
Research Article
Existence and Asymptotic Stability of Solutions of a Functional
Integral Equation via a Consequence of Sadovskii’s Theorem

Agnieszka Chlebowicz,1 Mohamed Abdalla Darwish,2,3 and Kishin Sadarangani4

1 Department of Mathematics, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
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Using the technique of measures of noncompactness and, in particular, a consequence of Sadovskii’s fixed point theorem, we prove
a theorem about the existence and asymptotic stability of solutions of a functional integral equation. Moreover, in order to illustrate
our results, we include one example and compare our results with those obtained in other papers appearing in the literature.

1. Introduction

Measures of noncompactness play very important role in
nonlinear analysis. They are often applied to the theories of
differential and integral equations as well as to the operator
theory and geometry of Banach spaces. The concept of a
measure of noncompactness was initiated by Kuratowski [1]
and Darbo [2]. In [2] Darbo, by using the concept of a
measure of noncompactness, proved a fixed point theorem.
In [3] Sadovskii improved the results obtained in [2].

The purpose of this paper is to present a theorem on the
existence and asymptotic stability of solutions of a functional
integral equation. Our study will be placed in the Banach
space of real functions which are defined, continuous, and
bounded on the real half-axis R

+
. The functional integral

equation studied in the paper contains as particular cases
a lot of functional and integral equations appearing in the
literature. The main tool used in our investigations is a
consequence of Sadovskii’s fixed point theorem [3].

2. Notations, Definitions, and Auxiliary Facts

Let 𝐸 be a given real Banach space with a norm ‖ ⋅ ‖. For a
nonempty subset 𝑋 of 𝐸 denote by 𝑋 the closure of 𝑋 and

by Conv𝑋 the closed convex hull of 𝑋. For 𝑋 and 𝑌 being
subsets of 𝐸, by 𝑋 + 𝑌 and 𝜆𝑋, 𝜆 ∈ R, we denote the usual
algebraic operations on 𝑋 and 𝑌. Further, letM

𝐸
denote the

family of all nonempty and bounded subsets of 𝐸 andN
𝐸
its

subfamily consisting of all relatively compact subsets. If 𝛾 is
a mapping defined onM

𝐸
with real values, then by ker 𝛾 we

denote the following family:

ker 𝛾 = {𝑋 ∈ M
𝐸
: 𝛾 (𝑋) = 0} . (1)

This family will be called the kernel of the mapping 𝛾.
Following [4], we consider the following definition of the
concept of a measure of noncompactness.

Definition 1. A mapping 𝜇 : M
𝐸
→ R

+
= [0,∞) will be

called a measure of noncompactness in 𝐸 if it satisfies the
following conditions.

(1) The family ker 𝜇 is nonempty and ker 𝜇 ⊂ N
𝐸
.

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).
(3) 𝜇(𝑋) = 𝜇(𝑋).
(4) 𝜇(Conv𝑋) = 𝜇(𝑋).
(5) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+ (1−𝜆)𝜇(𝑌) for 𝜆 ∈ [0, 1].
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(6) If (𝑋
𝑛
) is a sequence of closed subsets ofM

𝐸
such that

𝑋
𝑛+1

⊂ 𝑋
𝑛
and lim

𝑛→∞
𝜇(𝑋
𝑛
) = 0, then⋂∞

𝑛=1
𝑋
𝑛
̸= 𝜙.

In [2] Darbo proved the following fixed point theorem.

Theorem2. LetΩ be a nonempty, bounded, closed, and convex
subset of 𝐸 and letH : Ω → Ω be a continuous mapping such
that there exists a constant 𝑘 ∈ [0, 1) satisfying

𝜇 (H𝑋) ≤ 𝑘𝜇 (𝑋) (2)

for any nonempty subset 𝑋 of Ω, where 𝜇 is a measure of
noncompactness.

ThenH has a fixed point in Ω.

In [3], Sadovskii proved the following generalization of
Theorem 2.

