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ABSTRACT  

Hyperspectral Imaging (HI) collects high resolution spectral information consisting of hundreds of bands across the 

electromagnetic spectrum –from the ultraviolet to the infrared range–. Thanks to this huge amount of information, an 

identification of the different elements that compound the hyperspectral image is feasible. Initially, HI was developed for 

remote sensing applications and, nowadays, its use has been spread to research fields such as security and medicine. In 

all of them, new applications that demand the specific requirement of real-time processing have appear. In order to fulfill 

this requirement, the intrinsic parallelism of the algorithms needs to be explicitly exploited. 

In this paper, a Support Vector Machine (SVM) classifier with a linear kernel has been implemented using a dataflow 

language called RVC-CAL. Specifically, RVC-CAL allows the scheduling of functional actors onto the target platform 

cores. Once the parallelism of the classifier has been extracted, a comparison of the SVM classifier implementation using 

LibSVM –a specific library for SVM applications– and RVC-CAL has been performed.  

The speedup results obtained for the image classifier depends on the number of blocks in which the image is divided; 

concretely, when 3 image blocks are processed in parallel, an average speed up above 2.50, with regard to the RVC-CAL 

sequential version, is achieved.  
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1. INTRODUCTION  

Hyperspectral images gather a huge amount of information covering hundreds of spectral bands ranging from the 

infrared to the ultraviolet spectrum. Moreover, Hyperspectral Imaging (HI) technology [1] aims at using them to 

distinguish the different materials that compound a captured scene and to estimate their distribution [2]. Although HI 

was originally developed for remote sensing applications, nowadays it is being applied to other research fields as 

astronomy, security, forensics and medicine [3]-[6]. 

One of the most extended procedures to identify materials and locate their distribution within a captured scene is the 

supervised learning classification [7] [8]. This methodology is based on generating a classification model by extracting a 

series of characteristics from a labeled training dataset composed of pixels whose materials –the so-called classes– are 

known in advance. Once this classification model has been defined and the characteristics associated to each material 

have been extracted, the classifier is able to assign a class to a new set of unlabeled pixels. 

Within the different methodologies of the supervised learning classification, Support Vector Machines (SVM) present 

the best performance when the number of training samples is reduced. This classifier has been extensively utilized to 

analyze hyperspectral images and its good performance has been tested in real-time applications [9]. 

Related with HI applications, there are several research fields aiming at processing hyperspectral images in real-time 

which, in turn, mean to classify the captured scenes in a reduced amount of time [10]. To do so, one of the most extended 

procedures is to exploit the intrinsic parallelism of the algorithms which, in consequence, supports the idea of using the 

SVM classifier due to its pixel-wise processing independency, i.e. each pixel is classified independently from the rest of 

the image [11]. 



 

 
 

 

In this line, dataflow languages try to ease the parallelization process by separating the implementation of the algorithm 

functionalities from the communication within the different stages. One example of these languages is known as 

Reconfigurable Video Coding CAL Actor Language (RVC-CAL) [12]. In this language, the functional part of the system 

is divided in blocks –or actors–. In particular, these actors are composed by a series of input and output ports and 

perform some tasks of the system, also known as actions. Once the algorithm is divided in actors, the communication 

among them is described in a graphical way, connecting each output to its corresponding input. Furthermore, RVC-CAL 

supports a semi-automatic association of each actor to a specific processing unit to explicitly map the system into 

different cores and, in consequence, parallelize its execution.  

The main contribution of this paper is the implementation and parallelization of the SVM classifier algorithm using the 

RVC-CAL dataflow language. To do so, first an adaptation of the LibSVM code is performed and, after that, the 

implementation space offered by the prediction stage of the system is studied. 

The rest of the paper is structured as follows: first, the state-of-the-art related with this research is briefly exposed; 

secondly, Section 3 gathers an explanation of the SVM algorithm where its main stages are described and an analysis of 

the data dependency is carried out; after that, in Section 4, the different steps of the implementation procedure are 

detailed; the results obtained during the assessment of the SVM conversion to RVC-CAL and the following 

parallelization of the system are exposed in Section 5; finally, this paper draws some conclusions extracted during this 

research. 

