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People tend naturally to resort to graphs
when solving a problem, if only to more
fully represent that problem. Just think
of a technical presentation without

charts, graphs, or the like. The audience would
have trouble keeping track of the speaker’s infor-
mation, and the speaker wouldn’t easily get to the
point where his or her ideas were structured so
as to make them understandable to others.

Think now of a complex problem in which a
large number of variables interact. We know that
some of these variables affect each other more
than others; we even have some idea how some
of them shield each other from the rest of the
problem’s variables. A graphical model is a nat-
ural way for us to visually capture this interaction
and analyze it.

This article deals with probabilistic systems—
systems in which uncertainty is present because
the variables are random, so we can only draw
probabilistic conclusions. The basic idea under-

lying graphical models is the exploitation of our
ability to model complex problems out of small
interacting boxes. However, quantifying this—as-
sociating numbers with the connections so as to
make a consistent probabilistic system—is not
trivial. The converse is also true: inferring a prob-
ability model from a graphical model is not obvi-
ous. Trying to verify the existence of a graphical
model that captures all the dependence relations
within a probabilistic system is a risky but poten-
tially rewarding business. Here, we overview
graphical models and provide applications and de-
tails to help researchers understand them.

An axiomatic theory

Graphical modeling is a natural way for people
to encode the global interaction among a prob-
lem’s variables. (See the sidebar “A note on his-
tory” for more background.) We build such
models using two basic elements: nodes, which
encode the variables, and connections, which en-
code the interactions. Directly connected nodes
exert direct influence. Indirectly connected
nodes influence each other but only through the
intermediate nodes that separate them.

Can a graphical model represent a probabilistic
system—that is, a function P of, say, N variables
X1, …, XN that satisfies all the axioms of proba-
bility?1 Such functions involve marginalization,
conditional probabilities, independencies (either
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marginal or conditional), and other issues.
Judea Pearl1 approached this problem by defin-

ing a general dependency relation I on three sets
of variables X, Z, and Y. (We use boldface to de-
note a set of variables and regular italic font to de-
note an individual variable. For instance, X might
consist of N nodes (variables) X1, …, XN. The re-
lation I(X, Z, Y) is to be interpreted as “given the
piece of knowledge Z, getting to know Y has no
effect on our current belief of X.” A probabilistic
model is but one particular case of such a general
relation, but if relation I is a dependence relation
with respect to a probability function P, this re-
lation must satisfy a number of properties (see the
“Pearl’s theoretical framework” sidebar). The
properties in the sidebar are the starting point to
answer the question we have just posed. 

Assume that X, Z, and Y are three sets of dis-
joint vertices in a graph. Common sense dictates
(and we will take it for granted from now on)
that the set Z separates the sets X and Y if every
path that joins any two vertices of the two sets
passes through vertices of Z (see Figure 1). In
this case, Z is called a cutset of X and Y; if we now
add vertices to Z (not belonging either to X or
Y), the new superset keeps its cutset condition.
This is actually a property called strong union.
But, as you can see in the sidebar, IP only needs
to satisfy the weak union property; therefore, be-
cause weak union is weaker than node separa-
tion, we might find cases where graphical mod-
els cannot represent probabilistic models. We
try to clarify this later, but first, we describe a
broad classification of graphical models.

For a graphical model consisting of nodes and
connections, the taxonomy is straightforward:

• If connections are undirected, we have an
undirected graph (UG).

• If connections are directional (an arrow is
drawn from an origin node to a different des-
tination node), the graph is known as a di-
rected acyclic graph (DAG).

The presence of arrows in a DAG forces a
cause–consequence relation between nodes. Ori-

A note on history
Sewal Wright1 is considered the pioneer in the use of graphical

models for probabilistic information as an aid in the biometric
analysis of data; his first work was published in 1921. However, sta-
tisticians in the first half of the 20th century mainly focused on
quantitative analysis, so Wright’s idea had a lukewarm acceptance.

The 1960s reversed that trend: people used graphical models to
decompose statistical tables, the properties of these models started
to catch on, and valuable contributions have appeared since then.2–4

Ernst Ising5 pioneered the evolution of Markov random fields
(MRFs) with his attempt to obtain a probabilistic model of the
spin configurations of the particles belonging to a ferromagnetic
material. He assumed that only neighboring particles influenced
others and that the influence was one-dimensional.

