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Comments on: A Methodology for Evaluation of Boundary
Detection Algorithms on Medical Images

Carlos Alberola-López*, Marcos Martín-Fernández, and
Juan Ruiz-Alzola

Abstract—In this paper we analyze a result previously published about
a comparison between two statistical tests used for evaluation of boundary
detection algorithms on medical images. We conclude that the statement
made by Chalana and Kim (1997) about the performance of the percentage
test has a weak theoretical foundation, and according to our results, is not
correct. In addition, we propose a one-sided hypothesis test for which the
acceptance region can be determined in advance, as opposed to the two-
sided confidence intervals proposed in the original paper, which change ac-
cording to the estimated quantity.

Index Terms—Boundary detection, confidence interval, hypothesis test,
percentage statistic, validation, William index.

I. INTRODUCTION

In [1], Chalana and Kim propose a methodology for evaluation of
automatic boundary detection algorithms in medical images. One of
their most interesting contributions is the proposition of two statistical
tests that check whether a boundary detection algorithm can be vali-
dated. The authors pose the validation problem so as to check whether
the computer-generated boundaries differ from the manually outlined
boundaries as much as the manually outlined boundaries differ from
one another.

This general idea is implemented by means of two different statis-
tical tests, the first one of which is a generalization, made by the au-
thors, of the William index (WI) [4], and the second is what the authors
call interchangeably percent or percentage statistic (PS). The PS, as
indicated by the authors, computes the percentage of cases for which
the computer-generated boundaries (CGBs) lie within the interobserver
range (IR). Leaving aside details on how these ideas are implemented,
it turns out that, under the hypothesis that the CGB is statistically equal
to the expert-outlined boundaries (EOBs), some distance measure from
the CGB will be identically distributed as these measures from the
EOBs. Therefore, a test is built to find whether the measure from the
CGB falls within the range of measures from the EOBs in the same
proportion as it is theoretically expected.

The authors conclude that the two testing procedures have very dif-
ferent behaviors when tested against the datasets used in their paper,
and they make a choice about using WI as opposed to PS on the basis of
their results. However, we will hereafter demonstrate that the analysis
made by the authors of the PS is not correct, and hence comparative
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results reached by the authors are not conclusive. This fact, together
with the simplicity of the PS with respect to the WI, makes the former
an approach, in our opinion, worthtaking.

II. ON THE PERCENT STATISTIC

A. Definition of Interobserver Range

Denoting by ( ) the EOBs, with the number of
experts, each contour is a point in the dimensional space, with

the number of (two dimensional) points that define the boundary on
the image. Therefore, the EOBs create a cloud of points in that space.
The authors state that a CGB is within the IR if it lies within a multidi-
mensional convex polyhedron formed by the observer outlined bound-
aries, i.e., if it lies within a polyhedron with vertices being points from
the cloud, and that it encloses all the points in the cloud. For imple-
mentation purposes the authors use a quick and easy approximation to
it. Specifically, denoting by the CGB, this contour is considered to
be within the IR if

(1)

with a distance measure between contours and (see
Section IV for details on the distance measures used by the authors).
The authors state that

(2)

assuming the CGB to be independent and identically distributed (IID)
with respect to the EOBs (which are also considered IID). As we will
show this result is not correct.

B. Probabilistic Analysis

Let variable denote the distance between and , , and
let denote the maximum distance between any two contours, i.e.,

(3)

If both the CGB and the EOBs are IID, then the probability that
is equal with , , i.e., any

pair of contours is equally likely to be the pair of most separated con-
tours. In addition, we may assume that exactly one pair of contours has
distance since the probability that two different continuous random
variables and (with either or and, of course,
and coincide is null [2]. The set of contours may therefore
be divided into two sets, namely, the set of the two contours giving rise
to and the set of the remaining contours. is equally likely
to be any of these contours; so, the probability of belonging
to the second set, i.e., the probability of falling within the IR is

(4)

which is clearly different from the result indicated in (2), originally
proposed in [1]. This difference might be negligible for large values of
; however, in a real validation problem, the number of experts giving

their opinion will be frequently small. Actually, the authors in [1] use
; for this case the authors claim that the expected probability is

. However, it is clear from our result that

(5)

which is quite a remarkable difference.
Finally, in order for a statistical test to be fully specified we need to

define the acceptance region of the hypothesis “the CGB lies within
the IR” out of the values of a statistic derived from the image data. The
authors in [1] compute two-sided confidence intervals (CIs) to check
whether they include the expected value. We understand a one-sided

0278-0062/04$20.00 © 2004 IEEE
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hypothesis test is more appropriate for this type of problem. In addition,
the radius of the CIs in [1] depend on the estimated quantity, while the
acceptance region, as we will show next, is unique for each problem
configuration, a fact that makes the whole process simpler.

