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Abstract. New medical imaging modalities offering multi-valued data,
such as phase contrast MRA and diffusion tensor MRI, require general
representations for the development of automatized algorithms. In this
paper we propose a unified framework for the registration of medical vol-
umetric multi-valued data. The paper extends the usual concept of sim-
ilarity in intensity (scalar) data to vector and tensor cases. A discussion
on appropriate template selection and on the limitations of the template
matching approach to incorporate the vector and tensor reorientation
is also offered. Our approach to registration is based on a multiresolu-
tion scheme based on local matching of areas with a high degree of local
structure and subsequent interpolation. Consequently we provide an al-
gorithm to assess the amount of structure in generic multi-valued data
by means of gradient and correlation computations. The interpolation
step is carried out by means of the Kriging estimator that outperforms
conventional polynomial methods for the interpolation of sparse vector
fields. The feasibility of the approach is illustrated by results on synthetic
and clinical data.

1 Introduction

While there is a large amount of research done on the registration of scalar
datasets provided by different types of intensity-based MRI scans and other
medical imaging modalities, with a proliferation of algorithms and a solid theo-
retical background [1], this does not seem to be the case for non-scalar datasets
despite their increasing clinical relevance. For example, techniques offering higher
dimensional output fields are Phase Contrast Angiography MRI (PCA-MRI),
which provides a vector field of blood velocities, or Diffusion Tensor MRI (DT-
MRI), which provides a second order symmetric-tensor field description of the
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local water diffusion in each tissue. The major aim of this paper is to develop a
common framework for the three-dimensional registration of scalar, vector and
tensor fields that can be readily embedded in medical imaging applications. In
particular our goal is to map a reference anatomy, depicted by the signal Sr(x),
onto a deformed one, represented by the signal Sd(x). Both signals are the out-
put of scanning devices and could correspond to different studies of the same
patient or to different patients. Equation (1) describes a model to characterize
the relationship between both datasets – see also Fig. (1) –, where D models the
deformation applied to the reference signal, and both H and the noise v model
the inter-scan differences.

Sd(x) = H [D [Sr(x)]] + v(x) (1)

noise

Reference Image Deformed Image

Sr(x)

 v(x)

Sd(x)Deformation
      D[ ] +Interscan system

           H[ ]

Fig. 1. Model relating two different scans

The deformation D represents a space-variant shift system and, hence, its
response to a signal S(x) is D[S(x)] = S(x+d(x)). With regard to the inter-scan
differences, we are considering H to be a non-memory, possibly space-variant,
system depending on a set h(x) = (h1(x) . . . hp(x))t of unknown parameters and
the noise to be spatially white and with zero mean. With these simplifications
and defining SH

r (x) = H [Sr(x)], the model (1) reduces to:

Sd(x) = SH
r (x + d(x)) + v(x) (2)

The goal of registration is to find the displacement field d(x) that makes the
best match between Sr(x) and Sd(x) according to (2). The approach proposed
in this paper is based on template matching by locally optimizing a similarity
function (Sect. 2). A local structure detector for generic tensor fields (Sect. 3)
allows to constrain the matching to areas highly structured. In order to obtain
the deformation field in the remaining areas we propose (Sect. 4) an interpo-
lation scheme whose key feature is the probabilistic weighting of the samples
using a Kriging Estimator [4] as an alternative to global polynomial models.
The whole approach is embedded in a multiresolution scheme using a Gaussian
pyramid in order to deal with moderate deformations and decrease the influence
of false optima. We also present (Sect. 5) some illustrative results carried out on
synthetic and clinical data.
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2 Template Matching

Several schemes can be used to estimate the displacement field in (2). When
there is no a priori probabilistic information about the signal and noise charac-
terization, a Least-Squares [3] approach is a natural choice. For this all that is
required is a suitable definition of an inner product and, thereafter, an induced
norm. Note that scalar, vector and tensor fields are applications of a real domain
onto Euclidean vector spaces and which allows us to define the inner product
between fields by means of the integral over the whole domain of the inner prod-
ucts between their values. Let us consider the functional set F = {f : D −→ V }
where D is a real domain and V is an Euclidean space. Then an inner product
can be defined on F as < f1, f2 >=

∫
D

w(x) < f1(x), f2(x) > dx, where w(x)
is a weighting function for the inner product. Note that the inner product in
the left-hand side is defined between fields and in the right-hand side, inside the
integral, is defined between values of the field.

