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Using the classical Schauder fixed point theorem, we prove the existence of solutions of a quadratic integral equation of Fredholm
type with supremum in the space of functions satisfying the Hélder condition.

1. Introduction

Quadratic integral equations arise naturally in applications of
real-world problems. For example, problems in the theory of
radiative transfer in the theory of neutron transport and in
the kinetic theory of gases lead to the quadratic equation

1
x(t)=1+tx(t) J (D—(S)x (s)ds, (1)
o t+s

where @ is a continuous function defined on the interval
[0,1] (see [1-4]).

Equations of this type have been studied by several
authors [5-11].

The aim of this paper is to investigate the existence of
solutions of the following quadratic integral equation of Fred-
holm type with supremum:

x (t)

1
=p(t) +x(t)J k(t, 1) { max |x(11)|} dr, tel0,1].
0 n€l0r()]
)
Differential and integral equations with supremum are

adequate models of real-world problems, in which the present
state depends significantly on this maximum value on a past

time interval [12]. Equations of such kind have been studied
in some papers appearing in the literature (see [13-20]).

Our solutions are placed in the space of functions sat-
isfying the Holder condition. A sufficient condition for
the relative compactness in these spaces and the classical
Schauder fixed point theorem are the main tools used in our
study.

2. Preliminaries

Our starting point in this section is to introduce the space of
functions satisfying the Holder condition and some proper-
ties in this space. These properties appear in [21].

Let [a,b] be a closed interval in R; by C[a, b] we denote
the space of the continuous functions on [a, b] equipped with
the norm | x|, = sup{|x(t)| : t € [a,b]}.

For fixed 0 < & < 1, by H,[a, b], we will denote the space
of the real functions x defined on [a,b] and satisfying the
Hélder condition, that is, those functions x for which there
exists a constant Hy, such that

|x (t) = x (s)| < H |t = s|%, (3)
forallt,s € [a,b].

It is easily seen that H_[a,b] forms a linear subspace of
Cla, b].



In what follows, for x € H,[a,b], by Hy, we will denote
the least possible constant for which inequality (3) is satisfied.
More “precisely,” we put

HY = su

X

lx () —x ()]
p{w.t,se[a,b], t#S} (4)

The space H,[a,b] with 0 < & < 1 can be normed under the
following norm:

lxlly = I (a)]
lx (£) — x (s)] ®)

—— t,s€[a,b], t#s},
|t = sl

+sup{

for x € H,[a,b].

It is proved in [21] that (H[a,b], | - [|,) with O < < 1 is
a Banach space.

Now, we recollect some results about the spaces H,[a, b]
with 0 < & < 1 which appear in [21].

Lemma 1. For x € H,[a,b] with 0 < a < 1 the following
inequality is satisfied:

¥l < max (1, (b - &)%) 4], (6)
Lemma 2. For0 < « < y < 1, one has

H, [a,b] ¢ H,[a,b] c Cla,b]. (7)
Moreover, for x € H,[a, b] the following inequality holds:

Ixll, < max (1, (b - a)"™®) llx[l,. (8)

The following sufficient condition for relative compact-
ness in the spaces Hy[a, b] with 0 < « < 1 appears in Example
6 of [21].

Theorem 3. Suppose that 0 < o < [ < 1 and that A is
a bounded subset in Hg [a,b] (this means that there exists a

constant M > 0 such that |x(t) — x(s)| < M|t - slﬁfor any
x € Aand for anyt,s € [a,b]). Then A is a relatively compact
subset of H,[a, b].

Remark 4. Suppose that 0 < & < < 1 and by Bf we denote
the ball centered at 0 and radius r in the space H, 8 [a, b]; that

is, Bf = {x € Hpgla, b : [xllg < r}. Then Bf is compact in the
space H,[a, b].

Proof. In fact, by Theorem 3, since Bf is a bounded subset in
Hy [a,b], Bf is a relatively compact subset of H[a, b].
Il
Suppose that (x,) C Bf and x,, — x with x € H [a, b].

This means that for € > 0 we can find n;, € N such that

|x, - x|, <& foranyn>n,, 9)
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or, equivalently

|x, (@) = x (a)]

+ sup { [ (£) = 2 (6) = (3, (5) = x ()|

It —s|*

(10)
t,s € [a,b], tq&s} <e
for any n > n,.

This implies that x,,(a) — x(a).
Moreover, if in (10) we put s = a, then we get

{ |x, (£) = x (t) = (x,, (@) = x (a))]
up

|t_a|0¢ :te[a’b])tia}<€

forany n > nj,.