Charles J. Preston generalized these results from regular topolo-
gies in a plane to arbitrary interactions, carefully defining the con-
cepts of neighbors and cliques.6 Julian Besag developed a general
form to define MRFs in lattices by introducing the concept of po-
tentials.7 Finally, Stuart Geman and Donald Geman8 proved a
number of results about convergence of Markov chains. They
showed how to use the Gibbs sampler and simulated annealing to
solve problems posed as MRFs.
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gin nodes are considered direct causes of desti-
nation nodes, and the latter are considered di-
rect consequences of the former. Therefore,
DAGs can encode knowledge in which a clear
direction of dependence exists.

UGs encode influences among nodes; directly
connected nodes have a stronger influence than
vertices separated by intermediate nodes. In fact,
as we said before, if a group of nodes are a cutset
between two different sets of nodes, then know-
ing the values of the cutset will render one of the
groups irrelevant to the other.

Undirected graphs

Consider the following problem. You are dri-
ving and see a policeman performing a speed
control (monitoring traffic using radar). You
know the police perform speed controls the day
before a holiday (because many cars are on the
road) or if there is a party nearby (for safety rea-
sons). Assume you live in a college town—it’s the
summer term, so parties occur regardless of to-

morrow being a workday. We can therefore as-
sume independence between the holiday and the
party. Initially, we can model this problem (see
Figure 2) with three vertices: speed control (SC),
party (F, for the Spanish word fiesta), and holi-
day (H). There is an obvious influence of party
and holiday on speed control, so connections are
drawn accordingly. But, because we have as-
sumed F and H are independent, no connection
appears between them.

This simple example highlights an important
pitfall of UGs: the inability to model induced de-
pendencies. The model separates the nodes F and
H by means of SC, which is therefore the cutset
of both nodes. Hence, according to the model,
H and F are still independent—learning any-
thing about one of them has no effect on the
other. However, if I know tomorrow is not a hol-
iday, the presence of the police car performing
speed control must be because a party is hap-
pening somewhere. SC cannot be a cutset.

Another possibility is to join each and every
vertex, but that would make Holiday and Party

Pearl’s theoretical framework 
Three sets of theorems, taken directly from Judea Pearl’s work,1

give an objective framework to connect the conditional-indepen-
dence relation with probability theory and to define clearly when
undirected graphs and directed acyclic graphs are perfect maps
of a probability function. We can understand conditional inde-
pendency in a broader sense than what probability says. For three
disjoint sets of variables X, Y, and Z (all belonging to the universal
set U), the independence of X and Y conditioned to Z is to be un-
derstood as “once I get to know Z, knowing Y gives no further in-
formation about X.” Probability theory is just a particular case.

In the following, the symbol ∪ represents the union of
sets of variables—the superset containing all the nodes be-
longing to both operands. Also, Greek lower-case letters de-
note single nodes, and bold-face capital letters denote
groups of nodes. Also, the & stands for AND.

Theorem 1

Given the disjoint sets of variables X, Y, and Z, if relation
IP(X, Z, Y) means “X is independent of Y given Z” in some
probabilistic model P, then the following conditions must be
satisfied:  

• Symmetry: IP(X, Z, Y) – IP(Y, Z, X)
• Decomposition: IP(X, Z, Y ∪ W) ⇒ IP(X, Z, Y) & IP(X, Z, W)
• Weak union: IP(X, Z, Y ∪ W) ⇒ IP(X, Z ∪ W, Y)
• Contraction: IP(X, Z, Y) & IP(X, Z ∪ Y, W) ⇒ IP(X, Z, Y ∪ W)
• Intersection, if P is strictly positive: IP(X, Z ∪ W, Y) & IP

(X, Z ∪ Y, W) ⇒ IP(X, Z, Y ∪ W)

Theorem 2
A necessary and sufficient condition for a probabilistic

model P to be graph-isomorphic is that IP must satisfy the
following additional conditions:

• Strong union: IP(X, Z, Y) ⇒ IP(X, Z ∪ W, Y)
• Transitivity: IP(X, Z, Y) ⇒ IP(X, Z, γ) OR IP(γ, Z, Y), with γ

a single node that belongs to U, and all the arguments
in IP(,,) being disjoint

• Intersection, to be satisfied always

Theorem 3 

A necessary and sufficient condition for a probabilistic
model P to be DAG-isomorphic is that IP must satisfy the fol-
lowing additional conditions (with respect to Theorem 1):

• Composition/decomposition: IP(X, Z, Y ∪ W) − IP(X, Z,
Y) & IP(X, Z, W)  

• Weak transitivity: IP(X, Z, Y) & IP(X, Z ∪ γ , Y) ⇒ IP(X, Z,
γ) OR IP(γ, Z, Y)

• Chordality: IP(α, γ ∪ δ , β) & IP(γ, α ∪ β , δ) ⇒ IP(α, γ, β)
OR IP(α, δ, β)

Reference
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initially dependent, which is false under our 
assumptions.