Theorem3. LetΩ be a nonempty, bounded, closed, and convex
subset of 𝐸 and letH : Ω → Ω be a continuous mapping such
that

𝜇 (H𝑋) < 𝜇 (𝑋) (3)

for any nonempty and noncompact subset𝑋 ofΩ, where 𝜇 is a
measure of noncompactness in 𝐸. ThenH has a fixed point in
Ω.

Notice that in [3] Theorem 3 is proved for a particular
measure of noncompactness in 𝐸, but the same argument
serves for an arbitrarymeasure of noncompactness in𝐸 [5, 6].

In our study, we will work in the Banach space BC(R
+
)

consisting of all real, bounded, and continuous functions
on R
+
. This space is furnished with the norm given by the

formula

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ∈ R
+
} . (4)

In BC(R
+
), we will use the measure of noncompactness

which appears in [7, 8]. In order to present this measure of
noncompactness, let us fix a nonempty, bounded subset𝑋 of
BC(R

+
) and a number 𝐿 > 0. For 𝑥 ∈ 𝑋 and 𝜀 > 0, we denote

by𝜔𝐿(𝑥, 𝜀) themodulus of continuity of the function 𝑥 on the
interval [0, 𝐿]; that is,

𝜔
𝐿

(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝐿] , |𝑡 − 𝑠| ≤ 𝜀} .
(5)

Now, we consider the quantities

𝜔
𝐿

(𝑋, 𝜀) = sup {𝜔𝐿 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
𝐿

0
(𝑋) = lim

𝜀→0

𝜔
𝐿

(𝑋, 𝜀) ,

𝜔
0
(𝑋) = lim

𝐿→∞

𝜔
𝐿

0
(𝑋) .

(6)

Further, for a fixed number 𝑡 ∈ R
+
, we denote 𝑋(𝑡) = {𝑥(𝑡) :

𝑥 ∈ 𝑋}.
Finally, the measure of noncompactness 𝜇 which will be

used in our study is defined as

𝜇 (𝑋) = 𝜔
0
(𝑋) + lim sup

𝑡→∞

diam𝑋 (𝑡) , (7)

where diam𝑋(𝑡) = sup{|𝑥(𝑡) − 𝑦(𝑡)| : 𝑥, 𝑦 ∈ 𝑋}. In
[4], the authors proved that the function 𝜇 is a measure of
noncompactness in BC(R

+
).

In order to introduce the concept of asymptotic stability
which will be used later, we assume that Ω is a nonempty
subset of BC(R

+
) and letH : Ω → BC(R

+
) be an operator.

Also, consider the equation

𝑥 (𝑡) = (H𝑥) (𝑡) , 𝑡 ∈ R
+
. (8)

Definition 4. One will say that solutions of (8) are locally
attractive if there exists a ball 𝐵

𝑟
(𝑥
0
) in BC(R

+
) such that, for

arbitrary solutions 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) of (8) belonging to
𝐵
𝑟
(𝑥
0
) ∩ Ω, one has that

lim
𝑡→∞

(𝑥 (𝑡) − 𝑦 (𝑡)) = 0. (9)

In the case when the limit in (9) is uniform with respect
to the set 𝐵

𝑟
(𝑥
0
) ∩ Ω, that is, when for each 𝜀 > 0 there exists

𝑇 > 0 such that

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜀 (10)

for all 𝑥, 𝑦 ∈ 𝐵
𝑟
(𝑥
0
) ∩ Ω being solutions of (8) and for any

𝑡 ≥ 𝑇, one will say that solutions of (8) are asymptotically
stable.

We will finish this section with the following gener-
alization of Banach contraction mapping principle due to
Geraghty [9] and where the class B of functions 𝛽 :

[0,∞) → [0, 1) is used satisfying

𝛽 (𝑡
𝑛
) 󳨀→ 1 󳨐⇒ 𝑡

𝑛
󳨀→ 0. (11)

ByB
0
we denote the class of functions 𝛽 : [0,∞) → [0, 1).

Theorem 5. Let (𝑋, 𝑑) be a complete metric space and letH :

𝑋 → 𝑋 be an operator. Suppose that there exists 𝛽 ∈ B such
that for any 𝑥, 𝑦 ∈ 𝑋

𝑑 (H𝑥,H𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) ⋅ 𝑑 (𝑥, 𝑦) . (12)

ThenH has a unique fixed point in𝑋.

