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ABSTRACT
Tensors are nowadays an increasing research domain in dif-
ferent areas, especially in image processing, motivated for
example by DT-MRI (Diffusion Tensor Magnetic Resonance
Imaging). In this paper, we exploit the theoretically well-
founded differential geometrical properties of the space of
multivariate normal distributions, where it is possible to de-
fine a Riemannian metric and express statistics on the man-
ifold of symmetric positive definite matrices. We focus on
the contributions of these tools to the anisotropic filtering and
regularization of tensor fields. We present promising results
on synthetic and real DT-MRI data.

1. INTRODUCTION

DT-MRI (Diffusion Tensor Magnetic Resonance Imaging)
is a relatively new medical imaging modality with many
possible applications [2] and from which a great deal of
research on tensors has stemmed. It can be estimated from
a set of diffusion weighted images and provides a discrete
three-dimensional dataset where each voxel contains a
3 × 3 symmetric positive definite matrix. These covariance
matrices can be used to model the local anisotropic diffusion
of water molecules by a Gaussian process. Working with
these tensor fields may require some regularization to reduce
the amount of noise arising, for instance, from the acquisition
process.

Regularization and filtering schemes of tensor fields are
widely studied in the literature, especially for DT-MRI.
As an example, [11] proposed a PDE-based scheme based
on a spectral decomposition. A complementary work is
that presented in [5] and relying on constrained flows for
matrix-valued functions. Another approach presented in
[12] provides a generalization of anisotropic and nonlinear
diffusion process to matrix-valued data. More recently,
[6] proposes a scheme to recover the main direction of the
tensors and use the resulting direction to regularize the
eigenvalues by an anisotropic diffusion process. However,
tensor eigenvalues tend to regularize faster than the asso-

ciated eigenvectors. This phenomenon is known as the
eigenvalue swelling effect for long regularization time, as
shown in [11], while noise removal is not quite significant for
short time regularization. Other works, such as [13], couple
the regularization with the tensors estimation process from
diffusion-weighted images.

In this paper, we use the mathematical framework pre-
sented in [8] and summarized in section 2 to take into account
the particular geometry of the set of symmetric, positive
definite matrices in the DT-MRI smoothing process. It is
interesting to note that other recent works like [7] and [10]
also addressed, from a Lie groups perspective, the definition
of statistical quantities and filtering tools for tensor fields. We
introduce an anisotropic filtering algorithm controlled by the
magnitude of the spatial gradient of the tensor field in section
3. In section 4, qualitative and quantitative results obtained
on noisy and synthetic datasets show that our method is
favorably compared to a state-of-the-art approach [12]. We
also present results obtained on different real datasets.

2. DIFFUSION TENSOR PROCESSING TOOLS

2.1. Riemannian geometry of tensor space

We consider the family of three-dimensional normal distribu-
tions with 0-mean as the 6-dimensional parameter space of
variances and covariances. We identify it with S+(3), the set
of 3×3 real symmetric positive-definite matrices. A Rieman-
nian metric can be introduced for S+(3) in terms of the Fisher
information matrix [3]:
Theorem 2.1 The Riemannian metric for the space S+(3)
of multivariate normal distributions with zero mean is given,
∀Σ ∈ S+(3) by:

gij = g(Ei, Ej) = 〈Ei, Ej〉Σ =
1

2
tr(Σ−1EiΣ

−1Ej) (1)

where {Ei} i, j = 1, ..., 6 denotes the basis of the tangent
space TΣS+(3) = SΣ(3) at Σ ∈ S+(3).
In other words, for any tangent vectors A,B ∈ S(3), their
inner product at Σ is 〈A,B〉Σ = 1

2 tr(Σ−1AΣ−1B).



We can then define the length of a curve segment in S+(3)
between two normal distributions parameterized by Σ1 and
Σ2 and, hence, the geodesic distance [1].

Theorem 2.2 (S.T. Jensen, 1976) Consider the family of
multivariate normal distributions with common mean vector
but different covariance matrices. The geodesic distance be-
tween two members of the family with covariance matrices Σ1

and Σ2 is given by

D(Σ1,Σ2) =

√

1

2
tr(log2(Σ

−1/2
1 Σ2Σ

−1/2
1 ))

Now, we can recall how the local average and spatial gradient
of a diffusion tensor image can be computed.

