
978-1-4799-6002-6/14/$31.00 ©2014 IEEE

A Brushless DC Motor Control Software C Library
based on ATmega64M1 Applied to Teaching

Himar A. Fabelo, José Cabrera, Aurelio Vega, Víctor Déniz
Dept. of Electronics Engineering and Automatics (DIEA)

Institute for Applied Microelectronics (IUMA)
University of Las Palmas de Gran Canaria (ULPGC), Spain

hfabelo@iuma.ulpgc.es, jose.cabrera@ulpgc.es, avega@iuma.ulpgc.es, vdgonzalez@iuma.ulpgc.es

Abstract— This paper describes the architecture of a C
library developed for the control of a brushless direct current
motor. The library has been made using a modular programming
methodology. The control system is based on ATmega64M1
microcontroller integrated into a controller for 3-phase brushless
direct current motors. The controller has been especially
designed and manufactured for this project. This library has
been mainly created to be used as an educational resource in
teaching of practical sessions of microcontrollers programming
and motor control systems. With it, students can learn the
structure and the operation of the most used control systems
currently that are replacing to the traditional direct current
motors with brushes.

Keywords— brushless direct current motor (BLDCM), BLDC
motor control C library, microcontroller ATmega64M1, analog to
digital converter (ADC), Power Stage Controller (PSC).

I. INTRODUCTION
BLDC motors (Brushless Direct Current Motors) operate

by an electronic commutation signalized by solid state Hall
sensors instead of a brushes commutation. These sensors
indicate to the microcontroller (μC) the position of the motor
rotor. The controller, from these signals, must excite the motor
coils by a right switching logic. Software to perform these
functions is needed. It must also control the speed adjustment
of the system, the motor temperature sensor (if the motor has
one) or the communications to the outside.

At present the trend at the time of performing almost any
type of software, is to develop it in a modular way. One
advantage of this development methodology is to obtain the
ability to reuse code developed, achieving high productivity
and reduced time in future work.

By the modular programming, large and complex problems
are divided into several smaller and simple subproblems. These
subproblems, in turn, are divided into simpler ones. These steps
must be carried out again and again to get items that are simple
enough to be easily resolved. This technique is called
"successive refinement” or “top-down design".

By this project, students of electronics and robotics will
understand and study the modular programming and the BLDC
motor control systems. Thus, by the experiments with this
software and the complete control system, they will understand

its functioning and, moreover, they will learn the C
programming of μCs.

II. THE MOTOR CONTROL SOFTWARE C LIBRARY
The μC chosen for the development of this project is the

ATmega64M1 [1], which has a 64 kB flash memory and a
SRAM (Static Random Access Memory) of 4 kB. Within this
series of ATmega, there are also the Atmega16M1 and
ATmega32M1 with a flash memory capacity and a SRAM of
16 kB and 1 kB, and 32 kB and 2 kB respectively. The μC
model is chosen according to the application and the size of the
software. The ATmega64M1 was chosen for this project due to
its larger flash memory capacity in which future software
upgrades will be able to be placed.

The development of the function library for controlling
BLDC motors is based on the open-loop control with speed
adjustment technique [2][3][4][5]. Fig. 1 shows the most
important components of the μC ATmega64M1 for this
application.

Fig. 1. Diagram of the parts of the μC used in the BLDCM controller

The Hall sensor signals (A, B and C) from the motor enter
in the μC through the ports that have the external interrupts
with higher priority levels. These interrupts act on the main
system process activating the switching of the Q1 to Q6
outputs of the PSC (Power Stage Controller) module in the
correct order. The interrupt of the A Hall sensor carries out the
measurement of motor speed by the timer 0.

The input signal “Key” starts or stops the motor. This
active low signal is introduced through the pin change interrupt
23 (PCINT 23). This interrupt is executed when a signal level

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 04,2021 at 09:54:38 UTC from IEEE Xplore. Restrictions apply.

change occurs. In the main process, it disables or enables the
PSC module. This module generates the 6 PWM (Pulse Width
Modulation) signals, from the Q1 to the Q6, which attack the
drivers of MOSFETs transistors. Then these transistors excite
the BLDC motor coils.

The motor speed adjustment is performed by a digitized
analog signal through one of the ADC (Analog to Digital
Converter) channels. This digitalized signal establishes the
duty cycle of the PWM signal used by the PSC module. This
PWM signal of 16 kHz is generated from the 32 MHz PLL
(Phase-Locked Loop) inside the μC.