3. Main Result

We start this section with the following result which is a
version of Theorem 5 in the context of measure of noncom-
pactness.

Proposition 6. Let Ω be a nonempty, bounded, closed, and
convex subset of a Banach space 𝐸 and let H : Ω → Ω be
a continuous mapping such that

𝜇 (H𝑋) ≤ 𝛽 (𝜇 (𝑋)) ⋅ 𝜇 (𝑋) (13)

for any nonempty and noncompact subset 𝑋 of Ω, where 𝛽 ∈

B
0
and 𝜇 is an arbitrary measure of noncompactness in 𝐸.

ThenH has at least one fixed point.
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Proof. Let 𝑋 be a nonempty and noncompact subset of Ω.
Then 𝜇(𝑋) > 0. We can distinguish two cases.

Case 1 (𝛽(𝜇(𝑋)) = 0). In this case, from (13) we get 𝜇(H𝑋) =

0 and therefore 0 = 𝜇(H𝑋) < 𝜇(𝑋).

Case 2 (𝛽(𝜇(𝑋)) > 0). In this case, since the function 𝛽 has as
range [0, 1), from (13) we have 𝜇(H𝑋) < 𝜇(𝑋).

Since𝑋 is an arbitrary nonempty and noncompact subset
of Ω, the contractive condition appearing in Theorem 3 is
satisfied. Finally, Theorem 3 says that H has a fixed point in
Ω. This completes the proof.

Now, we present the following result which belongs to the
classical metric fixed point theory.

Corollary 7. Let Ω be a nonempty, bounded, closed, and
convex subset of a Banach space 𝐸 and let H : Ω → Ω be
an operator satisfying

󵄩󵄩󵄩󵄩H𝑥 −H𝑦
󵄩󵄩󵄩󵄩 ≤ 𝛼 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) (14)

for any 𝑥, 𝑦 ∈ Ω, where 𝛼 : R
+
→ R

+
is a nondecreasing

function with 𝛽(𝑡) = 𝛼(𝑡)/𝑡 ∈ B
0
. ThenH has a unique fixed

point in Ω.

Proof. Let 𝜇 : M
𝐸
→ R
+
be the function defined by 𝜇(𝑋) =

diam𝑋, where

diam𝑋 = sup {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑥, 𝑦 ∈ 𝑋} . (15)

It is easy to see that 𝜇 is a measure of noncompactness in 𝐸
[4].

Now, we take a nonempty subset 𝑋 of Ω with 𝜇(𝑋) ̸= 0.
Using (14) and the fact that 𝛼 is nondecreasing, we have

𝜇 (H𝑋) = diamH (𝑋) = sup {󵄩󵄩󵄩󵄩H𝑥 −H𝑦
󵄩󵄩󵄩󵄩 : 𝑥, 𝑦 ∈ 𝑋}

≤ sup {𝛼 (󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) : 𝑥, 𝑦 ∈ 𝑋}

≤ 𝛼 (sup {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑥, 𝑦 ∈ 𝑋})

= 𝛼 (diam𝑋) = 𝛼 (𝜇 (𝑋)) =
𝛼 (𝜇 (𝑋))

𝜇 (𝑋)
⋅ 𝜇 (𝑋)

= 𝛽 (𝜇 (𝑋)) ⋅ 𝜇 (𝑋) .

(16)

When 𝜇(𝑋) = diam𝑋 = 0, we infer that 𝑋 is a singleton;
thus 𝑇𝑋 is also a singleton. Consequently, 𝜇(H𝑋) = 0.
Therefore, (16) is also satisfied when 𝜇(𝑋) = 0. Since 𝛽 ∈ B

0
,

Proposition 6 gives us the existence of at least one fixed point
inΩ.

In order to prove the uniqueness of the fixed point,
we take into account FixH ⊂ ker 𝜇, since H(FixH) =

FixH and, consequently, 𝜇(FixH) = 0. Finally, since ker𝜇
consists of singletons, FixH is a singleton and this proves the
uniqueness of the fixed point. The proof is complete.

