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Abstract—Current computational demands require increasing
designer’s efficiency and system performance per watt. A broadly
accepted solution for efficient accelerators implementation is
reconfigurable computing. However, typical HDL methodologies
require very specific skills and a considerable amount of de-
signer’s time. Despite the new approaches to high-level synthesis
like OpenCL, given the large heterogeneity in today’s devices
(manycore, CPUs, GPUs, FPGAs), there is no one-fits-all solution,
so to maximize performance, platform-driven optimization is
needed. This paper reviews some latest works using Intel FPGA
SDK for OpenCL and the strategies for optimization, evaluating
the framework for the design of a hyperspectral image spatial-
spectral classifier accelerator. Results are reported for a Cyclone
V SoC using Intel FPGA OpenCL Offline Compiler 16.0 out-
of-the-box. From a common baseline C implementation running
on the embedded ARM® Cortex®-A9, OpenCL-based synthesis
is evaluated applying different generic and vendor specific opti-
mizations. Results show how reasonable speedups are obtained in
a device with scarce computing and embedded memory resources.
It seems a great step has been given to effectively raise the
abstraction level, but still, a considerable amount of HW design
skills is needed.

I. INTRODUCTION

Last years have witnessed a revamped approach to high-
level synthesis (HLS) techniques for Reconfigurable Comput-
ing (RC) devices. In general, an improvement of high-level
design (HLD) methodologies have occurred, pushed by the
advancement of heterogeneous multicore/manycore devices.

The generalization of these devices has made researchers
to investigate different strategies to express parallelism in the
source code, to improve the interface among the different
computational units of a system and to balance the processing
workload accordingly at runtime. In fixed computing systems
such as CPUs and GPUs, the interface among the processing
units and memory is done at chip’s design time; it is then
the designer’s task to efficiently exploit the available com-
puting resources by using adequate specifications. Given the
explosion of this multi/manycore devices, several different lan-
guages, programming models, compilers, and runtime engines
have emerged to help programming and leveraging the amount
of computing power available. This have effectively helped in
rising the abstraction level at the specification phase.

HLD for FPGAs has traditionally suffered from two main
issues. One is related to the compilation from high-level,
non HDL-based descriptions, to dataflow RTL that FPGA

synthesis tools understand. This first issue, the silicon compiler
itself, has revealed a extremely complex task, with several
commercial/research tools investigated. Secondly, a system
level methodology and set of tools to help build out the
whole system out of the different pieces of modern FPGAs,
i.e., CPUs, memory and reconfigurable logic. During these
years, these different parts had to be designed and integrated
separately: (i) RTL design for the accelerators; (ii) system
level C code for control tasks and offloading compute intensive
tasks to the logic; and (iii) an interface logic able to sustain
a shared memory model ensuring coherency and maximizing
data transfers throughput.

Fortunately, the effort done for manycore devices and the
interest in FPGAs given their good performance/watt figures,
are paving the way to close the HLD gap for RC devices.
Two main lines seem to be consolidating, both sharing C/C++
input specifications: a specific HLS compiler together with an
automated tool for system level integration and the adaptation
of previous architecture/memory models like OpenCL.

The first trusts on strict HLS for hardware accelerators
design but without automated system level integration. This
is the case with Xilinx Vivado, targeted at hardware designers
and system integrators, composed of Vivado HLS compiler
(formerly AutoESL) and Vivado IP Integrator for system level
integration. Lately, SDSoC appeared to augment HLS bringing
seamless automated system integration features, a highly ap-
pealing approach for software programmers. In the Intel FPGA
case, no commercial tool is yet available. However, at the time
of writing this paper, an HLS Compiler is available for beta
access1, although access seems restricted yet.

The other approach involves the use of a generic program-
ming model for parallel and heterogeneous devices, OpenCL,
which enables having a common codebase that can be adapted
to different platforms. However OpenCL portability is just
functional, since optimizations are needed to squeeze the target
platform computing power as much as possible. This is a rather
reasonable price to pay given the complexity of today’s devices
and considering the step ahead provided in terms of obtained
performance vs. design effort. This has been the main bet from

1https://www.altera.com/products/design-software/high-level-design/intel-
hls-compiler/overview.html
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Intel FPGA. Xilinx has also recently promoted its OpenCL
tools from beta access to commercial availability.