D
The last inequality implies that

|x, () = x (t) = (x, (@) — x (a)| < et —al* < e(b-a)”
forany n > n, and for any ¢ € [a,b].
(12)

Therefore, for any n > n, and any t € [a, b] and taking into
account (10) and (12), we have

|x, ) = x ()] < |(x,, (1) = x (1) = (x, (@) = x ()]
+|x, (@) —x(a)|<eb-a)*+e  (13)
=e(l+(b-a)).

Consequently,

%, = x|, — 0. (14)

Next, we will prove that x € Bf .
In fact, since (x,,) C Bf C Hp [a, b], we have that

%, (1) = x,, (5)]

| ’ <r forany t,s € [a,b] with t#s, (15)
I—s

and, accordingly,
lx,, t) - x, (s)| <rlt— s|ﬁ for any t,s € [a,b].  (16)

Letting n — oo in the above inequality and taking into
account (14), we deduce that

[x () —x(s)| <7t — s|‘8 for any t,s € [a,b]. 17)

Hence, we get

|x (£) = x (5)]

<r foranytse€ [a,b], (18)
£ = sl

and this means that x € Bf .

This proves that Bf is a closed subset of H,[a, b]. Thus, Bf
is a compact subset of H,[a, b].
This finishes the proof. O

Next, we recall some results appearing in [18].
In what follows, we consider [a, b] = [0, 1].
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Lemma 5. Let r : [0,1] — [0,1] be a continuous and
nondecreasing function and x € C|0, 1]. Let Gx be the function
defined by

(Gx) () =

r[ré’ax [x ()] fortel0,1]. 19)

Then Gx € C[0,1].
Under the above assumption we have the following.

Lemma 6. Let (x,) be a sequence in C[0, 1] and x € C[0, 1]
such that x,, — x in C[0, 1]. Then

l6x, - Gl < [, - ], 0)

Finally, we recall Schauder’s fixed point theorem.

Theorem 7. Let Q be a nonempty, convex, and compact subset
of a Banach space (X, || - |) and let T : Q — Q be a continuity
mapping. Then T has at least one fixed point in Q.

3. Main Result

In this section we will investigate the solvability of the integral
equation (2) in the Holder spaces.
We will formulate the following assumptions:

(i)pe Hﬁ[O, 1] (0<B<1);

(ii) k£ : [0,1] x [0,1] — R is a continuous function such
that it satisfies the Hoélder condition with exponent 8
with respect to the first variable; that is, there exists a
constant kg > 0 such that

|k (t,0) —k(s,0)| < kﬁlt—slﬁ, (21)
for anyt,s, o € [0,1];
(iii) r : [0, 1] — [0, 1] is a continuous and nondecreasing

function;

(iv) the following inequality is satisfied:

1
Iells (2K +kg) < T (22)

where the constant K is defined by

K=Sup{Jl|k(t,T)|dT:t€ [0,1]} (23)
0

and whose existence is guaranteed by virtue of (ii).

Theorem 8. Under assumptions (i)-(iv), (2) has at least one
solution belonging to the space H,[0, 1], where « is arbitrarily
fixed number satisfying 0 < « < .

Proof. Let us consider the operator F defined on the space

H,[0, 1] by

(Fx)(t) = p(t) + x(t) J k(1) { Inax |x 11)|]> dr, (24)

fort € [0,1].

First, we will prove that F transforms the space Hg[0, 1]
into itself.

In fact, we take an arbitrary function x € Hl;[O, 1] and
t,s € [0,1] such that t #s. Then, in view of assumptions (i)
and (ii), we get

(Fx) (£) — (Fx) (s)|
It - s/

p(t)+x(t)J k(t, T){ m::é |x |]>d‘r

1
- p(s)—x(s) Lk(s,r){ max | 11)|]»d‘r

€[0,r(1)]
x (1t = s1F)”"
_ lp ) - p(s)]
It - s|f

+|x (1) Jolk(t,r){ max |x (11)|}dr x(s)

€[0,r(

1
xj k(t,‘r){ max_|x 11)|]»
0

n€[0,r(7)]
X (|t - s|‘8)_1

+ x(s)J. k(t, T){ max |x |}d1

_x@Ekmﬂ{mwlxmﬂ

€[0,r(7)]
X (|t - slﬁ)i1
PO =P x®)-x()
S T It - sIf

j m<trn{ max |x nﬂ}

|x(s)|f |k (t, 1) - k(s,‘r)l{ max |x |}d'[
It - sl

sIt) PO x®-xE),
It - s|P It - s|P

+

1
xj Ik (£, 7)| dr
0

lelkmtﬂ k(s,7)| dr
It - s|P
S M + K”x"OO

It - s|P



4
2 ! B
@ -x@l Il |, kglt = slFdr
It - s|f It —s|P
< HE + Klxlloo HE + kgllxI2,

(25)