An example of the function 𝛼 appearing in Corollary 7 is
𝛼(𝑡) = arctan 𝑡.

Now, we present the main result of the paper.

Theorem 8. Consider the following functional integral equa-
tion:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + ∫

𝑡

0

𝑔 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ R
+

(17)

under the following assumptions.

(a) The function 𝑓(𝑡, 𝑥) = 𝑓 : R
+
×R → R is continuous

and the function 𝑡 → 𝑓(𝑡, 0) is bounded.
(b) There exists a continuous and nondecreasing function

𝜑 : R
+
→ R
+
with 𝜑(0) = 0, satisfying

(b
1
) 𝜑((𝑡 + 𝑠)/2) ≥ (𝜑(𝑡) + 𝜑(𝑠))/2 for any 𝑡, 𝑠 ∈ R

+
,

(b
2
) 𝛽(𝑡) = 𝜑(𝑡)/𝑡 ∈ B

0
,

such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜑 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) 𝑓𝑜𝑟 𝑥, 𝑦 ∈ R, 𝑡 ∈ R
+
.

(18)

(c) The function 𝑔(𝑡, 𝑠, 𝑥) = 𝑔 : R2
+
× R → R is

continuous and there exist continuous functions 𝑢, V :
R
+
→ R
+
such that

(c
1
) lim
𝑡→∞

𝑢(𝑡) ∫
𝑡

0
V(𝑠)𝑑𝑠 = 0,

(c
2
) |𝑔(𝑡, 𝑠, 𝑥)| ≤ 𝑢(𝑡)V(𝑠) for any 𝑡, 𝑠 ∈ R

+
and 𝑥 ∈

R.

(d) There exists a positive solution 𝑟
0
of the inequality𝜑(𝑟)+

𝑞 ≤ 𝑟, where

𝑞 = sup
𝑡∈R
+

{
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 + 𝑢 (𝑡) ∫

𝑡

0

V (𝑠) 𝑑𝑠} . (19)

Then (17) has at least one solution 𝑥 ∈ 𝐵𝐶(R
+
). Moreover,

solutions of (17) are asymptotically stable.

Proof. Let us consider the operatorH defined on BC(R
+
) as

follows:

(H𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + ∫

𝑡

0

𝑔 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠. (20)

For convenience, we divide the proof into several steps.

Step 1 (Hmaps BC(R
+
) into itself). In fact, since 𝑓 and 𝑔 are

continuous functions, for 𝑥 ∈ BC(R
+
) we infer that H𝑥 is

continuous on R
+
. Now, we prove that for 𝑥 ∈ BC(R

+
) the

functionH𝑥 is bounded. In fact, for arbitrarily fixed 𝑡 ∈ R
+

we get

|(H𝑥) (𝑡)| ≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 + ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝜑 (|𝑥 (𝑡)|) +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 + 𝑢 (𝑡) ∫

𝑡

0

V (𝑠) 𝑑𝑠

≤ 𝜑 (‖𝑥‖) + 𝑞.

(21)
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This proves that

sup
𝑡∈R
+

|(H𝑥) (𝑡)| ≤ 𝜑 (‖𝑥‖) + 𝑞 < ∞. (22)

Therefore,Hmaps BC(R
+
) into itself.

Step 2 (H maps 𝐵
𝑟
0

into itself). It follows from assumption
(d) thatHmaps 𝐵

𝑟
0

into itself.

Step 3 (an estimate ofH with respect to the quantity 𝜔
0
). For

fixed 𝜀 > 0 and 𝐿 > 0 let us take 𝑡, 𝑠 ∈ [0, 𝐿] with |𝑡 − 𝑠| ≤ 𝜀.
Without loss of generality, we may assume that 𝑠 < 𝑡. Then
for 𝑥 ∈ 𝑋 we obtain the following estimate:

|(H𝑥) (𝑡) − (H𝑥) (𝑠)|

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑔 (𝑡, 𝜏, 𝑥 (𝜏)) 𝑑𝜏 − ∫

𝑠

0

𝑔 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑠, 𝑥 (𝑡))