2. RELATED WORK 

2.1 SVM classifiers in HI 

As mentioned in Section 1, SVM classifiers are an extended methodology to classify hyperspectral images among the 

supervised learning classifiers. In this line, in [13], the effectiveness of SVMs with respect to neural networks and K-

nearest neighbors method when classifying hyperspectral images is assessed, proving that SVMs are a valid and effective 

procedure to use in remote sensing applications.  

Likewise, in [14], Bazi exposes a series of experiments to improve the efficiency of SVMs in this kind of applications, 

focusing on finding the minimum number of support vectors generated during the training and, in addition, reducing the 

security margins of the limits among classes.  

Moreover, in order to improve the processing performance of SVM classifiers, there are multiple studies dedicated to 

parallelize this algorithm. Specifically, in [15] and [16], the SVM algorithm has been implemented in GPU platforms 

and, as a result, speedups of 9 and 10 have been obtained when comparing with a classical multiclass solver 

implemented using LibSVM. 

2.2 RVC-CAL 

Dataflow languages are aimed at reducing the parallelization process complexity of a system. To do so, system 

specification with the CAL Actor Language (CAL) is based on creating a graph where the blocks, formally known as 

actors, are independent functional units where specific tasks are carried out. On the other hand, the connections represent 

the information transmissions performed among actors [17]. 

In this line, ISO/IEC Motion Pictures Experts Group (MPEG) has standardized the RVC-CAL dataflow language [12]. 

The specification process in RVC-CAL is divided in two parts. During the first part, the different system functionalities 

are divided and individually implemented using actors. These actors, in turn, are divided into some actions that perform 

the functionalities associated to the actor and input and output ports are assigned to the actor. On the other hand, the 

second step is to implement the communications among the actors using a block diagram or graph where the actors are 

represented as blocks or nodes and the connections or arcs are associated with the communications among them. 

Specifically, these communications are based on sending packages of information that receive the name of tokens in this 

language. Likewise, the size of these tokens is defined for each communication by the implicated actors.  

Furthermore, a new tool called ORCC –which stands for Open RVC-CAL Compiler– allows the automatic generation of, 

for instance, C code from the RVC-CAL specification. By doing so, the portability among platforms of the generated 

code increases exponentially. Additionally, this tool presents the capability of scheduling the actor execution within the 

different processing units of the platform which, in turn, completes the parallelization procedure of the system [18]. 



 

 
 

 

3. MODELING METHODOLOGY 

This section aims at analyzing the different stages of the Support Vector Machine classifier. After each stage analysis, a 

brief conclusion of the data dependency within the stage is exposed.  

3.1   Support Vector Machines 

As mentioned in Section 1, this research is aimed at implementing a Support Vector Machine classifier using a dataflow 

language called RVC-CAL. This kind of classifiers are usually composed of two main stages: first, a training stage 

where a classification model is generated based on a training set of pixels –pixels whose associated class are known in 

advance– and, after that, a prediction step where a set of unlabeled pixels is classified using the previously obtained 

model.  

During the first stage, the training set is analyzed to obtain a series of support vectors which, in turn, will define a series 

of hyperplanes to separate pairs of classes. Specifically, the number of classes existing within the case under study 

determines the number of hyperplanes that needs to be defined. In particular, the relationship between classes to be 

distinguished and calculated hyperplanes follows equation (1), where N is the number of classes and H is the number of 

hyperplanes. For example, 3 hyperplanes are required in three-class problems and 10 in five-class approaches. In 

consequence, the number of hyperplanes grows as a quadratic function with the number of classes under study. 
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As this stage is aimed at configuring the classifier with samples whose classes are known in advance, it can be 

considered as a previous step of the processing chain. Due to its independency from the data to be classified, the training 

can be carried out offline. 

On the other hand, the prediction stage aims at associating a class to an unlabeled pixel –or set of pixels– based on the 

classification model previously generated. To do so, when a multi-class approach (i.e. when more than two classes need 

to be distinguished) is being studied, three stages need to be fulfilled: 

 First, a binary classification stage where the distance of the pixel to each hyperplane of the classification model 

is computed: for each distance, only the support vectors associated to the hyperplane that separates two classes 

are taken into account. To do so, the kernel theory explained in [19] is applied. The most extended strategy is 

the linear kernel, which follows equation (2). As can be seen, the distance is computed by a sum of two terms. 