This paper investigates the design of OpenCL-based accel-
erators for Intel Cyclone V SoCs, in a Hyperspectral Image
(HI) processing application. The rest of the paper is orga-
nized as follows. Section II introduces the general OpenCL
model and the specifics of the Intel FPGA implementation.
Following, Section III reviews related work with emphasis
on optimizations for accelerators using this model, before
presenting the test case in Section V. The paper continues
with the implementation, the obtained results and analysis in
Sections VI and VII before concluding in Section VIII.

II. THE OPENCL MODEL

OpenCL appeared mostly to help leveraging the available
computing power of GPUs. Since then, it has evolved to
support a wide spectrum of heterogeneous platforms like
CPUs, GPUs, DSPs and FPGAs. An OpenCL application
consists of a host program running on the host CPU that
triggers the execution of kernels in an accelerator device,
managing all required data transfers in a master-slave model.
The architectural model of OpenCL conceives a system as a
set of Compute Devices (CDs) attached to a host CPU. Each
CD have a number of Compute Units (CUs), which are in turn
composed of another number of Processing Elements (PEs).
The system memory model is divided among a shared global
memory, local memory, constant memory and private memory.

This model, inherited from the massive parallelism of
GPUs, gives support to a data-parallel approach in which
a complete computational work can be divided into several
non-dependent, concurrent execution threads. Therefore, loop
iterations are replaced by parallel executing instances of the
kernel. Each of them, basically a thread, is known as Work-
Item (WI) and is mapped onto a PE. WIs are grouped in
so called Work-Groups (WGs) (mapped to CUs), the total of
which conforms the complete kernel. The host CPU and the
CUs share the global and constant memories, accessible by
all WIs but usually with high latency access.Local memory,
shared among the WIs of each WG, and private memory,
restricted for each WI, are both on-chip, so accesses are
usually low latency. Additionally, Instruction Level Parallelism
(ILP) is possible in OpenCL through its task-parallel model,
known as single WI (SWI), which enables concurrent kernel
execution. Fig. 1 shows the generic OpenCL model.

A. OpenCL for FPGAs

In the specific case of FPGAs, the OpenCL model brings
a twofold advantage. On one side, it enhances the generic
model by allowing the designer to create application specific
architectures instead of dealing with a fixed datapath. And on
the other side, it allows a high-level programming approach
to hardware design, which considers the heterogeneity of
today’s SoC-based FPGAs. The Intel FPGA SDK for OpenCL
supports the embedded profile of the OpenCL Specification
version 1.0. Up to the newest revisions with the introduction
of Pipes, the standard memory model required the host to

Fig. 1. OpenCL model. From https://www.khronos.org/

coordinate all data transfers. To overcome this, Intel Altera
Offline Compiler (AOC) introduced Channels to allow for
concurrent kernel execution enabling kernel-kernel and kernel-
I/O communications through FIFO buffers.

III. RELATED WORK

Despite its recent appearance around 2011, an interesting
amount of work to explore Intel FPGA OpenCL have been
reported. Most deal with implementation results and possible
optimizations for different applications or with modified flows
in the form of compiler backends for code transformation
toward optimized synthesis and performance results.

A source-to-source compiler was proposed to transform
higher level C++-based Domain-Specific Language (DSL)
specifications into optimized OpenCL descriptions for Vivado
HLS [1] and Intel FPGAs [2]. The work extends the Hipacc
framework2, based on Clang/LLVM for image processing ap-
plications, targeting code generation such as CUDA/OpenCL
for GPUs, Renderscript for Android and C++ for Vivado HLS.
The specific optimizations for FPGAs include (as in typical
RTL-based flows): (i) generation of streaming pipelines, better
than buffer-based communications in the case of GPUs; (ii)
operator replication, either by kernel vectorization or CU
replication; (iii) generation of specific bitwidth datapaths by
automatically transforming the DSL code with masking oper-
ations to direct the AOC compiler.

Regarding parallelism exploitation it has been shown that
replicating internal kernel operators applying loop coarsening
[3] yields better results than replicating the whole accelerator
and using loop tiling. Loop coarsening basically requires pre-
fetching and storing data in local memories to reduce com-
munication overhead and to replicate the datapath to increase
throughput. This results in a single, more complex control
structure, but whose extra size compensates for the replicated
control structures in case of tiling and kernel replication.
Results were reported for local image operators for both
Vivado HLS [3] and Intel FPGA OpenCL [4].