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑡)) − 𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑔 (𝑡, 𝜏, 𝑥 (𝜏)) 𝑑𝜏 − ∫

𝑡

0

𝑔 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑔 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏 − ∫

𝑠

0

𝑔 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜔
𝐿

1
(𝑓, 𝜀) + 𝜑 (|𝑥 (𝑡) − 𝑥 (𝑠)|)

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝜏, 𝑥 (𝜏)) − 𝑔 (𝑠, 𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 𝑑𝜏

+ ∫

𝑡

𝑠

󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 𝑑𝜏

≤ 𝜔
𝐿

1
(𝑓, 𝜀) + 𝜑 (𝜔

𝐿

(𝑥, 𝜀))

+ ∫

𝐿

0

𝜔
𝐿

1
(𝑔, 𝜀) 𝑑𝜏 + 𝑢 (𝑠) ∫

𝑡

𝑠

V (𝜏) 𝑑𝜏

≤ 𝜔
𝐿

1
(𝑓, 𝜀) + 𝜑 (𝜔

𝐿

(𝑥, 𝜀))

+ 𝐿𝜔
𝐿

1
(𝑔, 𝜀) + 𝜀 sup

𝑠,𝑡∈[0,𝐿]

{𝑢 (𝑠) V (𝑡)} ,

(23)

where we denoted

𝜔
𝐿

1
(𝑓, 𝜀) = sup {󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑠, 𝑥)

󵄨󵄨󵄨󵄨 : 𝑡, 𝑠 ∈ [0, 𝐿] ,

𝑥 ∈ [−𝑟
0
, 𝑟
0
] , |𝑡 − 𝑠| ≤ 𝜀} ,

𝜔
𝐿

1
(𝑔, 𝜀) = sup {󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝜏, 𝑥) − 𝑔 (𝑠, 𝜏, 𝑥)

󵄨󵄨󵄨󵄨 : 𝑡, 𝜏, 𝑠 ∈ [0, 𝐿] ,

𝑥 ∈ [−𝑟
0
, 𝑟
0
] , |𝑡 − 𝑠| ≤ 𝜀} .

(24)

From the uniform continuity of the functions 𝑓 and 𝑔 on the
sets [0, 𝐿]×[−𝑟

0
, 𝑟
0
] and [0, 𝐿]×[0, 𝐿]×[−𝑟

0
, 𝑟
0
], respectively,

it follows that 𝜔𝐿
1
(𝑓, 𝜀) → 0 and 𝜔

𝐿

1
(𝑔, 𝜀) → 0 when

𝜀 → 0. Notice that, since 𝑢 and V are continuous on [0, 𝐿],
we have that sup

𝑠,𝑡∈[0,𝐿]
{𝑢(𝑠)V(𝑡)} < ∞. Therefore, we derive

the following estimate:

𝜔
𝐿

(H𝑥, 𝜀) ≤ 𝜔
𝐿

1
(𝑓, 𝜀) + 𝜑 (𝜔

𝐿

(𝑥, 𝜀))

+ 𝐿𝜔
𝐿

1
(𝑔, 𝜀) + 𝜀 sup

𝑠,𝑡∈[0,𝐿]

{𝑢 (𝑠) V (𝑡)} .
(25)

Since 𝜑 is nondecreasing, we obtain

𝜔
𝐿

(H𝑋, 𝜀) = sup
𝑥∈𝑋

{𝜔
𝐿

(H𝑥, 𝜀)}

≤ 𝜔
𝐿

1
(𝑓, 𝜀) + 𝜑(sup

𝑥∈𝑋

{𝜔
𝐿

(𝑥, 𝜀)})

+ 𝐿𝜔
𝐿

1
(𝑔, 𝜀) + 𝜀 sup

𝑠,𝑡∈[0,𝐿]

{𝑢 (𝑠) V (𝑡)}

= 𝜔
𝐿

1
(𝑓, 𝜀) + 𝜑 (𝜔

𝐿

(𝑋, 𝜀))

+ 𝐿𝜔
𝐿

1
(𝑔, 𝜀) + 𝜀 sup

𝑠,𝑡∈[0,𝐿]

{𝑢 (𝑠) V (𝑡)} .