The first one is an accumulation of dot products of the support vectors xi belonging to the set S defined by the 

classification model and the sample to classify, x. Each dot product is weigh by the Lagrange multiplier, αi, and 

a class index, yi, associated to each support vector. The second one is the bias b associated to the hyperplane. 

                                             ( )   ∑     (

    

    )                                               ( ) 

 Secondly, a probability estimation step is performed. During this stage, the probability of the pixel to belong to 

each possible class is calculated. To do so, the distances to each binary classifier are considered as inputs and a 

series of conditional probabilities are generated using a sigmoid function. After that, a multi-class estimation 

procedure is carried out to combine the conditional probabilities and to obtain the global class probabilities. 

Specifically, as explained in [20], this combination of conditional probabilities can be computed using different 

strategies. 

 Finally, a final class needs to be assign to every pixel within the captured scene. There are two main 

methodologies to do so: the former is to apply a majority rule to the binary classification stage and to select the 

winning one as the pixel final class; the latter is to analyze the global class probabilities obtained during the 

multi-class probability estimation stage and to select as the pixel final class the one with the largest probability.  

To conclude this analysis, it must be highlighted that the prediction stage is computed for each pixel independently, i.e. 

this stage can be considered as a pixel-wise procedure where each pixel can be classified independently from the rest of 

the captured scene. 



 

 
 

 

4. IMPLEMENTATION 

This section is organized as follows: first, the database utilized to assess the correct behavior of the SVM system is 

explained; secondly, the parallelization process of the implementation of the SVM algorithm is detailed; finally, the 

different networks used to configure the dataflow of the system are explained. 

4.1   Database 

The hyperspectral images utilized to assess the conducted experiments have been extracted from the HELICoiD project 

database [10]. These images have been obtained from human brain tissue resected during a neurosurgical procedure at 

the University Hospital Doctor Negrin of Las Palmas de Gran Canaria. 

The scenes have been captured using the VNIR camera of the HELICoiD setup [21], which ranges from 400nm to 

1000nm. This setup also gathers a push-broom scanning unit and an illumination system that provides a cold light 

mounted in a structure for surgical environments. 

In this case, two hyperspectral images have been selected to evaluate the SVM behavior. After a preprocessing stage, 

both images have a spectral resolution of 129 bands; likewise, the first image –Case 1– has a spatial resolution of 377 

lines x 329 samples per line (124033 pixels) whilst the second image –Case 2– is composed by 479 lines x 552 samples 

per line (264408 pixels).  

4.2   Model implementation 

During this research, a linear kernel SVM  that distinguishes among three different classes –healthy tissue, tumor tissue 

and others– has been implemented. Moreover, the target  platform is an Intel Core i5 with 4 cores running at 3.3GHz.  

First, as the training step is considered as a configuration stage where the classification models are generated, it has been 

performed offline. Specifically, a MATLAB
®
 model of the training stage has been implemented using LibSVM [22], 

which is a well-known library extensively used in SVM implementations. 

On the contrary, to implement the prediction stage on RVC-CAL, three different functionalities have been extracted and, 

in consequence, the classification system has been implemented using three different actors. Likewise, the classification 

of the scene is performed using a pixel-wise strategy, i.e. one pixel is classified and, once its analysis has finished, the 

prediction of the next one begins.  

Figure 1 graphically shows the sequential system that has been implemented using RVC-CAL. As can be observed, each 

actor carries out a specific functionality: 

 The Reader actor aims at loading the classification model, reading the image and sending both to the Predict 

actor. 

 The Predict actor objective is to classify the scene. First, it receives the model; once it has been correctly 

configured, it receives the image;, afterwards, the actor carries out the prediction stage of the algorithm. 

Following the pixel-wise independency of the algorithm, a total of three binary classifiers are computed; Then, 

the multi-class probability estimation is performed and, once the global probabilities are calculated, the class 

with the largest probability is selected as the pixel final class. 

 Finally, the Display actor receives the prediction results –classes and global probabilities– and writes them into 

a file. 