2Hipacc: http://hipacc-lang.org



Works focused on accelerator implementations have been
reported for different applications like machine learning, sci-
entific computing, computer vision, etc. One of them [5]
implements and analyzes performance and power consumption
of a k-means clustering algorithm for various data, cluster,
and dimension sizes. The popularity of Deep Learning (DL)
has pushed research on the implementation of Convolutional
Neural Networks (CNNs) in FPGAs [6], [7], which is typically
memory bound. A Deep Learning Accelerator (DLA) that
maximizes data reuse and minimizes external memory band-
width to overcome this issue, has been reported [6]. On-chip
memory is used for vectorization and the Winograd transform
[8] to further boost performance reducing the number of
required multiply-accumulate operations in convolutions.

Another work [7] proposes an analytical performance model
defining two metrics, machine balance and code balance. This
model is able to “quantify the difference between available
resources provided by native hardware (FPGA devices) and
actual resources demanded by the application”, i.e., resource
requirements vs. availability. Hence, the performance bottle-
neck in a given kernel for a given device can be found. Authors
apply the model to a CNN implementation, finding the bottle-
neck to be on-chip memory bandwidth, so they propose: (i) a
2D connection scheme among PEs for efficient data sharing
without memory replication; (ii) a 2D dispatcher to support
the proposed interconnection and a WI scheduling technique
to further optimize memory usage; and (iii) a shared buffer
technique to further reduce the external memory bandwidth.

Optimization techniques for Partial Differential Equations
(PDE) solvers to improve performance and energy efficiency,
are also reported [9]. Comparisons are done among an Arria
10 device, a low performance Intel HD Graphics GPU and a
power hungry NVIDIA GTX 980 GPU. Authors show how
having a 10× higher memory bandwidth allows the NVIDIA
GPU to obtain higher energy efficiency (MB/Joule).

Lastly, a GA has been used [10] to find suitable approximate
versions of OpenCL kernels to reduce area and hence increase
data-level parallelism by increasing the number of kernels. The
core of the work is a source-to-source compiler that optimizes
the code by finding safe-to-approximate operations and data
elements and reduces their precision.

IV. OPTIMIZING OPENCL KERNELS FOR INTEL FPGAS

Generic OpenCL ensures functional portability among dif-
ferent platforms. However, in order to optimize performance
in a given platform, specific tweaks need to be introduced in
the code to better direct the compiler. In the case of FPGAs,
this is probably a bit more relevant since the code itself will be
used to infer the architecture. It is important to keep in mind
that bad optimizations might produce implementations with a
lower performance compared to an unoptimized version.

Most of the works introduced previously analyze optimiza-
tions somehow. Specific major in-house optimizations, such as
source-to-source compilers, or any other not available in the
AOC that involves changing the default methodology, are left
out of the following compilation. The following review list

of optimizations is highly inspired in other previous works
[2], [9] and in Intel FPGA SDK for OpenCL guides [11],
[12]; this is just a compilation with some extra comments
based on authors’ own experience. For more specific details,
#pragmas and __attributes__ please check [11], [12]:

• Loop unrolling. Improves loop performance by running
various loop iterations in parallel given no data depen-
dencies are found inside loop execution. Hence an N×
speedup might be ideally achieved if N iterations are
dispatched in parallel. The unroll factor can be manually
set using #pragma unroll N before a given loop;
if N is omitted a full loop unroll is tried. Unrolling is
also recommended for register inference since it helps
determining static data access to arrays.

• Loop pipelining. A form of data parallelism in which
a sequential chain of operations is split-up in different
stages by introducing intermediate storage elements (flip-
flops/BRAMs). This increases resource usage but allows
to feed the blocks of the different processing stages with
new data at (ideally) each clock cycle. The AOC applies
this optimization automatically.