The least squares estimator is obtained minimizing a cost function (3) that
consists of the squared norm of the estimation error.

C∗(d(x);h(x)) = ‖Sd(x) − SH
r (x + d(x))‖2 (3)

The dependency on the unknown parameters can be removed by estimating
them using some constraints. For example, if the parameters are assumed to be
constant, a least-squares estimation can be obtained, ĥ(d) = ĥ(Sd(x), Sr(x +
d(x))), and substituted in C∗ to obtain a new cost function (4) that only depends
on d(x).

C(d(x)) = C∗(d(x); ĥ(x)) (4)

The optimization of C(d(x)) in order to obtain the displacement field d(x)
is a daunting task that requires additional constraints to make it feasible. Tem-
plate Matching trades off accuracy and computational burden to approximate a
solution for this optimization problem. In particular it assumes that (2) holds
with a uniform displacement field (i.e. translational) and constant parameters in
a neighborhood of the point x0 to be corresponded. This prevents the template
matching method to be successfully used in the presence of significant rotational
deformation fields. There is a fundamental trade-off to be considered in the de-
sign of the neighborhood: it must be non-local, and hence large in size, in terms
of the Sd(x) space-frequencies to avoid the ill-posedness arising from the lack of
discriminant structure (aperture problem [2]), and it must be local, and hence
small in size, in terms of the unknown displacement field spatial-frequencies to
guarantee invariance of the transformation parameters. If the template is too
small, the problem remains ill-posed and the contribution of noise leads to false
solutions. Conversely, if the template is too large the estimated parameters for
the transformation are a smoothed version of the actual ones. Adaptive tem-
plates with different sizes and weights can help to deal with this problem.

Let T (x − x0) be a window function centered in a generic point x0 in the
deformed dataset and designed following the previous remarks. The template
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matching assumptions transform (2) into (5), that holds for every point x0 in
the deformed dataset.

T (x− x0)Sd(x) = T (x− x0)SH
r (x + d(x0)) + v(x) (5)

Equation (5) has an intuitive interpretation: for every point x0 in the de-
formed dataset a template T (x−x0)Sd(x) is constructed and compared against
every possible template around it in the transformed (by H) reference dataset.
This means that a complex global optimization problem has been split into
many simple local ones. In order to constrain the variability of the estimated
displacement field it can be smoothed after the matching using a linear filter.

2.1 Similarity Functions

A Similarity Function is any convenient monotonic function of the cost (3),
S(d(x)) = F [C(d(x))], that leaves the locations of the optima unchanged. Under
the template matching assumptions the similarity function S(d;x0) is local and,
hence, it depends on x0. Here the least-squares method referred to above is used
to obtain suitable local similarity functions for the template matching of generic
tensor fields.

Let us first consider that H is the identity mapping and, hence, (3) and (4)
are equal. Direct use of (4) provides the similarity function (6) that corresponds
to the well-known Sum of Squared Differences.

SSSD(d;x0) = ‖T (x− x0) (Sd(x) − Sr(x + d)) ‖2 (6)

The extension of (6) using inner products and assuming that ‖Sr(x + d)‖2 is
almost constant for all possible d leads to an alternative similarity that corre-
sponds to the Correlation measure.