Moreover, there are both the CAN (Controller Area
Network) and the UART (Universal Asynchronous Receiver
and Transmitter serial) communication modules with their
respective transmit and receive data signals.

A. Main Process
This process performs the initialization of variables and the

necessary hardware of the microcontroller. By
micro_modules_initialization() function, the initial
configuration of input and output ports of the μC is realized
and the following functions are executed:

 adc_initialization(): It configures and enables the ADC
module to read the analog speed adjustment
potentiometer by the ADC2.

 timer1_initialization(): It initializes the timer 1 to
perform the task of sampling speed and the PWM duty
cycle adjustment. The compare match interrupt is
enabled to run every 256 microseconds.

 timer0_initialization(): It configures the timer 0 as a
counter for the motor speed measurement. It enables the
overflow interrupt to convert the 8-bit timer in a 16-bit
timer by an auxiliary variable that is incremented each
time the interrupt is executed. Thus, higher accuracy in
the motor speed measurement is obtained.

 uart_initialization(): It sets the μC UART module as
transmitter and receiver. It uses the parameters set up by
the user in the configuration file.

 start_pll_32mhz() y wait_pll_ready(): Functions that
configures and activates the PLL to a frequency of 32
MHz. Once they are activated, they keep waiting until
the PLL is ready to continue executing the program.

 psc_initialization(): It makes the PSC module
configuration according to the parameters detailed in
the user configuration file.

 external_interrupt_initialization(): It enables the
external interrupts used by the Hall sensors (INT1, 2
and 3). Also, it enables the pin change interrupts for the
ignition switch and the motor rotation direction switch
(if this option is enabled).

When the system has been initialized, the adc_launch()
function is executed every 256 μs in an infinite loop. This
function reads the speed adjustment potentiometer. The value
is stored and used to set the motor reference speed. By this

reference speed, the control loop is running in open loop to set
the value of the PWM duty cycle.

When the value of the PWM duty cycle has been obtained,
the PSC module registers are updated with that value. After,
the value of the measured speed is sent through the UART
module for its display on the monitoring software (Fig. 2).

Fig. 2. Flow diagram of the main process

B. Hall Sensors Interrupts
These interrupts detect the rising edges of the Hall sensors

signals. They are the highest priority level external interrupts of
the program. In each one, the output_psc_switch_commutations
(value) function is executed. This function requires as
parameter the value at that time of the Hall sensors properly
formatted. Using this value and the rotation direction variable
at that time, the activation of the corresponding Q outputs of
the PSC module is performed. These PWM output signals
make the switching of the BLDC motor coils and their duty
cycle is set by the speed adjustment potentiometer.

Fig. 3 shows the switching sequence of PSC module
outputs according to the Hall sensor signals when the rotation
is CW (ClockWise). The three possible states in which the U, V
and W motor coils can be found are the following:

 VCC: coil is connected to the supply voltage.

 GND: coil is connected to the ground.

 NC: coil is not connected.

Table I details the switching sequence of PSC outputs in
relation to the value of the Hall sensors and the CCW
(CounterClockWise) or CW rotation motor.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 04,2021 at 09:54:38 UTC from IEEE Xplore. Restrictions apply.

In the A Hall sensor interrupt (INT 0) the calculation of
revolutions per minute of the motor for each rising edge is
performed by the calculate_estimated_speed () function. This
function uses the 16-bit value obtained from the timer 0 and a
constant, which is defined by the user based on the motor used,
to calculate the revolutions per minute of the motor (Fig. 4).

Fig. 3. Hall sensors signals and PSC outputs for CW rotation

TABLE I. SWITCHING SEQUENCE OF PSC OUTPUTS

Hall Sensors
Value (C,B,A)

PSC Outputs
Active (CCW)

PSC Outputs
Active (CW)

001 Q5 – Q2 Q1 – Q6
101 Q3 – Q2 Q1 – Q4
100 Q3 – Q6 Q5 – Q4
110 Q1 – Q6 Q5 – Q2
010 Q1 – Q4 Q3 – Q2
011 Q5 – Q4 Q3 – Q6

C. ADC interrupt
This interrupt reads of the speed adjustment potentiometer

and converts the value obtained to a digital value (Fig. 5). This
interrupt is executed when the potentiometer signal conversion
connected to the analog input channel 2 (ADC2) is finalized.