• Kernel vectorization. SIMD-like vectorization replicates
the kernel datapath creating computing vector lanes and
distributing the WIs among the available lanes. This
way, each WI instance does effectively perform more
computations. Automatic kernel vectorization is possi-
ble (and recommended over manual) using attributes to
indicate the AOC the pair (number of WIs, WG size)
without host/kernel code modifications, even coalescing
memory accesses when possible. To ensure coalescing,
vector loads/stores should be manually indicated in kernel
parameters (float2, float4...) and write the code so that
sequential access patterns can be identified at compile
time. Ideally, N× throughput speedups for N-sized vec-
torizations (limited to 2, 4, 8 or 16) could be achieved.

• CU replication. By using multiple CUs, the complete
accelerator is replicated so parallel WG execution is
enabled. Ideally, the speedup should be N× for N
replications, effectively increasing data throughput; how-
ever, memory bandwidth contention among CUs will
exist. Compared to SIMD vectorization, logic resources
usage usually increases to arbitrate memory accesses and
dispatch data to the CUs. CU replication can be combined
with kernel vectorization, but the optimal factors have to
be carefully analyzed.

• Hardware inspired code.. In order to maximize per-
formance, typical control structures such as if-else
should be limited to reduce delay by avoiding multi-
plexers. Besides, the required control logic to implement
jumps and branches will not consume additional FPGA
resources. Ozkan et al. [2] report how using MUX-
like conditional assignments yields better results than
standard if-else code. As opposed to SW practices,
instead of doing computations inside each branch of a
conditional statement to avoid unnecessary operations,



moving computations outside the condition and leaving
just the resulting assignments for the inside, improves
results. Arrays in __private memory are inferred as
registers as long as the AOC is able to solve accesses
statically at compile time, the code uses hardcoded ac-
cesses and loops are fully unrolled. This is indeed the
way to infer shift registers, which must avoid conditional
shifting for an efficient implementation. For large arrays
with dynamic accesses, the use of __local memory
is recommended over __private since it creates more
efficient hardware.

• Regular memory accesses. Random memory accesses
usually penalize processing systems with small cache
memories. Hence, random, i.e., irregular and unaligned
memory accesses tend to penalize performance greatly
in FPGAs. Some works [9] propose the use of stencils
for matrix-like operations, which forces to hard-code
the vector elements and associated coefficients inside
kernels. A typical approach generally followed is memory
coalescing, which refers to combining multiple, aligned
memory accesses into a single transaction to optimize
efficiency by using the full bus datawidth.

• Bitwidths optimization. Automatically applied by AOC if
data ranges are known at compile time (loop trip counts,
pointers for memory accesses, etc.). Besides, specific
attributes are available to further guide the compiler, for
instance indicating local memory pointer sizes.

A. Single Work-Item Kernels vs. NDRange Kernels

As introduced in Section II, two types of kernels are
possible. The approach followed in manycore architectures
such as GPUs is the use of NDRange kernels. In this case,
the complete processing work is divided among a number
of WIs so kernels execute over the specified range. It is the
OpenCL runtime that is in charge of dispatching WIs to the
kernel. How the complete work is split greatly determines the
obtained performance, since it directly impacts the created
memory access patterns. As shown in Fig.II, local memory
is shared by all WIs in a WG. Therefore, data reuse has
to be maximized so WIs can obtain from local memory the
maximum amount of shared data among them as possible. In
the specific case of Intel FPGA OpenCL, the AOC would not
synthesize a given kernel if the required amount of memory
(as per variable declaration) exceeds the available resources.
The WG size must be specified whenever possible to avoid
excessive logic resources derived from using default WG sizes,
which might vary from 1, to 256 to the global NDRange size.

In the case of SWI kernels, which is the approach recom-
mended by Intel FPGA, the complete workload is processed in
a single call to a single kernel, i.e., one thread. This makes this
type of kernels not suited to massively parallel architectures
like GPUs, which greatly benefit from many threads. For
the case of FPGAs, task-based kernels allow exploiting deep
pipelines and data locality very explicitly (if allowed by the
application), so data buffering as typical in local operators
for image processing is recommended. Some works have

Fig. 2. Block diagram of the KNN based spatial-spectral classification

confirmed this recommendation [2] for local image operators
in image processing. However, other works have reported a
contradicting behaviour in the case of search-based kernels
(k-means clustering) [5] or for a Conjugated Gradient method
for PDEs (basically, vector scale-and-adds, dot-products and
sparse, Laplacian Matrix-vector multiplications) [9].