By Lemmal, [|x], < [lx]lg, and, since H <
last inequality it follows that

(Fx) () = (Fx) )] _ s : .
<H'+K k
T < HE Kl kgl ”

= Hb + (K + kg) 1[5

IIxIIﬁ, from the

Therefore,

I Exllg

|(Fx) (1) - (Fx) (5)|
It - s|f

~ |(Ex) (0) +sup{ c[0.1], t#s}

< [(Fx) (0)] + HS + (K + kg ) I1xII3

<|p(0)|+|x<0)|j Ik (0, r>|{ max, Ix n)l}

+ H + (K -+ kg) I+l
1
< el + boleo Il | 0,01

+ (K +kg) Ixlig < ol + Klixl, + (K + kg ) x5
< |pllg + Klixllg + (K + kg) <13

= |Ipllg + (2K + kg) llxl} < oo,
(27)

where we have used the fact that IIpIIﬁ = |p(0)] + Hg.

This shows that the operator F transforms Hﬁ[O, 1] into
itself.
On the other hand, the inequality

lpls + (2K +kg) * < 7 (28)

is satisfied by the number

1= 1= 4] pll5 (2K + kg)

r o= ,

2(2K+kﬁ)

(29)

1+ [1- 4] pll5 (2K + kg)
Ty = ,

2 (2K +kg)

which are positive by virtue of (iv), and, consequently, from
(27) we infer that F transforms the ball Bfu ={x e H ﬁ[O, 1] :
IIxIIﬁ < 1} into itself, for any r, € [r},7,].
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Therefore, F : Bﬁ - Bﬁ where r; <

By Theorem 3 and Remark 4, Bi is a compact subset in
the space H,[0,1] forany 0 < o < S < L.

Next, we will prove that the operator F is continuous on
Bﬁ where in Bﬁ we consider the induced norm by || - |,
whereO<oc<[3<1

To this end fix x € Bfu and ¢ > 0. Suppose that y € Bfu
and ||x — y|l, < &, where § < &/2(2K + 3kﬁ)r0.

Then, for any t, s € [0, 1] with t # s, we have

Ty S 7).

(Fy) ()] - [(Fx) (s) -
[t —s|*

[x(t)J k(t, T){ ma)i)] |x |}d'[

|[(Fx) (t) - (Fy) 9]

—y(t)j ke | max v} ar]
- [x(s)J k (s, T){ max |x(11)|]»dr

_y(S)J ks, T){ max Iy(n)l} ]

[0.r()]

x (|t - s|°‘)7

= [x(t)J. k(t, T){ mag)}]x |}dr

-y (®) Jol k(t, T){ max |x(71)|} dr]

nel0,r(1)]
+ [y(t)J k(t, T){ max |x(11)|]»d1
- y(t)J k(t, T){ max |y 11)|]>d1]
1
_ [x (s) L k(s, 1) {ner[xg%)] | (;1)|} dr
- y(s) J k(s, 1) {,75[183?5)1 |x 17)|]> dT]

—[y(S)J k(sar){ max |x(11)|}d‘r

nel0.r(0)]

—y(S)J ks, T){ max ly(n)l} ]

(It = s[*)

- [x(t)—y(t)]j ke | max xl}ar

+y(t)J kt, T){ max |x ()| - max |)’(’7)|}

[0,7(7)] nel0,r(1)]
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_[x(s)_y(s)]J k(s,T){ max |x(;1)|}

Inax_ |x ()] - mnax |y n)l}

—y(s)j ks, r){

1
|t = |

< {l[x(t)—y(t)] ~[x() -y

U k(t, T){ max |x(11 l}d‘r +]x(s) = y (5)]

J (k(t,7) -k (s, T)){ max |x(11)|}dr

1
+ y(t)J k(t,‘[){ max |x |
0 nef0,r(1)]

— max
nel0,r(1)] |)/

|}d1—y(s)

<[ ke | mas vl mas Iy}
1
It —s|*
Nx®-y®]-[x) -y )|

h It - s|*

1
Mxll L Ik (6, 7)) dr

+{[x ) =y ()] = [x(0) - y (O]

+|x(0) = y (0)]] - Ixlloo
« Jl |k(t’T)_ka(S’T)|dT
0 [t —s|
rlyo [ ken] mas wol- max 1y6l}ar
_y(S)J k(. T){ I%ag(n' x(n)] - peloato)] v ’1)|}
L
[t —s|*
@ [ ke | mac 0l- max o} as