D. Timer 0 overflow interrupt
As already explained above, this interrupt increases the

value of auxiliary variable that converts the 8-bit timer 0 in a
16-bit timer (Fig. 6). If the auxiliary variable is above than a
calculated value, then the variable and the value of the
reference speed are reset. If the variable that indicates whether
the motor is active has a true value, the motor is tried to run
again. To do this, it is used the retry_run_motor() function,
which launches the control loop, updates the value of the PWM
duty cycle and runs the activation function of the PSC outputs.

Fig. 4. Flow diagram of the Hall sensors interrupts

Fig. 5. Flow diagram of the ADC interrupt

E. Pin change interrupt 1 (PCINT 1)
It controls the starting and the stopping of the motor. When

the interrupt detects a change in the signal level from the
ignition switch, it checks if the level is high or low. When a
high level is present on the pin, all PSC outputs are disabled.
On the contrary, when a low level is present, the
output_psc_switch_commutations(value) function is called
with the value of the Hall sensors in that instant (Fig. 7).

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 04,2021 at 09:54:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Flow diagram of the Timer 0 overflow interrupt

Fig. 7. Flow diagram of start and stop motor interrupt

F. Configuration file
In this file there are the constants that the users must set

depending on their needs. For the UART module, they must set
the baud rate, the number of stop bits, and the number of bits to
transmit that they will use in the serial connection to the PC.

Another aspect that must be configured is the speed
constant of the motor. This constant is calculated using the
equation (1). This equation depends on the value, in seconds,
set for the timer 0 (t_timer0), the maximum speed
(max_speed), in revolutions per minute, and the number of
pairs of poles of the BLDC motor used.

	ݐݏ݊݋ܿ_݀݁݁݌ݏ = 	
60 ∙ 255

݊ ∙ (௦)0ݎ݁݉݅ݐ_ݐ ∙ max	_݀݁݁݌ݏ(௥௣௠)
 (1)

A limited data in a range of 0 to 255 (8 bits) from the
measured value of the motor speed is got by this constant. This
data will be the value sent to the monitoring software to display
the motor speed.

G. ATmega64M1 programming
Fig. 8 shows the flash memory map of the ATmega64M1

μC used in the project. The application code occupies a
memory space of 10.8 kB. It is observed that there is clearance
in memory for future expansion of the project.

Microcontroller programming is done by the Atmel Studio
6.0 software [6]. This software can be downloaded for free
from the μC manufacturer's web and it is used to develop and
compile codes made in C/C++ or assembly language.

A low-cost BLDC motor controller has been developed to
carry out the tests in this project [7]. The application testing has
been performed by this controller (Fig. 9). On the other hand,
the load of the program has been carried out through the ISP
(In-System Programming) interface of the μC and the AVRISP
mkII programmer device [8].

Fig. 8. Flash memory map of the ATmega64M1

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 04,2021 at 09:54:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. View of the BLDCM controller and the AVRISP mkII programmer

III. CONTROL AND MONITORING SOFTWARE
In this section, the developed software, using NI LabVIEW

[9], for the control and monitoring of the BLDC motor from a
PC is described. The communication protocol used is the RS-
232. The software consists of two parts: a control and
monitoring panel of the BLDC motor and a configuration panel
of the UART connection and the constant for calculating the
motor speed in revolutions per minute.

A. Control and monitoring
In this panel there are the controls and the display of

revolutions per minute of the motor (Fig. 10). It has controls on
and off (ON / OFF), change of direction of rotation (CCW /
CW) and a virtual potentiometer for speed adjustment. These
virtual controls have been incorporated to give the possibility
to control the motor from the application. The configuration
panel has a switch that enables these controls. If this switch is
set, the physical controls of the test bench will be locked.

Fig. 10. View of the control and monitoring panel

B. UART configuration
This panel shows the controls to configure the serial port

connection of the PC to the μC (Fig. 11). The parameters to
configure this protocol are the following:

 Serial port used on the PC.

 Baudrate used in the connection.

 Number of bits per packet in the connection.

 Type of parity.

 Number of stop bits.

 Flow control used in the connection.

 Start transmission character (XON).

 Stop transmission character (XOFF).

 End of frame character.

 Maximum wait time in milliseconds (Timeout).