SC(d;x0) = < Sd(x), Sr(x + d) > (7)

Let us now consider that H is an affine transformation of the intensity. In this
case SH

r (x + d) = aSH
r (x + d) + b and the cost (3) turns out to be (8)

C∗(d; a, b;x0) = ‖T (x− x0) (Sd(x) − aSr(x + d) − b) ‖2 (8)

Minimizing (8), expanding the inner product, it is not difficult to find an es-
timator for the parameters a and b. Substituting them into (8) and making
some manipulations its possible to derive the well-known correlation coefficient
similarity measure (9), whose absolute value is to be maximized and where
s = T (x−x0)Sd(x), p1 = T (x−x0)Sr(x+d), p2 = T (x−x0) and p̂2 = p2

‖p2‖ . The
correlation coefficient provides a geometric interpretation as the cosine of the an-
gle between the normalized versions of T (x−x0)Sd(x) and T (x−x0)Sr(x+ d),
obtained removing the mean value and making the signals to have unit norm.

Sρ(d;x0) =

�
s− < s, p̂2 >

‖s− < s, p̂2 > ‖ ,
p1− < p1, p̂2 >

‖p1− < p1, p̂2 > ‖
�

(9)
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The application of the equations above requires a proper definition of the
inner product (10) and its induced norm (11). We assume that the tensors are
cartesian (defined with respect to an orthonormal basis) and we are using the
Einstein notation for sums (any repetition of an index entails a summing over this
index). Note that with these definitions the elements with the form f− < f , p̂2 >
in (9) are the mean value of f weighted by T (x− x0).

< S1(·), S2(·);x0 > =
∫

D

S1i1...in
(x)S2i1...in

(x)dx (10)

‖S(·);x0‖2 =
∫

D

Si1...in(x)Si1...in(x)dx (11)

2.2 Warped Vectors and Tensors

Vector and tensor data are linked to the body under inspection and, thereafter,
any warping of the supporting tissue will lead to a consequent warping or reori-
entation of these data. In fact, as far as the function and the domain share the
same reference system (or any rigidly related one), any transformation applied
to the domain will affect to the function too. In particular, we are considering
the domain transformation to be analytic and, hence, to preserve local topol-
ogy, i.e., differential line elements map onto differential line elements, the same
being true for differential surface and volume elements; moreover, differential el-
lipsoids are mapped onto differential ellipsoids. The warping of the domain can
be expressed by the transformation x = T(x′), where x stands for points in the
reference dataset and x′ for points in the deformed one. The differential of the
transformation is

dx = [∇⊗ T(x′)] dx′ (12)

where the tensor product ⊗ has been used to define the deformation gradient
A(x′) = [∇⊗ T(x′)], which can be recognized as the Jacobian matrix of the
mapping. Consequently, two vectors v and v′ and two second order tensors P
and P′ are locally related as follows:

v = [∇⊗ T(x′)]v′ (13)

P = [∇⊗ T(x′)]−1 P′ [∇⊗ T(x′)] (14)

The Polar Decomposition Theorem [5] states that for any non-singular square
matrix, such as the Deformation Gradient A(x′), there are unique symmetric
positive definite matrixes U(x′) and V(x′) and also an unique orthonormal ma-
trix R(x′) such that A(x′) = R(x′)U(x′) = V(x′)R(x′). This leads to important
geometric interpretations of the geometric mapping. For example, notice that a
sphere is first stretched by the mapping in the directions of the eigenvectors of
U(x′) and then rotated by R. Thereafter, a transformation such that locally
R(x′) = I is said to be a Pure Strain at x′ while if U(x′) = V(x′) = I it is said
to be a Rigid Rotation at that point.
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It was said above (Sect. 2) that the matching approach to data registration
relies on the fact that the displacement field is constant inside the matching
template. This imposes a hard local constraint on the deformation gradient, since
it must locally be close to the identity matrix. Therefore, unless the template
is reduced to a single point (for example, by smoothing and downsampling) one
should not include the local directional change of the vector and tensor fields
due to the domain warping in the matching problem. Nevertheless, once the
displacement field has been estimated, it is possible to use (13) and (14) to
compute the reorientation of the vector or tensor field.

