the number of points, and the output is
composed by j floating point numbers, where j is the number of
height values used for calculation. Compared with the computa-
tion that has a complexity of N2, the data transfer only takes a very
short time. Therefore, the performance lost owing to data transfer
overheads is very small.
5. Conclusion

In this paper, we have developed a GPU-based parallel com-
puting method for 2D surface roughness estimation. It was im-
plemented in CUDA and executed on an NVIDIA GeForce GTX 590
card. Calculating the distance between any two points can be
carried out by threads. In our implementation, we designed the
computations for different appointed distances such that they are
performed in different blocks. This method was applied to the data
collected by our surface roughness tester on April 2012 based on
the laser triangulation principle. For a total of 52,040 data points,
the serial CPU version of the implementation took 5422 s whereas
the GPU implementation took 47 s, leading to a significant 115�
speedup.

This result can be used in Advanced Integrated Equation Model
(AIEM) to calculate the soil backward scattering coefficient.
Therefore, it has an important role in the study of microwave
detecting ground radiation.
View publication statsView publication stats
Acknowledgments

This work was supported by the National Natural Science
Foundation of China, No. 41201335 and was contributed in Space
Science and Engineering Center, University of Wisconsin–Madison
USA. The authors would like to thank Dr. Bormin Huang for his
excellent suggestions in our research.
References

Hong, S., 2010. Surface roughness and polarization ratio in microwave remote
sensing. Int. J. Remote Sens. 31 (10), . 2709–2716.

Huang, T., Li, X., Zhang, T., Lu, D., 2013. GPU-accelerated direct sampling method for
multiple-point statistical simulation. Comput. Geosci. 57, 13–23.

Li, X., Zhao, K., Zheng, X., 2012. Development of surface roughness tester based on
laser triangulation method. Trans. Chin. Soc. Agric. Eng. 28 (8), 116–121.

Mateo-Lázaro, J., Sánchez-Navarro, J.Á., García-Gil, A., Edo-Romero, V., 2014. 3d-
geological structures with digital elevation models using GPU programming.
Comput. Geosci. 70, 138–146.

Mielikainen, J., Huang, B., Huang, H., Goldberg, M., 2012. Improved GPU/CUDA
based parallel Weather and Research Forecast (WRF) Single Moment 5-Class
(WSM5) cloud microphysics. Appl. Earth Obs. Remote Sens. vol. 5 (4),
1256–1265.

Mittal, G., Singh, D., 2010. Critical analysis of microwave specular scattering re-
sponse on roughness parameter and mois-true content for periodic rough
surfaces and its retrieval. Prog. Electromagn. Res. 100, 129–152.

NVIDIA, 2011. NVIDIA CUDA C Programming Guide.
Oh, Y., Hong, J.-Y., Jung, S.-G., 2007. Retrieval of soil moisture and surface roughness

from backscatter measurements of vegetation canopy. In: Asia-Pacific Micro-
wave Conference, pp. 1–3.

Rosario, G.-M., Maria Cruz, D.-A., Requejo, S., Tarquis Alfonso, A., Maria, A., 2008.
Multifractal analysis of soil surface roughness. vol. 7. Soil Science Society of
America, USA, pp. 512–520.

Šařec, P., Šařec, O., Prošek, V., Čížková, K., 2007. Laser profilometer testing by la-
boratory measurements. Res. Agric. Eng. 53 (1), 1–7.

Satria, M., Huang, B., Hsieh, T., Chang, Y., Liang, W., 2012. GPU acceleration of tsu-
nami propagation model. Appl. Earth Obs. Remote Sens. 5 (3), 1014–1023.

Seppke, B., Dreschler-Fischer, L., Heiming, J.-A., Wengenroth, F., 2010. Fast deriva-
tion of soil surface roughness parameters using multi-band SAR imagery and
the integral equation model. In: Proceedings of the 2010 International Con-
ference on Pattern Recognition. IEEE Computer Society, pp. 3931–3934.

Sharma, B., Thota, R., Vydyanathan, N., Amit, K., 2009. Towards a robust, real-time
face processing system using CUDA-enabled GPUs. Presented at the 2009 In-
ternational Conference on High Performance Computing HPC, pp. 368–377.

Tang, X., Xiao, H., Ding, H., Liu, J., 2009. Surface roughness measurement based on
image processing and image recognition. Comput. Simul. Mod. Sci., 91–96.

Thomas, H., 2003. Measuring surface soil parameters using passive microwave
remote sensing. The ELBARA Field Experiment.

Ulaby, F.-T., Moore, R.-K., Fung, A.-K., 1987. Microwave remote sensing active and
passive. Radar Remote Sens. Surf. Scatt. Emiss. Theory 2, 819–833.

Wang, S.-G., Li, X., Han, X.-J., Jin, R., 2011. Estimation of surface soil moisture and
roughness from multi-angular ASAR imagery in the Watershed Allied Tele-
metry Experimental Research (WATER). Hydrol. Earth Syst. Sci. 15, 1415–1426.

Xu, Z.-Q., Sun, C.-K., Ye, S.-H., 2002. Reverse Engineering Technology. Beijing, pp.
13–16.

Yang, P., Gao, J., Wang, B., 2014. RTM using effective boundary saving: a staggered
grid GPU implementation. Comput. Geosci. 68, 64–72.

Zheng, X., Zhao, K., 2010. A method for surface roughness parameter estimation in
passive microwave remote sensing. Chin. Geogr. Sci. 20 (4), 345–352.

http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref1
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref1
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref1
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref2
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref2
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref2
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref3
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref3
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref3
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref4
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref4
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref4
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref4
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref5
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref5
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref5
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref5
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref5
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref6
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref6
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref6
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref6
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref7
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref7
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref7
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref7
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref8
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref8
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref8
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref9
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref9
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref9
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref10
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref10
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref10
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref11
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref11
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref11
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref12
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref12
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref12
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref12
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref13
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref13
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref13
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref14
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref14
http://refhub.elsevier.com/S0098-3004(15)00117-X/sbref14
https://www.researchgate.net/publication/277339229

	Fast computation of bare soil surface roughness on a Fermi GPU
	Introduction
	Methodology
	GPU implementation
	C code implementation
	CUDA implementation
	Further improvement by allowing more L1 cache space
	Further improvement by using the shared memory
	Further improvement with memory coalescing
	Further improvement with best block size per grid

	Experiment and results
	Conclusion
	Acknowledgments
	References