Furthermore, there is a field where must be entered the
alpha constant used to find the real value of the motor speed.
This constant is calculated by the expression (2), where n is the
number of pairs of poles of the BLDC motor, speed_const is
the constant calculated above and t_timer0 is the timer0 value
in seconds.

	ℎܽ݌݈ܽ = 	
60

݊ ∙ ݐݏ݊݋ܿ_݀݁݁݌ݏ ∙ (௦)0ݎ݁݉݅ݐ_ݐ
 (2)

The real speed of the BLDC motor is calculated by the
expression (3), where alpha is the constant obtained in
equation (2) and measured_speed is the 8-bit value of the
measured speed received by the serial port.

(௥௣௠)݀݁݁݌ݏ_݈ܽ݁ݎ 	= ℎܽ݌݈ܽ	 ∙ (3) ݀݁݁݌ݏ_݀݁ݎݑݏܽ݁݉

Fig. 11. View of the configuration panel

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 04,2021 at 09:54:38 UTC from IEEE Xplore. Restrictions apply.

CONCLUSIONS AND ONGOING WORK
Nowadays this type of BLDC motors are increasingly used

due to their high performance and excellent features, replacing
traditional DC motors (Brushed Direct Current Motors).
Hence, students must acquire knowledge in this field. By this
system, they can learn to make mathematical calculations of
the BLDC motor control and, moreover, settings and
calculations to program the μC simultaneously. In this way,
students will be more motivated and get a greater benefit from
the practices.

A possible future action to expand this project is
implementing the functions for speed and current loop control
of BLDC motors. Thus, students will be able to learn
everything about the PID control (Proportional Integral
Derivative controller) of a BLDC motor.

On the other hand, the basic functions of the CAN protocol
may be used in future as communication system for control and
monitoring of the motor. This protocol is more robust and
reliable than the RS-232 one. Students will be able to do
internships and understand the operation of this communication
bus by implementing the necessary functions to configure the
CAN module of the microcontroller. After, the application
layer would be added to the project using CANopen [10].

Multiple controllers are being currently manufactured for
use in practice the next academic year 2014/2015.

REFERENCES
[1] Atmel ATmega16/32/64M1 microcontroller’s family:

http://www.atmel.com/devices/ATMEGA64M1.aspx, Last accessed
2013, December.

[2] Wang Dongmei, Guo Haiyan, and Yu Jing, “Modeling and Simulation
Research of Brushless DC Motor open-loop Speed-adjustment System”,
The 2nd International Conference on Intelligent Control and Information
Processing, ISBN 978-1-4577-0816-9, pp.: 394 – 398, 2011.

[3] Alphonsa Roslin Paul, and Prof. Mary George, “Brushless DC motor
control using digital PWM techniques”, Proceedings of 2011
International Conference on Signal Processing, Communication,
Computing and Networking Technologies (ICSCCN 2011), ISBN 978-
1-61284-653-8, pp.: 733 – 738, 2011.

[4] Hai-tao Wang, Ze Zhang, and Xiang-yu Liu, “Design of control system
for brushless DC motor based on TMS320F28335”, Third International
Conference on Measuring Technology and Mechatronics Automation
(ICMTMA), ISBN 978-1-4244-9010-3, pp.: 954 – 958, 2011.

[5] Radu Duma, Petru Dobra, Mirela Dobra, and Ioan Valentin Sita, “Low
cost embedded solution for BLDC motor control”, 15th International
Conference on System Theory, Control, and Computing (ICSTCC),
ISBN 978-1-4577-1173-2, pp.: 1 – 6, 2011.

[6] Atmel Studio 6.0 Manual. [Online]. Available:
http://atmel.no/webdoc/atmelstudio/

[7] H. A. Fabelo, J. M. Cabrera, A. Vega, and V. Déniz, “A Low-Cost
Control System for BLDC Motors Applied to Teaching”, XI TAEE,
2014.

[8] Atmel AVRISP mkII microcontroller programmer:
http://www.atmel.com/tools/avrispmkii.aspx, Last accessed 2013,
December.

[9] NI LabVIEW: http://www.ni.com/labview/esa/, Last accessed 2013,
December.

[10] CANOpen protocol: http://www.can-cia.org/, Last accessed 2013,
December.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 04,2021 at 09:54:38 UTC from IEEE Xplore. Restrictions apply.