V. TEST CASE DESCRIPTION

A spatial-spectral classifier for Hyperspectral Images (HI)
is used as test case in this work. An HI [13] consists of a
collection of 2D images, so-called data cubes, captured at
different (hundred) wavelengths, which makes them contain
a huge amount of information. A vector of reflectance or
emittance values is measured for each pixel of the image,
obtaining what is known as the spectral signature of the pixel.
Hence, from this captured data cube it is possible to analyze
the type of material a given object is made of [14].

The combination of HI with different machine learning
techniques, has allowed this technology to be used as an
automatic detection mechanism for different purposes. Among
different applications, HI has been used for remote sensing of
the Earth surface [15], astronomy [16], forensics [17], target
detection [18] or medicine [19].

The test case considered uses pixel-wise results from a
Support Vector Machine (SVM) classifier combined with the
spectral information derived from a Principal Components
Analysis (PCA) algorithm, to tune up the class probability
maps obtained with the SVM [20], as shown in Fig. 2.

The probability map smoothing is achieved with a K Nearest
Neighbors (KNN) filter, which has two inputs: a set of
probability maps derived from the SVM classification process
and a one-band PCA guidance image that contains the spectral
information. These inputs are mingled in a feature space that
consists of the normalized pixel value of the guidance image
and the weighted (λ) normalized coordinates of the pixel as
shown in (1), which defines the feature vector F (i).

F (i) = ((I(i), λr(i), λc(i)) (1)

where I(i) is the normalized pixel value of the guidance image
I (first PCA band), and r(i) and c(i) refer to the normalized
coordinates of pixel i. λ controls the balance between the
spectral and spatial domains in the KNN searching process.
As in previous works [20], a value of λ = 1 and K < 40 was



determined to be a good compromise, given that high values
of λ and K tend to oversmooth the resulting image.

In the first stage of the KNN algorithm, to find the K nearest
neighbors of a pixel, the euclidean distance (within the feature
space) to all the pixels in the image is computed. Note that
the weight parameter λ controls the importance of the spatial
coordinates with regard to the spectral components. Once the
K nearest pixels are found, i.e., those pixels of the image
whose distances to the current pixel are the smallest ones, the
second stage of the KNN algorithm averages (low-pass filters)
the pixel probabilities of those nearest pixels to compute the
current class pixel probability, repeating this action for each
of the available classes, as shown in (2):

O(i) =

∑
P (j)

K
, j ∈ wi (2)

where O contains the optimized probability maps, P the
original probability maps from the SVM and wi indicates
the K nearest neighbours of pixel i found in the feature
space F (i). Please note how there will be as many O output
classification maps as classes are considered in the SVM. From
these optimized probability maps in O, a final classification
map is obtained by assigning each pixel the label of the class
with the maximum probability.

To reduce the computational complexity of the search
process, a band of 14 rows has been experimentally selected as
the search space. The rationale behind this decision is that the
results produced are exactly the same as those obtained when
the whole image is employed as search space. The band around
the processed pixel is selected to be symmetrical. However,
for the top-most and bottom-most rows, the size of the band is
selected in such a way that no search is conducted in the image
further than half of the band size down and up, respectively.
For these rows, the band size is increased or decreased as each
new pixel is processed until the steady state is reached.

VI. IMPLEMENTATION

A low-cost and small device (compared to current Arria
10 accelerators) was used for implementation purposes: a
Cyclone V A5 SoC with 85 000 Logic Elements, 32 075
ALMs, 397 M10K memory blocks (3970 Mb), 480Kb as
MLABs (Memory Logic Array Block) and 174 18-by-19
multipliers/87 variable-precision DSP blocks.

The basic structure of the KNN-based method for spatial-
spectral classification is shown in Fig.3, which gathers a
pseudocode description. Both the search & ordering (lines
18–38) and filtering (lines 39–58) stages are shown. Different
experiments have been done to evaluate the different options
and optimizations available with the AOC. A baseline software
implementation running in one of the two ARM Cortex-A9
processors is selected for comparing the acceleration possibil-
ities within the platform. The following sections describe the
specific details and initial experiments accomplished.