2.2. Weighted average of diffusion tensors

An important practical application of theorem 2.2 is the abil-
ity to define statistics on S+(3), taking into account its special
geometry. In this sense, the normal distribution parameterized
by Σ̂w ∈ S+(3) and defined as the weighted intrinsic mean
of N distributions Σ1,Σ2, . . . ,ΣN , achieves a minimum of
the weighted sum of squared distances:

µw(Σ̂w,Σ1,Σ2, . . . ,ΣN ) =

∑N
k=1 ωkD

2(Σ̂w,Σk)
∑N

k=1 ωk

(2)

A closed form expression cannot be obtained, but it is possible
to derive a gradient descent algorithm for the computation of
the intrinsic mean as shown in [8]. The associated numerical
scheme is:

Σ̂w
l+1 = (3)

Σ̂
w 1

2

l exp

(

−dt
Σ̂

w
1

2

l (
P

N

k=1
ωk log(Σ−1

k
Σ̂w

l
))Σ̂

w −

1

2

l
P

N

k=1
ωk

)

Σ̂
w 1

2

l

The algorithm simply starts from an initial guess Σ̂w
0 and fol-

lows the opposite of the gradient of the objective function (Eq.
2) along the geodesics of S+(3) to reach the minimum Σ̂w

l+1

in no more than l = 4 or 5 iterations.

2.3. Spatial gradient of diffusion tensor fields

The magnitude of the spatial gradient of a tensor field can
be estimated through the sum of squared geodesic distances
between neighbors as follows:

|∇Σ(x)|2 '

3
∑

k=1

D2(Σ(x),Σ(x ± ek)) (4)

where Σ(x) : Ω ⊂ R
3 7→ S+(3),∀x ∈ Ω is a tensor field de-

fined in the spatial domain Ω and ±ek are forward and back-
ward elements of the canonical basis in R

3 (see [4] for more
details).

3. DT-MRI ANISOTROPIC FILTERING

The mathematical tools presented in the previous section al-
low us to develop an anisotropic smoothing algorithm for ten-
sor fields regularization. In practice, we simply use the op-
erator 3 to estimate local weighted averages. The anisotropic
behavior is introduced by weighting each sample, within a
local neighborhood, by a function that depends on the Rie-
mannian gradient magnitude. This function is chosen so that,
in homogeneous regions, the weights are constant and the ten-
sors are isotropically averaged. On the contrary, when lying
on an edge of the image, we would like that only samples
on that boundary, and not those across, contribute to the lo-
cal averaging. To achieve this goal and avoid mixing struc-
tures of the image, a possible choice for the weighting func-
tion is wk = ε + |∇Σ(x)|2. A major advantage of this ap-
proach is that a straightforward C++ implementation yields a
quite computationally efficient algorithm since, to regularize
a 50×50×50 volume of 3×3 tensors, using a 3×3×3 aver-
aging neighborhood, we obtain an average processing time of
8 minutes on a 1.7GHz Pentium M CPU with 1 Gb of RAM.
Moreover, it is easy to automatically detect the convergence
of the gradient descent detailed in equation 3 by checking the
evolution speed Σw

l (
P

N

k=1
ωk log(Σ−1

k
Σ̂w

l
))

P

N

k=1
ωk

and stopping when-
ever a given norm (Frobenius for instance) of this symmet-
ric matrix has reached a certain threshold (1e-6 in practice).
Hence not only do we ensure the convergence of the weighted
mean but we also discard the need for a parameter such as the
number of iterations.

4. NUMERICAL EXPERIMENTS

4.1. Synthetic data
In order to check the performance of our approach we gener-
ate a 32×32×32 volume with the pattern shown on Fig. 1.a.
Then, we generate the noisy version on Fig. 1.b. The noise
follows a generalization of the Gaussian distribution for sam-
ples belonging to S+(3) using the algorithm proposed in [8]
to generate a set of random positive definite tensors with the
desired mean and covariance matrix. The noise model is con-
sistent with the parametric model for noise in DT-MRI pro-
posed in [9] where the authors proved that noise in DT-MRI
data within a voxel follows a 6-dimensional Normal distri-
bution, assuming that the magnitude diffusion weighted im-
ages are Rician distributed. Fig. 1.c corresponds to the output
of the anisotropic Riemannian filtering approach proposed in
this paper, while Fig. 1.d is the output of a nonlinear matrix-
valued diffusion scheme, as proposed in [12]. Differences
arise when comparing these two images. First of all, noise
is better removed with the Riemannian approach than with
the nonlinear diffusion, where some misoriented tensors re-
main even after 536 iterations with a time step of 0.01, which
are the parameters that provide the optimal response. Fur-
thermore, the well-known swelling effect, due to a faster reg-



(a) Original Image (b) Noisy Image

(c) Aniso. Riem. Smoothing (d) Nonlin. Diff.

Fig. 1. Results on a 32 × 32 × 32 synthetic cube.

ularization of the eigenvalues, is observed for the nonlinear
diffusion, whereas it is not noticeable for our Riemannian ap-
proach. This can be observed by looking at the colors (blue:
low FA and red: high FA) of the tensors: First, we point out
that the original tensors are blue because they are all identical,
thus have the same FA (0.77), and our visualization software
assigns the color associated to the lowest value in that case.
But most importantly, we can see that the regularized tensor
field obtained with our approach is more anisotropic (tensors
are yellow and FA is around 0.75) than that obtained with the
nonlinear diffusion (tensors are green and FA is around 0.60).
From a quantitative point of view, we measure the error be-
tween the original and regularized images by the geodesic dis-
tance between corresponding tensors. As shown in Table 1,
the mean geodesic distance is much lower for the Riemannian
anisotropic approach.