Thus, this example illustrates that UGs can-
not encode all probabilistic systems. To make
this statement formal, let G be a graph consisting
of the vertices V and the edges E, or G = (V, E).
Let a probabilistic system P consist of the vari-
ables U with three disjoint subsets X, Z, and Y.
Assume we can draw a graph with as many ver-
tices as variables in U. Therefore, think of vari-
ables in U and vertices in V interchangeably.

We make the following distinction:

• Separation in a graph: if Z is a cutset in a
graph of the two sets X and Y, we represent
it by Sep(X, Z, Y).

• Conditional independence: if X is condition-
ally independent of Y given Z (that is, if
P(X, Y|Z) = P(X|Z)P(Y|Z)), then we write
IP(X, Z, Y).

For the graph G = (V, E) to fully represent a
probability model, separation in the graph must
imply conditional independence and vice versa.
In this case, the probabilistic model P is said to
be graph-isomorphic, and the graph is said to be a
perfect map of the probabilistic system. The
“Pearl’s theoretical framework” sidebar shows
the conditions that the probability system must
hold to be graph-isomorphic.

In the speed control example just given, sep-
aration in the graph obviously does not imply
conditional independence; this is why the UG
failed to represent such dependency. The prop-
erty of strong union, for instance, does not hold
(consider when Z = 0⁄ and W = SC). 

In such cases, a perfect map is not possible, but
sometimes an approximation to it is. This ap-
proximation is called an independency map, or I-
map—a graph in which nodes separated by a
cutset are conditionally independent but not all
conditionally independent nodes are necessarily
graph-separated.

We now face two issues with practical impli-
cations:1

• Given a probabilistic system P, can we find at
least an I-map G of P?

• Given a graph G, can we build a probabilistic
system P that is at least an I-map of G?

The answer to both questions is yes if the
probabilistic system is strictly positive; that is, if
all the events you can think of concerning the
variables involved have a non-null probability.

We can build an I-map of P in a few ways.
First, we can start with a complete graph (all
nodes are connected to each other). Delete those
connections between two nodes, say A and B, if
IP(A, U − A − B, B)—that is, if the two nodes are
conditionally independent given the rest of the
nodes. In this case, the I-map will have a mini-
mum number of edges. Such a map is called a
Markov network of P.

The second method is probably more intuitive
to those familiar with Markov models because it
makes use of the concept of a neighbor system. As
is well known, a Markov model is characterized
by the fact that knowing the current state of a
number of variables wrapping the variable of in-
terest (see Figure 3) renders the rest of the
graph’s variables irrelevant. In our terminology,
denoting the neighbors (wrappers) of node A as
B(A), then IP(A, B(A), U − B(A) − A) holds.

These ideas lead to a simpler method: Start
with as many nodes as variables in U, and connect
every variable A to all its neighbors (all the nodes
in B(A)). The resulting graph is the same as the
one we would get from using edge deletion.

J.M. Hammersley and P. Clifford answered
the second question we posed earlier in 1971 
in what was called thereafter the Hammersley-
Clifford theorem.2 It states that for a given UG,
any function formed by a normalized product of
strictly positive functions of the UG’s cliques
(subgraphs in which nodes are all adjacent to
each other) is the probability function of a
Markov random field relative to the graph.

Actually, it is possible to show3 that we can ex-
press an MRF’s probability function as a Gibbs
function

F

SC

H
Figure 2. A simple undirected
graph modeling a speed-control
problem.

B

A

F

D

E

C

Figure 3. A tree-structured 
undirected graph. 
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(1)

where the energy function H (see “The Ising
model” sidebar) must be strictly positive. The
denominator is just the normalizing constant re-
quired in the theorem. We can also see that if A
is a node belonging to X, then

P(A|X) = P(A|B(A)). (2)

This is just the Markovian property. Far less ob-

vious is the fact that this is a function of cliques
with nodes belonging only to A ∪ B(A).