A. Single-Work Item Kernel
The optimization of SWI kernels is guided by the ob-

tained pipeline quality found in the synthesis report. Several

#pragma unroll can be seen in the code as result of the first
tests. They correspond to the innermost loop in the ordering
phase (lines 32–38) so the neighbours array was implemented
as a shift register. Besides, all the loops with a low number of
iterations are also unrolled, as shown in the filtering stage
loops. The synthesis report was able to pipeline the outer
search loop with succesive iterations every 2 cycles. Although
it is not the optimum, which should be just one, it is still a good
result given the amount of conditional branches needed for
the search & ordering process (lines 29–38) involving floating
point numbers. In particular, the dependency is on the floating
point compare operations for the variable knn (and dist) at
lines 27, 29 and 34. A version with 2 separate kernels, one
for each part of the algorithm communicating the intermediate
results through the host, was also evaluated.

B. NDRange Kernel

The kernel structure for this case, shown in Fig. 5,
besides the specific keywords required to make it such
(the attributes (reqd_work_group_size()) and
(num_simd_work_items()), is mostly the same as in
the SWI case. Differences with SWI case are shown in purple
color in the code. Given the resource limitations, as will be
shown in Section VII, the filtering stage has been moved to
the ARM processor for all these kernels but one. Now, each
WI processes a different pixel in parallel, so there is no need
for the outer loop at line 18. Also, the update of the search
band limits has been moved to the very beginning of the
kernel before line 19, since each pixel (WI) needs a different
search band. Loop indexes were modified accordingly to use
now the required global and local indexes of each WI in
which the whole computing work was divided.

Several combinations of WG sizes were evaluated, as well
as two versions with two separate kernels, one for each part of
the algorithm communicating the intermediate results through
the host and through a channel.

Lastly, a version which makes specific use of local memory
to buffer a block of pixels from the image/search band, was
also assessed. Since the search band moves in a row-wise
fashion, all pixels from a row will always share the same
search band. Hence, to optimize processing, loading blocks
of pixels (sized Blockx, as in Fig. 5) in local memory allows
these to be used by various WIs of the WG. This enables the
creation of WGs with as many WIs as pixels in a row that share
a search band and hence might benefit from local memory
sharing and loop unrolling. Due to resource limitations, the
whole search band does not fit in device’s memory, so various
iterations are needed. This case requires barriers in order to
allow each WI to bring its pixels from global memory and be
synchronized with the others (so the other pixels needed from
the search band are already there), hopefully letting a smart
cache strategy in the runtime exploit this data locality. These
barriers are placed after loading pixels to local memory and
right before finishing with a given block of the search band,
to join all the threads.



1: I: input PCA image (1D linearized indexes)
2: r: row-wise pixel 2-D coordinates
3: c: column-wise pixel 2-D coordinates
4: O: output optimized classification map
5:
6: Nrows: number of rows
7: Nsamples: number of samples (pixels) per row, i.e., columns
8: P : total pixels (Nrows×Nsamples)
9: BL,BU : search band upper/lower pixel index

10: Brows: number of search band rows
11: K: number of neighbours to find
12: knn: temporary array, stores K nearest neighbours of a given pixel
13: coords: temporary array, 1-D linearized coordinates (r × c)
14: NClasses: number of classes
15: SVM : input SVM maps
16: prob: temp array, probabilities per class
17:
18: for i← 0, P do . For each PCA (I) pixel
19: #pragma unroll
20: for k ← 0, K do . Initialize temp arrays
21: knn[k]← 1000000

22: coords[k]← 0

23: for j ← BL,BU do . For each search band pixel
24: distp← (I[i]− I[j]) . Spectral distance
25: distr ← (r[i]− r[j]) . Row distance
26: distc← (c[i]− c[j]) . Column distance
27: dist← (distp× distp) + (distr × distr) + (distc× distc)

28: linear index← (r[j]×Nsamples) + c[j]

29: if dist < knn[K-1] then . If distance larger than maximum
30: knn[K − 1]← dist

31: coords[K − 1]← linear index

32: #pragma unroll
33: for k ← [K − 2], 0 do . Ordered insertion
34: if dist < knn[k] then
35: knn[k + 1]← knn[k]

36: coords[k + 1]← linear index

37: knn[k]← dist

38: coords[k]← linear index

39: #pragma unroll
40: for k ← 0, K do . Neighbours array initialization
41: neighbours[k]← knn[k]

42: #pragma unroll
43: for c← 0, NClasses do . Class probability initialization
44: prob[c]← 0