III. DEFINING A TEST FOR SAMPLE RESULTS

Assume we have images and we apply the PS method to check
whether the algorithm performs similarly as the board of experts. To
check that this is true we need to calculate the fraction of times that the
CGB lies within the IR. The value of this fraction should be equal to
that in (4), and deviations from this value are only due to the finiteness
of the sample size . We need to find a region of acceptance of the
values of this fraction assuming that the contours are IID. To
that end we will consider that the test is not passed if the fraction of
times that the CGB lies within the IR is too small with respect to its
nominal value. If that value is larger than the expected value there is
no reason to justify that the CGB is not correct, so the test should be
passed. This is why we understand a unilateral test is more appropriate
than its bilateral counterpart.

Let variable denote the event: “contour lies within the IR
for the – th image” ( ). Variable is a Bernoulli
variable with parameter . Let . Let be
the arithmetic mean of the variables . The purpose is to find a value

for which the identity holds. is a prespecified
level for the test (typically ). This is a well-known problem
[3], the solution of which is1 , with the value
for which and the distribution function of a
normal standard variable. The acceptance region consists of the values
of that are greater than the critical value . For it turns
out that , and for the values used in [1] (see next section
for details), the critical values are indicated in Table I.

A common question is how to choose the number of images that
should be used in order to get reliable conclusions, i.e., to be sure that
the test is passed because the CGB is similar enough to the EOBs, and
not because the test itself is excessively loose. This problem is typi-
cally solved [3] by defining a power for the test or, complementarily,
by limiting the probability of a different value from , say , being
accepted as being . would be an expected value of CGBs falling
within the IR when they are not identically distributed to the EOBs.
For such contours, the test should be passed with a low probability, say
(using the customary terminology in hypothesis testing) . Once
these two parameters are set, it is simple to see [3] that the sample size

should be

(6)

with and . We will elaborate on how to set
parameters and in Section VI.

IV. COMMENTS ON THE EXPERIMENTS IN [1]

A. Datasets and Distances Used by the Authors

The authors in [1] apply their methodology for algorithm perfor-
mance comparison on two different image datasets.

• The first dataset consists of ultrasound short-axis car-
diac images at end diastole, in which independent ex-
perts have manually drawn both the epicardial and the endocar-
dial boundaries. The authors also calculate the areas enclosed by
these two boundaries. Both the WI and the PS are given, together

1We have used an approximate analysis based on the DeMoivre-Laplace the-
orem [2], which can be easily shown to hold [3] for the values of the parameters

and that will be used in Section IV.

TABLE I
CRITICAL VALUES FOR THE TWO DATASETS USED IN [1] (SEE SECTION IV FOR

DETAILS ON THE DATASETS). THE TEST IS PASSED IF

with their two-sided CIs at a 5% confidence level both for the con-
tours themselves and for the areas calculated from them. Some
other statistics are given as well, but we will not be concerned
with them.

• The second dataset consists of ultrasound fetal im-
ages; in this case, experts have manually drawn the skull
and abdomen contours and have measured the biparietal diameter
(BPD), the head circumference (HC), and the abdomen circum-
ference (AC). As before, both the WI and the PS are given both
for contours and for measurements, together with their two-sided
CIs.

For the two datasets the authors compare the CGBs —given by some
algorithm based on active contours— with the EOBs. The measure-
ments described above (areas, BPD, HC, and AC) are calculated auto-
matically from the CGBs.

As for the distance measures, two of them are used in the authors’
analysis. The first one is called average distance, and it is defined as
the average of the distance between every pair of corresponding points
in the two contours under comparison. Corresponding points are found
by an algorithm proposed by the authors. As for the second distance,
it is called Haussdorf distance, and it is calculated in two steps; given
two contours, say and , the first step is to calculate the distance
of every point in contour to contour and the distance from every
point in contour to contour . Denoting by and the th point
in contours and , respectively (with the number of points in both
not necessarily equal), these distances are defined

(7)

(8)

The second step is to define the distance between the contours them-
selves. This is done by picking the maxima of the distances defined
above, i.e.,

(9)

B. Implications of Our Result in the Authors’ Experiments

The authors’ experiments consists of several numerical calculations;
as for the WI and the PS, the authors report nine comparisons. Within
these comparisons, in all the cases in which the WI test is not passed
the PS test is not passed either. However, there are three cases in which
the former is passed while the latter is not. We understand this is why
the authors state that the test they build on the PS is a very stringent
test (page 647, fourth line in first column). However, we cannot agree
with such an statement, at least not from the results presented in that
paper. We will go over these three cases.