Two implications of the theorem follow natu-
rally. First, simple as it is, the theorem acts as a
bridge between common sense and consistency,
because it lets us encode local interactions as de-
sired in a consistent, probabilistic system. For
example, consider a landscape image that is
blurred due to motion in the imaging process.
To restore the degraded image by means of a
probabilistic technique, we need an a priori
probability model of the image. 

The image consists of several homogeneous
regions (a forest and a river) with sharp transi-
tions only in the boundaries between the forest
and the water. Such an image is characterized by
smoothness; only a small percentage of pixels
show sharp transitions. Consequently, a proba-
bilistic model that tried to approximate such be-
havior should consist of decreasing functions of
the cliques, thus giving low probability values
when cliques show large differences and high
probabilities when they show large similarities. A
tentative energy function with this behavior is

(3)

where the summation is carried out in all the in-
dices (s, t) corresponding to two adjacent pixels,
until the whole image X is visited.

But what if we start with low-order probabili-
ties taken, for instance, from measurements or
from expert knowledge? A Gibbs function is not
initially related to low-order probabilities but to
general, nonintuitive, local interactions. In this
case, we would want to have dependencies
amenable to representation by means of a tree.
Why? Figure 4 helps justify this idea; to find the
joint probability of the variables in the figure, we
need only apply the chain rule

P(A, B, C, D, E, F) = P(B|A, C, D, E, F) 
P(D, E,  F|C, A) P(C|A) P(A) (4)

and, because we are assuming that separation in
a graph means conditional independence, we
can write

P(A, B, C, D, E, F) = P(B|A) P(D|C) 
P(E|C) P(F|C) P(C|A) P(A). (5)

This is what we wanted: a joint probability ex-
pressed as a product of low-order probabilities,
which a human can easily infer from data. Note,

H A Bs t
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The Ising model
The original formulation given by Ernst Ising1 in his pioneering

work starts by considering a sequence of points in the line 0, 1,. . .,
n. Each point, in his ferromagnetic context, can have a “spin” up
or down. We assign a probability measure p(Ω) on the set of all
possible configurations of spins ωI ∈ Ω with Ω = (ω0, ω1, ..., ωn).

Let σ (ωj) = ± 1 for up and down spin at node j. An energy U(Ω)
is assigned to each configuration:

(A)

where J is a constant associated to a specific material. Ising made
the simplifying assumption that only the interaction between
neighboring nodes needs to be considered.

The next step assigns probabilities to the configurations Ω pro-
portional to

(B)

where T is temperature and k is the Boltzman constant. Finally,

. (C)

A probability measure of the form in Equation C is called a
Gibbs measure.

After that, the most important characterization from the point
of view of probability arises—namely, the Markovian property:

p(ωj | ωk, k ≠ j) = p(ωjω k, k ∈ Nj) (D)

where Nj is the neighborhood of the node j (the nodes j + 1 and 
j − 1 in this formulation). A probability measure with the property
in Equation D is called a Markov random field.

Reference
1. R. Kinderman and J.L. Snell, Markov Random Fields and Their Applications, Ameri-

can Mathematical Soc., Providence, R.I., 1980. 
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however, this is only possible for tree-structured
networks.

But what if things were not so simple—that is,
what if graph arrangement is not a tree? We must
look for equivalent structures that let us work
with low-order probabilities. The key to finding
out whether such structures exist is the concept
of chordality. A graph is said to be chordal if every
circle of length four or more nodes has at least
one chord—that is, an edge joining two noncon-
secutive vertices along that cycle. 

If the graph is chordal, the probability model
encoded (at least, as an I-map) in the graph is
said to be decomposable. Furthermore, we can
encode decomposable probability models by an
equivalent graph that turns out to be a tree. This
tree is called a join tree because it is made up of
cliques instead of nodes. Pearl posed this as a
theorem,1 which (basically) reads

If P is decomposable with respect to the graph G, then P can be
written as a product of the probabilities of every clique divided by
a product of the probabilities of their intersections.

This theorem is also the basis of the clustering
algorithms4 that are widely used in DAGs to per-
form inferences. We will come back to this later.