45: for k ← 0, K do . For each neighbour
46: SVMidx← neighbours(k)

47: #pragma unroll
48: for c← 0, NClasses do . Accumulate each class probability
49: prob[c]← prob[c] + SVM [c + NClasses× SVMidx]

50: #pragma unroll
51: for c← 0, NClasses do . Average class probability
52: prob[c]← prob[c]× (1/K)

53: maxProbC ← 0 . Assume maximum probability is in class 0
54: #pragma unroll
55: for c← 1, NClasses do . Iterate on remaining classes
56: if prob[c] > prob[maxProbC] then
57: maxProbC ← c

58: O[i]← maxProbC + 1

59: BL,BU ← Update according to search band strategy

Fig. 3. KNN-based Spatial-Spectral Classification Algorithm. Baseline code
with parallelization pragmas indicated in blue.

VII. RESULTS

This section contains the comparison results among the
different kernels implemented. These are shown in Fig. 6 for
both the processing time and the consumed resources of the
device (in %). The timing results shown in the figure are for
four different image sizes 256×256, 512×256, 256×512 and

LOCAL MEMORY
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PRIVATE
MEMORY

+
++

WI

PRIVATE
MEMORY

+
++

WI

PRIVATE
MEMORY

+
++

WG
CU

Fig. 4. Representation of the design with one CU and N WIs per WG. The
architecture shown corresponds with the case of an NDRange kernel with
multiple WIs in a WG, in which each WI processes one pixel.

1: blockx, blocky ← get group id(0), get group id(1) . Global dim. index
2: localx, localy ← get local id(0), get local id(1) . Local dim. index
3: BL,BU ← Update according to search band strategy
4: #pragma unroll
5: for k ← 0, K do . Initialize temp arrays
6: knn[k]← 1000000

7: coords[k]← 0
8: for j ← BL,BU do . For each search band pixel
9: local mem ← I(i + localx)

10: barrier(CLK LOCAL MEM FENCE)
11: #pragma unroll
12: for b← 0, Blockx do . For each pixel in the block
13: distp← (I[i]− I[j]) . Spectral distance
14: distr ← (r[i]− r[j]) . Row distance
15: distc← (c[i]− c[j]) . Column distance
16: dist← (distp× distp) + (distr × distr) + (distc× distc)

17: linear index← (r[j]×Nsamples) + c[j]

18: if dist < knn[K-1] then . If distance larger than maximum
19: knn[K − 1]← dist

20: coords[K − 1]← linear index

21: #pragma unroll
22: for k ← [K − 2], 0 do . Ordered insertion
23: if dist < knn[k] then
24: knn[k + 1]← knn[k]

25: coords[k + 1]← linear index

26: knn[k]← dist

27: coords[k]← linear index

28: barrier(CLK LOCAL MEM FENCE)

Fig. 5. KNN-based Spatial-Spectral Classification Algorithm. Purple code
indicates the differences with the SWI kernel.

512× 512. The processing time results from the image sized
512×256 are the ones to be used in the following discussion.
Regarding the ARM, it takes 38.9 seconds to compute the
whole algorithm for this image. In general, the obtained
speedup is of at least 5× for any of the HW implementations
as compared to SW (38.9 vs. 10.6 for the SWI result, which
is the slowest). In general, the times obtained for the different
kernels are highly similar (although not as much as could seem
given the graph scale).

For all NDR kernels, with the exception of the NDR(1,1,1),
the filtering stage has been moved to the ARM processor (there
is just a difference of 100ms in this stage) to dedicate the logic
resources to speedup the search process. All the NDRange
kernel versions behave very similar in terms of speed, with the
exception of NDR(2,1,1) with an unroll factor of 2 and local
memory to store parts of the band, which halves the time of
the same kernel version without unrolling. This was expected,
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Fig. 6. (a) contains the timing results for different image sizes) and (b) the use of resources of the device for each kernel.

and shows the effectiveness of SIMD kernel vectorization.
Sadly, as seen in Fig. 6b, the use of logic resources (77%) and
memory (54%) made it impossible to evaluate higher unroll
factors since they would not fit in the device. It is worth
noting how for the NDR(x,1,1), as x increases, the amount
of resources also increases, but the time remains mostly the
same. This is reasonable since no explicit vectorization has
been possible by doing loop unrolling or using vector data
types. Hence, the extra amount of logic resources are mostly
those required to manage more WIs in the WG, but there
were no more logic resources available to leverage the extra
parallelization capability.