3 Structure Measures

Matching must be constrained to areas with local high discriminant structure in
order to be successfully applied, making sure that the local similarity function
are narrow around the optima. We propose to threshold a convenient measure
of cornerness to identify the appropriate areas. In the scalar case some of these
measures are based on identifying points corresponding to curved edges by means
of the locally averaged outer product (i.e. the correlation matrix) of the gradient
field [6]. The gradient of a tensor field is expressed in invariant form with a
tensor product ∇ ⊗ S(x). Using an orthonormal basis, the gradient of a scalar
field in any point is a vector whose components are the partial derivatives of the
function. For a vector field, the gradient turns out to be the Jacobian matrix
with the partial derivatives for each component and for a second order tensor
field it is a 3D array with the partial derivatives of every component of the
tensor. The comma [5] convention becomes very handy to represent gradients in
component form and it has been used in (15), where , k indicates an indexing
of the partial derivatives and n is the order of S. Note that for each component
of a generic field we obtain a gradient vector that is arranged into the overall
gradient tensor.

∇⊗ S(x) = Si1...in,k(x) (15)

In the scalar case, the correlation matrix of the gradient vector, i.e., the sym-
metric, positive semidefinite second order tensor formed by the mathematical
expectation of the outer product of the gradient vector (16) provides the ba-
sis to assess cornerness analyzing its associated quadratic form (ellipsoid): The
rounder the ellipsoid the bigger the cornerness while a very elongated ellipsoid
would indicate a straight edge.

R∇S(x) = E {∇S(x) ⊗∇S(x)} (16)

In order to extend this idea to the vector and tensor cases, note first that (16)
can be directly extended into the correlation tensor (17).

R∇S(x) = E {∇ ⊗ S(x) ⊗∇⊗ S(x)} (17)

For example, if we had a second order tensor field we would obtain a sixth
order correlation tensor. The generalized correlation matrix (18) is defined as
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the contraction of all the non-differential components in (17) with respect to an
orthonormal basis.

R∇S(x) = E {Si1...in,k(x)Si1...in,l(x)} (18)

Due to the linear nature of the expectation operator, the generalized correlation
matrix of the gradient of a generic tensor field is the sum of the correlation ma-
trices of the gradient vectors of each coordinate. This is consistent with the fact
that each component adds its own edge and, therefore, the ellipsoid associated
to the generalized correlation matrix get rounder as new components are added
unless they do not provide additional directional information.

Matching is therefore constrained to points where the ellipsoids associated to
the generalized correlation matrices are large and round enough, meaning strong
and curved edge.

4 Interpolation: The Kriging Estimator

The structure analysis carried out in the previous section provides a sparse set
of clusters of 3D points on which a local estimation of the displacement can
be performed by template matching. Two comments must be made in order to
interpolate the displacement field in the remaining areas. First of all the field
can be discontinuous due to the relative motion between different bodies; this
prevents the direct use of any global polynomial interpolation approach since
no single model can fit everywhere in the dataset. Second, the displacement
field components on the boundaries of touching organs must have continuous
components in the directions normal to the surface interfaces, though the field
can be discontinuous in the orthogonal tangent plane. This simply indicates
that the motion at the boundaries can be decomposed in a discontinuous sliding
component and in a continuous pushing one.

The Kriging Estimator (KE), which originated in geostatistics [7,8], is a
method to deal with spatially dependent data. Essentially it provides a linear
estimator of an unknown sample of a random field using a set of known sam-
ples. The estimator is designed to minimize the mean squared error under the
constraint of the the estimator to be unbiased, i.e., the weights must sum up
one. From a practical point of view, the KE weighs the contribution of each
known sample according to its distance to the one to be estimated. This means
that distant samples lose importance and eventually can be ignored in the esti-
mator while closer samples, which are more likely to be part of the same body
and to have similar realization values, increase their relative importance. Its
application to the interpolation of 3D scalar medical images has been referred
elsewhere [9]. Here the method is used in the interpolation of displacement fields
considering each spatial component independently. A hypothesis is made about
a so-called variogram function, which is the mean squared error between two
samples at a distance r. See [4] for a discussion on different variograms. Essen-
tially a parametric model is proposed as theoretical variogram and parameter
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estimation from the known data using, for example, least-squares, leads to the
experimental variogram, which is the one actually used.