Selected applications of UGs

Researchers have used UGs (or MRFs) for a
myriad of applications. Here are just a few ex-
amples to illustrate their applicability.

In the statistical physics community, Nicholas
Metropolis and his colleagues pioneered the idea
of obtaining sampling distributions in complex
systems; they proposed a stochastic method to
calculate the properties of any substance con-
sisting of interacting particles.5 Others have ap-
plied their ideas to goals such as visual texture
synthesis,6 where texture is encoded in the spa-
tial relations among pixels. Here, the problem is
to generate a sample of the so-defined random
field. You can also use algorithms such as Me-
tropolis or the Gibbs sampler.7

As an example, Figure 5 shows a sample tex-
ture obtained by the Metropolis algorithm. The
MRF is defined by means of a neighborhood
(shown in Figure 4b) with local energy function

H(A) = A (−2.0 + 0.05 
(B + C + D + E + F + G + H + I)). (6)

A straightforward application of UGs is as a
postprocessor of other segmentation algorithms.7

If other algorithms give spotty results because of

texture or any other reason, the MRF can impose
smoothing constraints to filter out the spots. In
this case, we can use the Gibbs sampler to estimate
the mode—the most probable state—that complies
with the probability model. We can find the mode
by means of the simulated annealing algorithm.

Figure 6 illustrates an example of this applica-
tion using the following local characteristic
(given elsewhere8):

(7)

where υ(A) is the number of neighbors of A in
the same state as A. Each state corresponds to a
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Figure 5. Markovian texture synthesis example with the Metropolis
algorithm: (a) the initial configuration, and how it looks after (b)
20, (c) 100, and (d) 500 iterations.
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region of the segmented image. Thus A can have
one of two values, Ak k = {1, 2}. The neighbor-
hood used is Figure 4a’s. 

A third application is in relaxation processes
related to stereo matching. In a stereovision con-
text, we can statistically relate the correspon-
dence of a certain node to the correspondences
of nearby nodes (two points in a pair of stereo
images correspond or match if they are the pro-
jection of the same spatial primitive on each of
the images). We can use this relation to describe
any correspondence map as an MRF, and we can
consider the similarity between matches in the
stochastic characterization of the system.9

The directed counterpart: DAGs

The counterpart of UGs is a graphical model
in which connections are directed. Placing an ar-
row on an edge brings deep implications, the
most important of which is that causality is im-
plied. Arrow-destination nodes (descendants) are
direct consequences of nodes from which arrows

depart (ascendants), thereby creating a specific type
of dependency, a cause–consequence relation.
These networks are also called causal networks.

DAGs are based on the concept of d-separa-
tion, or d-sep for short. (Eugene Charniak uses
the complementary term d-connection.10) A
group of nodes Z is said to d-separate the dis-
joint groups of nodes X and Y when either the
nodes Z are ascendants of both groups X and Y
(see Figure 7a), or Z is an intermediate group of
nodes (see Figure 7b).

This is not a formal definition but just an in-
tuitive approach to the problem. A DAG is a
perfect map of a probability function P if d-sep-
aration implies conditional independence and
vice versa. In this case, P is said to be DAG-iso-
morphic. As in the case of UGs, not all proba-
bilistic systems are DAG-isomorphic (see the
“Pearl’s theoretical framework” sidebar). If only
one sense of implication exists—that is, if d-
sep(X, Z, Y) ⇒ IP(X, Z, Y)—then the DAG

is said to be an I-map of P.
There are a number of issues to consider in

B( , )U E
r

Figure 6. Cleaning a noisy segmentation: the (a) original image, (b) initial segmentation, and cleaning process after (c)
5, (d) 10, (e) 15, and (f) 20 iterations.
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(d)

(b)

(e)
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comparing DAGs and UGs.  
Let’s go back to the problem of the police

speed control schedule depending on the party
and the holiday (see Figure 2). We can draw ar-
rows from F and H to SC because both are di-
rect causes of SC. We said that the police control
behaved as a cutset between the other two vari-
ables. However, according to the definition, SC
does not d-separate H from F; in fact, it d-con-
nects them. It is actually the connection that ren-
ders them (correctly) as conditionally dependent,
even though they are marginally independent. 

How do we build a DAG out of a number of
variables? We identify which nodes are direct
causes of which other nodes. We draw as many
nodes U as variables in the problem and then
draw directed connections from every cause
to its consequents. There will be a bunch of mar-
ginally independent root nodes (from which ar-
rows only depart). Nonroot nodes will be con-
ditionally independent of their nondescendants
given an instantiation of their connected ascen-
dants (the parents). 