For the case with hardware replication, NDR(2,1,1)-Unroll2,
DSP usage increases. However, it is interesting to see how
logic resources and registers used are less than for the
NDR(2,1,1) case. This might be due to the fact that completely
unrolling the loop (a factor of 2 for 2 WIs, as per Blockx)
helps optimizing the area required to manage the WIs and
saving resources for the loop control logic.

The last three tests have evaluated the impact of dividing
the algorithm in two different kernels, one for searching
and another for filtering. As expected, in those using the
host to communicate data between both kernels (2×SWI
and 2×NDR(2,1,1) computing time increases. However, when
using channels (last experiment in the graph) time is reduced,
even more than doing all the processing in a single kernel.
However, duplicating kernels introduces an overhead in the
use of resources that does not justify this slight time reduction.

It can be concluded, that for this application and this device,
and with some tests remaining to be done, the case of an
NDRange kernel with a local dimension of 2 WIs, local
memory, and an unroll factor of 2 is the most balanced and
fastest solution.

Finally, Fig. 7 contains a comparison of the resulting
probability maps obtained after both the SVM classification
and the spatial-spectral filtering using the KNN-based filtering

process. The HI images shown correspond with a test case for
cancer detection purposes in human brain tissues. It shows how
after the KNN filtering process, the classification map from the
SVM has been smoothed to better detect tumour margins.

VIII. CONCLUSION

This work has reviewed some of the latest works in the
use of OpenCL as a HLS tool, analyzing the specific case of
Intel FPGAs. The model and the methodology for optimizing
kernels have been presented. Besides, the different techniques
to synthesize well-performing kernels were also introduced,
including different forms of parallelization by vectorization
and replication, some design patterns to direct the compiler for
efficient hardware synthesis and the importance of optimized
memory accesses. Regarding the experiments reported, out-of-
the-box AOC compiler optimizations were applied to evaluate
the state of the technology. As a use case application, a KNN-
based filtering stage for combined spatial-spectral classifica-
tion in hyperspectral imaging for cancer detection, has been
selected given the amount of processing power required.

Several experiments have been done with SWI and
NDRange kernels, applying different parallelization strategies.
Contrary to expectations and as advised by Intel and part of
the literature, NDRange kernels have achieved higher speedups
compared to SWI kernels in this case. However, for a similar
application, a k-means algorithm, authors also reported the
same findings as analyzed. This might be due to the ordering
process itself, which involves conditional logic to be syn-
thesized, penalizing this way the pipeline efficiency. Hence,
further studies and experiments with different sorting methods
will be performed. Besides, the SWI kernels will be reviewed,
since they are not properly using the available local memory
to cache shared data, which should improve performance.

Sadly, the size of the FPGA has turned to be insufficient
to study different degrees of vectorization and kernel and
CU replications. Just 2 kernels, no CU replications and WGs
sized 2 WIs with complete unroll were possible. Anyway, the



(a) RGB, 12C1 (b) SVM, 12C1 (c) KNN, 12C1 (d) RGB, 20C1 (e) SVM, 20C1 (f) KNN, 20C1

Fig. 7. Comparison of the resulting classification maps. The figure shows the results from two different patients. The images show the RGB representations
(a) and (d), the SVM classification maps (b) and (e), and the KNN-based spatial-spectral classification maps (c) and (f), respectively.

increase in logic derived from larger WGs has been analyzed,
showing the importance of a good balance among WG sizes
and unrolling factors for efficient data-parallel processing.

As future work also remains comparisons of latest RC
devices and associated HLS tools with other low power
consumption embedded platforms like the NVIDIA Jetson
TX2 GPU, the Massively Parallel Processor Array (MMPA)
from Kalray or the new Epiphany manycore processors.

Although a learning curve is needed, the introduction of
OpenCL as an HLS tool means a great step ahead. However,
better reporting tools are still needed to better understand the
synthesized datapath and optimize performance. Fortunately,
the latest version of the Intel FPGA SDK for OpenCL has
introduced some tools to analyze the architecture.
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