Jhax |x n)l—ngggggg ly n)l}

—y(s)j ks, r){

1
|t = s|®

|

< = yllalxleK

+ sup |[x(O) =y (@®)]-[x(s) =y ()]

t,s€(0,1]
-||x||oo-j0 ftl _|| dr+|x(0) = y (0)] - lIxlloo
_ B _
lekﬁlt sl ly (1) yf"
o |t—s| |t — s
j Ik (¢, 7)] { max |x(n)| - max ly(n)l}
Ik (t,7) - k (s, 7)|
e )lj [t —s|*
<[ o @)= max 1yl
< Koo x = ]
4 sup ]H[x(t) yOL=[x© =y Oll |, _ o }
t,se[01] |t —s|*

Nxllokglt = s+ kgllxlloolt = s | (0) = y (0)]

Ukglt - sff
a B
HK =+ Dl o | S

< Klxllgllx = yll, + glixll gl = v,
+ kgllxllgllx = v, + HyK]x - v,
+ kgl yllgllx = 7l

< (Kry + 3kgry ) |x = ],
+ Kllylx =yl < (Kro + 3kgro)
x [l = yllo + Kyl glx -yl

< (2Kry + 3kgry) [|x = v,

< (2Kr0 + 3kﬁr0)8 < %

On the other hand, we have

|(Fx) (0) - (Fy) (0)]

max |x
nel0,r(1)]

x(O)J k (0, T){

|}dT

max Iy(ﬂ)l}

€[0,r(7)]

—y(o>j kO, r){



1
< x(O)J k(O,T){ max |x(r1)|}d‘r
0 nel0,r(7)]

—x(0>j 0 r){ max Iy(n)l}

+ x(O)J- k (0, T){ maz()] |y(;7)|}d'r

—y(O)J k (0, T){ max |y |}d‘r

1
< [x(0) L k(O,T){ max _|x (7

ne0,r(1)]

|}d1

)| - max [y (n

nel0,r(1)]
|} dr

1
+ [[x(0) = y (0)] Lk(O,T){ max |y (1

€[0,r(1)]

< lxllo K% = ¥l + 1% = ¥l ¥l K
< lxllgKx =y, + % = vl 7l sK

< 2Kro||x = y||,, < 2Kryd < g

(31)
From (30) and (31), we infer that
|Fx = Fy],
= |(Fx) (0) - (Fy) (0)]
{ [[(Fx) ()~ (Fy) 0] = [(Fx) () = (Fn) O]
+ sup
It —s|*
t,s € [0,1] ,t#:s}

<—+-=¢

(32)

This shows that the operator F is continuous at the point x €
Bfi , where x is arbitrary.

Finally, applying Theorem 7, we deduce that desired
result.

Finally, we illustrate our results by presenting an example.

Example 9. Let us consider the following quadratic integral
equation:

x(t) =gt +r+x(t)
le\/amt2+r{

0

(33)
e}

176[0 r/(‘r+1)]

where t € [0, 1] and g, 7, and m are positive constants.
Notice that (33) is a particular case of (2), where p(t) =

gt + 1, k(t, 1) = Vmt2 + tand (1) = /(7 + 1).

Journal of Function Spaces

It is easily seen that

lp(t) = p(s)| < vqlt —s|'%, foranyt,s € [0,1], (34)

and, consequently, p(t) = +/qt + r € H,,[0,1].
Moreover, using the inequality proved in [11], we have

|k(t,T)—k(s,T)|=‘\3/mt2+'r—\3/msz+r| 9
35

< Jmlt — s,

foranyt,s, t € [0, 1]. Therefore, assumption (ii) of Theorem 8
is satisfied, since for any ¢, s, 7 € [0, 1]

Smit - s*?
= Jmit — s|"?|t = s]"® < Jmit — 5|,

where kg = /m.
Moreover, we have that

Ik (t,7) = k (s, 7)| <
(36)

(t)—p(s)
o= @] +sup{ 220N o, o04]
=\r+ 4.
(37)
Since r(t) = 7/(r + 1), the function r is continuous and

increasing on [0,1] and 0 < r(7) < 1/2 for all T € [0,1].
Thus, assumption (iii) of Theorem 8 is satisfied.
In our case, the constant K is given by

K = sup{J1 |k (t,7)|dT: t € [0,1]}
0

1
= sup“ Imt2 + tdr i t € [0,1]}
0

(38)

=sup{ [\/(mt2+l) —\/(mt2 ] te 01]}

-2 [foms - 4]

In our case, the inequality appearing in assumption (iv) of
Theorem 8 takes the form

ol (2K + k)
= (Vr+ @)(% [W— W] + W) (39)

<

=

It is easily seen that the above inequality is satisfied when, for
example, g = r = 1/216 and m = 1/128.

Therefore, using Theorem 8, we infer that (33) forg = r =
1/216 and m = 1/128 has at least one solution in the space
H,[0,1] with 0 < & < 1/2. O
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