How do we quantify the links? Links are now
simply conditional probability tables (CPTs): con-
sidering node Xi and denoting its parents by ΠXi,
all that is needed is P(Xi|ΠXi). This type of func-
tion is clearly tied to empirical data (if available)
or to human knowledge.

How can we obtain a probabilistic system from
CPTs? If you multiply all CPTs of all descendants
by the marginal probabilities of all root nodes, the
function you obtain will be a consistent probabilis-
tic system. In our example, P(SC, F, H) = P(SC|F,
H) P(F) P(H). As long as the factors are consistent
probabilities, the joint function will also be a con-
sistent probability function.  

Not all of these points are advantages for DAGs,
though. Recall the notion of chordality, and the fact
that chordal probabilistic systems P encoded in
chordal graphs must be decomposable. Consider the
nonchordal UG depicted in Figure 8. We can infer
from the figure that nodes A and C are separated
from B and D. If the UG is an I-map of a proba-
bilistic system P, we can conclude that IP(A, {B, D},
C) and IP(B, {A, C}, D). However, try to think of a
DAG representing these two dependencies; it is not
possible, at least with only these variables.1 There-
fore, we cannot graphically encode all dependencies
in DAGs. They might be more intuitive than UGs,
but we cannot solve every problem with them.

Inference in DAGs 

The straightforward application of DAGs is

to encode the available knowledge and then to
try to assess other probabilities not directly avail-
able from the knowledge itself. As we mentioned
earlier, human knowledge is basically local;
therefore we must use techniques to obtain con-
sequences beyond those directly available in the
models’ CPTs. Inference in DAGs is carried out
by means of the Bayes rule and other well-
known operations of basic probability theory (as
a consequence, these networks are also known
as Bayesian networks).

The process is not conceptually complicated.
Let’s come back to our example and make things
a bit harder: we will add a node GT representing
the fact that I might get a ticket (for speeding or
for any other reason). In our model, I need to
specify the CPT of GT conditioned only on SC,
since SC is the only direct cause of my getting a
ticket (see Figure 9).

Let’s assume that I got a ticket, that my friend
Jane knows this, that Jane wants to know
whether the ticket was for speeding, but that
Jane does not want to ask me directly. She would
want to know how likely it is that a speed con-
trol was on the road, now that she knows I got a
ticket. Straightforward application of the Bayes

r
E

Nodes Y

Nodes Z

Nodes X

Nodes Y

Nodes Z

Nodes X

(b)(a)

Figure 7. The two cases of d-separation: (a) Z nodes are ascendants
of X and Y, or (b) Z is an intermediate group of nodes.

B

C

D

A

Figure 8. A nonchordal graph without a
DAG counterpart.
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rule (for binary variables using the convention
P(SC|GT=1) = P(SC|gt) and P(SC|GT=0) =
P(SC| )) gives 

(8)

(9)

Using Equation 9, we can avoid the calcula-
tion of P(gt), because we can obtain the propor-
tionality factor by forcing 

.

We can now complete these calculations by
taking into account the other two nodes in the
network:

(10)

where we have assumed independence between
the root nodes. Notice that the inference process
performs a summation in all the CPT entries of
node SC. It is then obvious that inference com-
plexity will be related to the number of condi-
tions of a node (the parents of the nodes involved
in the inference). This procedure is simply a
node-elimination task; the idea is to sum out the
contributions of all those nodes not present in
the probability to be calculated. The order in
which these nodes are eliminated is important,
because the complexity associated with the algo-
rithm is a function of the number of entries in
the CPTs. The more arrows converge in a node,
the larger the number of conditionants in the
CPT of that node and, consequently, the larger
the inherent complexity. We might therefore
think of criteria to efficiently eliminate nodes so
as to minimize the average number of conditio-
nants in the whole procedure.

However, inference in a general case (in a mul-
tiply connected network, with no restrictions—that
is, with arbitrary topologies) is an NP-complete
problem.11 So what do we do?