• For the first dataset, contour comparison of the epicardial
boundary based on the Haussdorf distance gives a value of

, while the CI is (52.7,70.0) (see [1, Table I, page 649, first
row, two rightmost columns]). Since this CI does not include the
value expected by the authors (recall from Section II-B that this
value is 0.8) the authors take this test as rejected. However, it is
clear from (4) and (5) that this value of PS is fairly equal to the
true expected value 0.6. The two-sided CI given by the authors
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does include this value and, in addition, the value
is within the acceptance region of the one-sided hypothesis test
defined above (see the critical value in Table I, first row).

• For the second dataset the PS for BPD is 0.485, with CI
(0.339,0.631) (see [1, Table V, page 650, first row, two rightmost
columns]). Once again, the upper level of this CI does not
reach 0.8. However, the upper value of this CI does include
the true expected value 0.6 and this value of PS falls within
the acceptance region of our test (see the critical value in the
second row of Table I). As for the AC (see [1, Table V, third
row, two rightmost columns]), the value of PS is 0.514, with CI
(0.373,0.655); the upper level of this CI does not include the
value 0.8 but it does include 0.6; as for our test, the acceptance
region includes the value obtained by PS in this case as well.

Therefore, it is our understanding that the considerations made in [1]
about the comparative behavior of the two tests are not conclusive from
the data presented in that paper.

V. AN ADDITIONAL DISCUSSION

Apart from the main point of this correspondence, which is the result
indicated in (4), two additional issues will be commented. The first one
has to do with the number of images to be used to build the tests. The
second one is a brief discussion on the distances used by the authors.

About the former, the sample size can be determined using (6); how-
ever, two parameters must be set (both and ) beforehand. How to
choose these parameters is not a simple problem; one obvious solution
is to set these parameters arbitrarily, using uniquely common sense.
For instance, stating that a probability 10% lower than should be
accepted with a probability as low as . If this was the
choice, (6) would give a (rounded) value of . The problem
with this procedure is that it is unclear how different CGBs are from
EOBs when the value of resulting from them is 10% lower than
the expected value when these contours are IID. Another possibility
is to build a procedure with the help of experts to estimate these pa-
rameters on the basis of their physical meaning; for instance, one of
the experts could draw contours with slight deformations intentionally
added. Some of the other experts may admit them and some may not.
The fraction of contours admitted by the experts would give a hint on
the value of . Then, the number of these deformed contours falling
within the IR could give an estimate of . In any case, and just to get
an idea of the validity of the authors’ analysis, recall the first dataset
used in [1] ; since it consists of 44 images, it gives a result of
accepting a value approximately 36% lower than , with a
probability . For the second dataset, the number of im-
ages is , which results in admitting a about 43% lower than

for this same value of .
A final remark on the measures used by the authors to quantify con-

tour differences may be of interest. As previously indicated, the authors
use a scalar value of contour difference that stems from some distance
measure. This causes the effect of summarizing the information of two
contours, i.e., scalars, into a single scalar, which, for instance, im-

pedes to distinguish whether the CGB is globally different from the
EOBs, or whether large local deviations have occurred though a sig-
nificant part of the CGB may be similar to the EOBs; obviously, this
has the side effect of not being able to identify the particular regions
of the CGB that are similar to the EOBs, and those that are dissimilar.
About the distances themselves, the average distance is a global mea-
sure, so local deviations could be obscured in the average. The Hauss-
dorf distance, on the other hand, has a more local character, since it
takes into account maximum deviations; however, the global contour
behavior is ignored. In addition, it should be pointed out that (7) and
(8) related to the Haussdorf distance are not calculated between cor-
responding points, but between every two points in the two contours;
therefore, there is not guarantee that comparable entities are compared,
a fact that could be easily solved by calculating this distance between
corresponding points. As a conclusion of this analysis, it is our un-
derstanding that extending the methodology proposed by the authors
to perform multiple local inferences (not necessarily on distances, but
also on any parameter defined out of the contour point positions) may
solve some of the above mentioned problems; if distances are used, we
maintain that they should be preferably calculated on corresponding
points.

VI. CONCLUSION

This paper demonstrates that the expression on which the authors
in [1] base one of their statistical tests is not correct, so conclusions
derived from their analysis are, in our opinion, not correct either. As
a matter of fact, using PS—with our analysis—on the data presented
in [1] gives the same results as the WI in terms of test acceptance/re-
jection, not to mention the far less computational load required by the
former with respect to the latter. Even though additional experiments
should be conducted to get more solid conclusions on their comparative
behavior, it is our opinion, on the basis of our mathematical analysis,
that the PS is preferable in terms of computation and without a demon-
strated poorer performance than the WI.
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