 

Figure 1.  Sequential network on RVC-CAL 

 



 

 
 

 

4.3   Network mapping 

As a final step, the parallelization of the system needs to be explained. To parallelize the system, the prediction stage has 

been considered as a pixel-wise procedure. Specifically, two different networks have been implemented using at most 3 

cores to run the application. As the target environment has a total of 4 available cores, one of them has been reserved for 

running the operating system to avoid possible interferences. 

Figure 2 shows the configuration of the first network for the 3-cores experiment. This distribution aims at parallelizing 

the prediction step. In this case, the system follows the steps described below: 

 First, the Reader actor loads the classification model and broadcasts it. Once the model is sent, it reads the 

image and, after that, it splits the scene in blocks that will be sent to the Predict actors. Predict_1, Predict_2 and 

Predict_3. 

 The Predict actors are executed in parallel and each actor processes only the piece of image that has received. 

This parallelization, in theory, divides the prediction step time by the number of actors involved in this 

computation. Once each actor has finished, the results are sent to the Display actor. 

 Finally, when the Display actor receives all the data, it generates two files: one with the classification map and 

another one with the three probability maps (one per class). 

  

Figure 2.  First parallel network on RVC-CAL 

On the other hand, the second actor network consists on creating as many processing chains as cores used. Figure 3 

shows the network utilized to implement the 3-core classification system. In this case, the system works as follows: 

 First, each Reader actor loads the classification model and sends it to its associated Predict actor. After that, 

only its corresponding portion of the image is loaded to improve the reading time and, once this reading has 

finished, the image block is sent to the Predict actor. 

 The Predict actors work following the same schema than in the previous network: receive the model, receive the 

image block, process the image block and send the results. 

 Finally, each Display actor receives and saves a portion of the probability and the classification maps. 



 

 
 

 

 

Figure 3.  Second parallel network on RVC-CAL 

5. RESULTS 

During this section, the obtained results are analyzed in terms of execution time. In this case, the analysis has been 

divided into two parts: first, the adaptation of the LibSVM code to the RVC-CAL language is assessed; secondly, the 

performances of the parallel implementations of the SVM classifier on RVC-CAL are evaluated. 

5.1   RVC-CAL adaptation 

In this set of experiments, a comparison between the sequential versions of both LibSVM and RVC-CAL 

implementations is performed. To measure the execution time, the test-bench is composed by 10 executions of each 

experiment. Specifically, the execution time has been divided into three components that directly relate to the three 

functionalities explained in Section 4: read, predict and display. In addition, the total execution time –including the 

communication between actors– is measured. 

Table 1 gathers the average execution times (in seconds) obtained for both implementations and both cases under study. 

As can be seen, the prediction time has been reduced when the LibSVM code has been adapted to the RVC-CAL 

language. As a result, a speedup over 4.00 is obtained in both experiments. 

Table 1. Comparative of the average execution time and speedup of the sequential version of the classifier using LibSVM 

and RVC-CAL 

Experiment 
Read (s) Predict (s) Display (s) Total (s) Speedup 

Case Version 

1 
LibSVM 2.35 72.60 0.29 75.23 1.00 

RVC-CAL 2.32 16.32 0.13 18.78 4.01 

2 
LibSVM 4.95 385.53 0.31 390.79 1.00 

RVC-CAL 4.93 88.57 0.27 93.84 4.16 

Furthermore, it should be highlighted that, as expected, most of the execution time is dedicated to classify the image. 

Consequently, as the SVM algorithm can be performed using a pixel-wise methodology, these results support the idea of 

parallelizing the prediction task by dividing the image into blocks. It is also worth noting that, as the image in Case 2 is 

larger than the one in Case 1, the second experiment requires more time to be fulfilled than the first one. 



 

 
 

 

5.2   Parallel implementation 

Once the SVM algorithm has been adapted to the RVC-CAL language, the parallelization of the classifier is evaluated. 

In this case, two different networks –explained in detail in Section 4– have been analyzed. On the one hand, the first 

approach presents a parallelization of the prediction procedure. On the other hand, the second one implements a full 

processing chain for each image block to be processed in parallel, i.e. all the procedures of the system have been 

parallelized. 