Dealing with complexity

One of the most popular algorithms is Pearl’s
message-passing scheme.12 The major break-
through of his algorithm was to change the con-
cept of a network from the traditional, passive
scheme that encodes only data to a novel, active,
information-flowing scenario in which gathered
evidence triggers an updating procedure over
the whole network. In addition, the message-
passing algorithm is strictly local: a node absorbs
the effect of evidence by means of a number of
messages from father and siblings and then
floods its updated information back to its father
and siblings.

Convergence to a stable solution is guaranteed
when the network is singly connected (there is
no more than one path between two nodes in the
underlying undirected graph). Why? The rea-
son is buried in the algorithm details. However,
we can give you a hint: in our example, suppose
that parties are more often held when the day af-
ter is a holiday than on a regular day. We model
this by adding an arrow originating at H and
pointing at F. Suppose that we find out that a
speed control is deployed on the road. In this
case, messages emanating from SC are propa-
gated up and down. We will have a loop in which
messages from SC go through F, arrive at H, and
keep flowing down to SC—and the process con-
tinues with no end.  

As you can see, the presence of loops makes
the message-passing scheme unstable. But, even
if the system were stable, we could not trust the
results of such an inference process. A typical ex-
ample is the following: I tell A that I suspect
something; A tells B; then B tells me about it.
Should I increase my suspicions? If I don’t know
that B knows it because of me, I would! But this
is just an illusion of evidence: I am just hearing
the message that I sent.

Handling loops

In cases where loops are part of the DAG, we
must use a different inference scheme. A popular
alternative is known as clustering. Algorithms
based on this philosophy make use of the fact
that we can structure any DAG as a tree of clus-
ters as long as we do not limit the cluster size.
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Figure 9. This DAG includes nodes for
fiesta (F), holiday (H), speed control
(SC), and GotTicket (GT).
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Actually, simply by clustering all but the leaf
nodes in a DAG, we end up with a tree structure.

Steffen L. Lauritzen and David J. Spiegelhalter
describe an efficient clustering method whose
purpose is to build a join tree from a chordal
graph.4 As we said earlier, a chordal graph repre-
sents a decomposable probability model. There-
fore, we can base an efficient inference procedure
on finding an equivalent graphical model that is
chordal. Once you do this, you end up with a join
tree (an undirected graph) that is free of loops;
then you can use Pearl’s local message-passing
scheme in a clique space (as opposed to a node
space). The price you pay is the larger number of
edges needed to make the graph chordal.

This algorithm has been generalized both by
Finn V. Jensen and his colleagues13 and by A.
Philip Dawid.14 The Viterbi algorithm and the
forward–backward algorithm, both widely used
in the signal-processing community, are partic-
ular cases of these algorithms.15

Another alternative is based on obtaining ap-
proximate inferences—that is, approximate
probabilities given instantiated nodes. These al-
gorithms are based on stochastic simulation, an
example of which is the Gibbs sampler. Even
though approximate inference is also an NP-
hard problem,16 an important effort has focused
on finding approximate algorithms that perform
efficiently in DAGs and give reliable results
faster than exact algorithms in large networks. 

The main idea of these algorithms is to artifi-
cially create network instances that let us ap-
proximate probabilities of interest by averaging
results. In logic sampling,17 for example, you start
at the root nodes and create data according to
the nodes’ probabilities. You then sequentially
visit the rest of the nodes and create instances
according to the instances of the parents and to
the nodes’ CPTs. The process continues until
you achieve stable-enough values of the queries.

Its straightforwardness makes it suffer a num-
ber of drawbacks; the main one is that you might
obtain instances that do not comply with evi-
dence. Consider this scenario in our speed con-
trol example: having received a ticket, you want
to obtain an approximate probability of tomor-
row being a holiday. The approach based on sto-
chastic simulation starts creating instances at the
root nodes H and F and goes downward, creat-
ing instances according to the values of parents
and the CPTs. However, this approach does not
force the node GT to comply with the observa-
tion. Therefore, you should discard trials that
don’t comply with evidence.

The likelihood weighting algorithm18 avoids
discarding trials that do not comply with evi-
dence. It is based on the same idea, but it weighs
network instances that are in conflict with the
evidence according to the CPTs’ values. This al-
gorithm leads to unbiased estimates of the de-
sired probabilities.

A lot of variants on these two algorithms exist
that create data in different ways to speed up the
convergence process.19 Of main concern is how
to estimate the number of trials that are needed
to obtain convergence to the real probabilities.20

This is a current research issue. You can find an
excellent tutorial on stochastic simulation in our
reference list.21

Applications

A variety of applications from different com-
munities demonstrate DAGs’ potential usefulness.