The KE interpolator provides an estimator for the components di(x0) of the
displacement field in x0 as a linear combination of the corresponding components
matched at the high structure locations di(xj), as it is indicated in (19).

di(x0) =
N∑

j=1

hjdi(xj) (19)

The weights of the estimator are obtained solving the linear system of equa-
tion (20), where γ(‖xi − xj‖) is the evaluation of the variogram between point
xi and xj .
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5 Results

The framework presented in this paper is under evaluation in a number of clinical
cases at Brigham & Women’s Hospital. The implementation relies on sampled
data and therefore the integrals in (10) and (11) become sums. The window
function T (x) is defined to be the unity inside a cube centered in the origin
and zero outside. The local structure detection is based on (18) where the ex-
pectation is computed from the sample mean. Since det(R∇S(x)) =

∏
λi and

tr(R∇S(x)) =
∑

λi (λi are the eigenvalues of R∇S), only points above a thresh-
old in t1(x) = det(R∇S(x))

tr(R∇S(x)) are considered. False detections due to high gradients

are avoided thresholding t2(x) = det(R∇S(x))

tr( 1
N R∇S(x))N that varies between zero and one

depending on the shape of the associated ellipsoid, with one meaning a perfect
sphere. The structure detector is only applied to the deformed dataset, provid-
ing clusters of points in which the displacement vector is to be estimated using
template matching around a neighborhood. The warp is interpolated in a generic
point of low structure using Kriging derived from the N closest highly structured
points with known displacement. The estimated warp is finally smoothed with
a linear filter. The full approach is embedded in a gaussian pyramid so that
warps estimated at coarser resolution levels are linearly interpolated in order to
be used as initial displacement in the next higher resolution level.

Figure (2.a) shows a 32 × 32 MRI slice of the corpus callosum that is de-
formed by a synthetic gaussian field as depicted in Fig. (2.b). In Fig. (2.c) it is
shown the correctly estimated displacement field in areas of high structure (blue
arrows) and the interpolated field (red) using the Kriging estimator with a linear
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variogram γ(r) = ar. All experiments carried out have confirmed the superior
performance of the Kriging estimator over polynomial interpolators both with
synthetic and real deformations.Figure (3.a) shows an axial slice of a DT-MRI
dataset 1 of the corpus callosum where the principal eigenvectors directions have
been represented using a color coding ranging from blue (in-plane projection) to
red (orthogonal to plane) [10]. The whole approach has been applied to warp this
dataset into another corresponding to a different individual, shown in Fig. (3.b),
using three levels of a gaussian pyramid, local templates of dimension 3× 3 and
a linear variogram for the Kriging interpolator that is limited to take into ac-
count the 20 closest samples. Figure (3.c) shows a T2W zoomed version of the
righthand side of the former, corresponding to the posterior corpus callosum and
the estimated deformation field.

6 Conclusions

We have presented a unified framework for non-rigid registration of scalar, vector
and tensor medical data. The approach is local, since it is based on template-
matching, and resorts to a multirresolution implementation using a Gaussian
pyramid in order to provide a coarse-to-fine approximation to the solution which
allows to deal with moderate deformations and avoids false local solutions. The
method does not assume any global a priori regularization and, therefore, avoids
the computational burden associated to those approaches. We also have extended
the concept of discriminant structure to the tensor case, providing a new operator
to detect it. The Kriging Estimator outperforms polynomial approaches for the
interpolation of sparse displacement fields and to the best of our knowledge this
is the first time to be used with this purpose in medical image analysis. The
whole approach is under evaluation in a number of clinical cases at Brigham &
Women’s Hospital with preliminary promising results.
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