Table 2 shows the execution time (in seconds) obtained using the first network as a function of the number of cores 

employed. As expected, the reading and displaying times remain constant whilst the classification time is almost divided 

by the number of cores involved in the prediction stage. Furthermore, analyzing the global execution time, speedups of 

2.27 and 2.25 are obtained for Case 1 and Case 2, respectively. Ideally, this speedup should be 3 but, as the reading and 

the display functionalities are performed by only one actor, the image transmission and the result reception are carried 

out sequentially. Finally, it should be highlighted that, if the prediction time is individually analyzed, the speedups 

obtained using 3 actors are 2.86 and 2.44 for Case 1 and Case 2, respectively (not shown in Table 2). 

Table 2. Average execution time and speedup for Case 1 and Case 2 of the first network implementation of the SVM 

classifier 

Experiment 
Read (s) Predict (s) Display (s) Total (s) Speedup 

Case Cores 

1 

1 2.32 16.32 0.13 18.78 1.00 

2 2.35 8.48 0.13 10.96 1.71 

3 2.46 5.69 0.13 8.27 2.27 

2 

1 4.93 88.57 0.27 93.84 1.00 

2 4.96 44.32 0.26 49.54 1.89 

3 5.09 36.22 0.28 41.59 2.25 

The second approach implements an independent processing chain for each image block. Specifically, in this case, all the 

steps of the processing chain are executed in parallel and, in addition, the transmissions among actors are also performed 

in parallel.  

Table 3 joins the execution times obtained during this experiment. As can be seen, as expected, the execution time of 

each stage is reduced with the number of active cores. In this case, speedups of 2.89 and 2.50 are obtained for Case 1 and 

Case 2, respectively, when using 3 independent processing chains. 

Table 3. Average Execution time and speedup for Case 1 and Case 2 of the second network implementation of the SVM 

classifier 

Experiment 
Read (s) Classify (s) Display (s) Total (s) Speedup 

Case Cores 

1 

1 2.32 16.32 0.13 18.78 1.00 

2 1.17 8.45 0.07 9.68 1.94 

3 0.80 5.66 0.07 6.50 2.89 

2 

1 4.93 88.57 0.27 93.84 1.00 

2 2.47 44.45 0.24 47.04 1.99 

3 1.70 36.06 0.16 37.56 2.50 



 

 
 

 

To summarize the results obtained during the implementation space exploration, Figure 4 offers a graphical comparison 

of the total execution times achieved when parallelizing the SVM algorithm using RVC-CAL. Specifically, Case 1 is 

represented on the upper side, while the lower side displays the results obtained from Case 2. Additionally, the evolution 

of the speedup is represented. As can be seen, due to the parallelization of the whole chain instead of only parallelizing 

the prediction step, the improvement achieved with the second approach is 27% and 11% better than that obtained with 

the first network. 

 

Figure 4. Total processing time and speedup as a function of the number of cores for Case 1 (up) and Case 2 (down) 

6. CONCLUSION  

During this research, an exploitation of the intrinsic parallelism of the SVM algorithm has been carried out and, after 

that, a study of the implementation space of this algorithm using a dataflow language called RVC-CAL has been 

performed. This language simplifies the parallelization of the system and simplifies the test of different system 

distributions. Specifically, this research is aimed at reducing the prediction time of the SVM classifier using RVC-CAL. 

The results obtained show that the adaptation of the LibSVM code to the RVC-CAL language implies a reduction of the 

hyperspectral image classification time. Additionally, as this algorithm supports a pixel-wise processing strategy, the 

parallelization of the system is intuitive. In this line, to study the implementation space, two different networks where the 

pixel-wise parallel classification is exploited have been proposed and compared. 

The study of the implementation space has shown that the whole processing chain of the SVM algorithm is completely 

parallelizable due to the pixel independency of the system. In consequence, using a maximum of 3 cores to process the 

image in parallel, average speedups of 2.85 and 2.50 have been obtained for Case 1 and Case 2, respectively. 

Finally, the reduction of the parallelization process complexity has been demonstrated using the RVC-CAL language. As 

the SVM classifier supports a pixel-level parallelism, this algorithm has been a perfect candidate to test the capabilities 

and limitations of this dataflow language. RVC-CAL provides thus a powerful tool to extract the algorithm inherent 

parallelism. 
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