Software debugging 
When we encounter a problem during a com-

plex program’s execution, we debug the software.
However, complex systems have many alterna-
tive paths that we must explore; a full, sequen-
tial search is not desirable. If software-debug-
ging experts were to encode their experience
into a DAG, we could weigh alternatives by the
likelihood that they contain the error, provided
we observe a symptom of the error. This is the
main philosophy of the DAAC (dump analysis
and consulting) system.22

We can extend this idea to other troubleshoot-
ing problems. To make a more realistic model, we
can assign costs to different actions, and then, af-
ter seeing the evidence, repair the system using a
minimum-average-cost policy.23 

Using a DAG for such a problem is just an al-
ternative to using a decision tree. Even though
decision trees are probably more intuitive, they
have a huge number of branches in problems with
numerous variables. A DAG is a more parsimo-
nious structure to encode these dependencies.
These special DAGs are called influence diagrams.

Information retrieval 
The task of information retrieval24 is to quickly

obtain the pieces of information that are relevant
to a certain topic, along with a measure of rele-
vance so that the user can focus on the most in-
teresting documents. We can encode this with a
Bayesian network in, for instance, a library, where
documents will be (or not be) relevant to a cer-
tain topic. If a document is relevant to a given
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topic, it likely contains certain features that the
user will introduce as elements of the query.
Therefore, we can now pose the problem as find-
ing the probability of a document’s relevance to a
topic, provided it contains some of the features
that the user has input. We use the measure of
probability as a rank of document relevance.

Medical applications
A number of health care applications use

DAGs.4 For example, R. Riccardo Bellazi25 used
a Bayesian network with continuously valued
nodes to propose an optimal schedule of r-
HuEPO drug delivery. (Now CPTs are replaced
with conditional density functions.) r-HuEPO
can take over the kidney’s task of synthesizing
erythropoietin, a hormone concerned with red
blood cell production. Deficiency of this hor-
mone is believed to be a major cause of anemia
and can result from kidney malfunction. 

Bellazi has derived a stochastic model that re-
lates the human body’s sensitivity to the EPO
with the hemoglobin concentration in the blood.
This sensitivity is a function of several parame-
ters. The network’s task is to infer the model pa-
rameters from a population and to probabilisti-
cally adapt them to a specific patient (taking into
account the person’s history). Then the network
predicts the patient’s response to r-HuEPO. A
comparison of predictions and observations re-
sults in an optimal policy of drug delivery.

Information fusion
Manfred Prantl, Harald Ganster, and Axel Pinz

use a DAG to decide which pieces of information
to use for a multispectral terrain classification
problem.26 Using at most five uncorrelated sen-
sors, the authors obtained measurements of sev-
eral terrains. The problem was to classify the
sample terrains into one of the prespecified
classes after observing the sensor values. This ap-
proach tries to quantify the number of sensors to
use—that is, can only one or two sensors collect
enough evidence to make a reliable decision?
This concept is called active fusion—fusion as a
function of the certainty of information. The net-
work encodes the probabilities of observing a pair
of values of mean and variance from a sensor,
given that a specific terrain is encountered. We
used the network to minimize the number of ob-
servations needed to classify with a given confi-
dence. This is done by keeping track of the pos-
terior probability of a class given the evidence.
When this probability exceeds a threshold, no
more sensors are needed.

Although you can probably solve some of the
problems just presented using other methods,
DAGs work well in a lot of problems mainly be-
cause of their ease at incorporating human
knowledge in a probabilistic framework. The
problem of optimality of these structures is a
matter for discussion.

What is the future of graphical
models? This is hard to answer.
However, the fact that we can
pose well-known algorithms in

other fields as particular cases of general-purpose
algorithms in graphical modeling makes these
computational structures an interesting theoreti-
cal tool, and a powerful practical tool as well. So
we can expect progress in different tiers: theoret-
ical results that demonstrate coincidences be-
tween classical results and algorithms on graphi-
cal models, more efficient exact and approximated
inference algorithms, and above all, models of
complex dynamical systems that can learn proba-
bilities from data and automatically reconfigure
their structures as new evidence comes in. The
Web sites listed in the accompanying sidebar “For
further information” offer excellent entry points
for papers, software, and freeware. 
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