4.2. Real DT-MRI data

For experiments with real data, diffusion weighted images
were acquired on a 3 Tesla scanner at the Centre IRMf de
Marseille, France. We used 12 gradient directions and a b-
value of 1000s/mm2. Acquisitions were repeated 8 times for
each direction to ensure a good signal-to-noise ratio. Voxel
size was 2 × 2 × 2 mm3. Diffusion tensors shown on Figs.
2.a and 4.a were estimated by a robust gradient descent al-
gorithm ensuring their symmetry and positive-definiteness,
as presented in [8]. The idea of this method is to mini-
mize a functional of the linearized Stejskal-Tanner equation
by evolving an initial guess of the tensor on the manifold
S+(3) with a numerical scheme similar to the one used for

(a) Estimated Data (b) Aniso. Riem. Smoothing

(c) Nonlin. Diff. (∆t = 0.001) (d) Nonlin. Diff. (∆t = 0.01)

Fig. 2. Results on DT-MRI data. a) Original DT-MRI data.
b) Anisotropic Riemannian filtering. c) Nonlinear Diffusion
- time step 0.001, 10 iter. d) Nonlinear Diffusion - time step
0.01, 10 iter. (Color code: Blue = low FA and Red = high FA)

the estimation of the average.
Fig. 2.b displays the regularized image using the anisotropic
Riemannian smoothing, while bottom images are regularized
using the nonlinear diffusion, both with 10 iterations, but dif-
ferent time steps. If we analyze the different structures on
this axial slice, we can see that tensors orientation within
the splenium and the genu of the corpus callosum CC(S)
and CC(G) is more coherent with our Riemannian filtering
scheme. Anisotropy in these areas is also better preserved
than in the nonlinear diffusion case, which yields blurred ar-
eas most likely because of the properties of the Euclidean gra-
dient. In addition, the ventricles VE, which are mainly homo-
geneous structures, are better regularized with our approach,
as inhomogeneities do not disappear with the nonlinear diffu-
sion. Finally, the corona radiata CR is well preserved with
our approach while it is completely smoothed away from the
image with a long diffusion time.
On Fig. 3 we show another DT-MRI volume where fiber ori-
entation is color coded as follows: Red: Right-Left / Green:
Anterior-Posterior / Blue: Inferior-Superior. Original data is
shown on top of the image, while the filtered version is shown

Mean Std. Dev. Max Min
Aniso. Riem. 0.2572 0.1313 1.3065 0.0300
Nonlin. Diff. 0.8284 0.1209 3.2551 0.2630

Table 1. Statistics on the error (geodesic distance)



Fig. 3. Real data volume of a human brain.

at the bottom. A single slice from that volume is represented
on Fig. 4, where we compare raw data (on the left) with the
regularized version (on the right) using our approach.

Fig. 4. [Left] Raw tensor field, [Right] Regularized tensor
field

5. CONCLUSION

We have presented a novel differential geometrical approach
for the anisotropic regularization of tensor fields, seen as
fields of multivariate normal distributions. We focused on the
properties of the space of multivariate normal distributions to
introduce a Riemannian metric and notions such as the mean
and spatial gradient which provide a well-founded framework
to develop an anisotropic filtering algorithm for tensor data.
The anisotropic behavior is introduced through the gradient
magnitude, simply computed by using the geodesic distance
between distributions. Our filtering scheme was compared
to nonlinear diffusion of matrix-valued data to point out
its added value and to show that it yields better results on
synthetic and real DT-MRI data.
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would like to thank J.L. Anton, M. Roth and N. Wotawa for the human brain
DTI dataset used in this paper.

6. REFERENCES

[1] C. Atkinson and A.F.S. Mitchell. Rao’s distance measure.
Sankhya: The Indian J. of Stats., (43):345–365, 1981.

[2] D. Le Bihan, J.F. Mangin, C. Poupon, C.A. Clark, S. Pap-
pata, N. Molko and H. Chabriat. Diffusion tensor imag-
ing: Concepts and applications. J. Magn. Reson. Imaging,
(13):534–546, 2001.

[3] J. Burbea and C.R. Rao. Entropy differential metric,
distance and divergence measures in probability spaces:
A unified approach. Journal of Multivariate Analysis,
(12):575–596, 1982.

[4] C.A. Castaño-Moraga, C. Lenglet, R. Deriche, and
J. Ruiz-Alzola. A Riemannian approach to anisotropic fil-
tering of tensor fields. Signal Processing, Special issue on
Tensor Signal Processing, (to appear), 2006.

[5] C. Chefd’hotel, D. Tschumperlé, R. Deriche, and
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