(26)

Hence

𝜔
𝐿

0
(H𝑋) = lim

𝜀→0

𝜔
𝐿

(H𝑋, 𝜀) ≤ lim
𝜀→0

𝜑 (𝜔
𝐿

(𝑋, 𝜀))

= 𝜑 ( lim
𝜀→0

𝜔
𝐿

(𝑋, 𝜀)) = 𝜑 (𝜔
𝐿

0
(𝑋)) .

(27)

Finally, we get

𝜔
0
(H𝑋) = lim

𝐿→∞

𝜔
𝐿

0
(H𝑋) ≤ lim

𝐿→∞

𝜑 (𝜔
𝐿

0
(𝑋))

= 𝜑 ( lim
𝐿→∞

𝜔
𝐿

0
(𝑋)) = 𝜑 (𝜔

0
(𝑋)) .

(28)

Step 4 (an estimate of H with respect to the diameter). For
𝑥, 𝑦 ∈ 𝑋 and 𝑡 ∈ R

+
, we have

󵄨󵄨󵄨󵄨(H𝑥) (𝑡) − (H𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))

󵄨󵄨󵄨󵄨

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠 + ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝜑 (
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨) + 2𝑢 (𝑡) ∫

𝑡

0

V (𝑠) 𝑑𝑠.

(29)

Since 𝜑 is nondecreasing, from the last inequality it follows
that

diam (H𝑋) (𝑡) ≤ 𝜑 (diam𝑋 (𝑡)) + 2𝑢 (𝑡) ∫

𝑡

0

V (𝑠) 𝑑𝑠. (30)

Consequently, from assumption (c
1
) and the continuity of 𝜑,

we get

lim sup
𝑡→∞

diam (H𝑋) (𝑡) ≤ 𝜑(lim sup
𝑡→∞

diam𝑋 (𝑡)) . (31)
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Step 5 (H satisfies the contractive condition of Proposition 6).
In fact, from assumption (b

1
), (28), (31), and the definition of

the measure of noncompactness 𝜇, we infer

𝜇 (H𝑋) = 𝜔
0
(H𝑋) + lim sup

𝑡→∞

diam (H𝑋) (𝑡)

≤ 𝜑 (𝜔
0
(𝑋)) + 𝜑(lim sup

𝑡→∞

diam𝑋 (𝑡))

= 2
𝜑 (𝜔
0
(𝑋)) + 𝜑 (lim sup

𝑡→∞
diam𝑋 (𝑡))

2

≤ 2𝜑(
𝜔
0
(𝑋) + lim sup

𝑡→∞
diam𝑋(𝑡)

2
)

= 2𝜑(
𝜇 (𝑋)

2
) .

(32)

Now, considering in BC(R
+
) themeasure of noncompactness

𝜇
1
defined by 𝜇

1
(𝑋) = (1/2)𝜇(𝑋), the last estimate can be

written in the form

𝜇
1
(H𝑋) ≤ 𝜑 (𝜇

1
(𝑋)) . (33)

Therefore, if 𝜇
1
(𝑋) ̸= 0, then

𝜇
1
(H𝑋) ≤

𝜑 (𝜇
1
(𝑋))

𝜇
1
(𝑋)

⋅ 𝜇
1
(𝑋) (34)

or equivalently

𝜇
1
(H𝑋) ≤ 𝛽 (𝜇

1
(𝑋)) ⋅ 𝜇

1
(𝑋) , (35)

where 𝛽(𝑡) = 𝜑(𝑡)/𝑡.
In the case 𝜇

1
(𝑋) = 0 we have that 𝑋 is a relatively

compact subset of BC(R
+
) and, since H is continuous, H𝑋

is also relatively compact and thus 𝜇
1
(H𝑋) = 0. This proves

that (35) is also satisfied when 𝜇
1
(𝑋) = 0. Summarizing, for

any nonempty subset𝑋 of 𝐵
𝑟
0

, we have

𝜇
1
(H𝑋) ≤ 𝛽 (𝜇

1
(𝑋)) ⋅ 𝜇

1
(𝑋) , (36)

where 𝛽 ∈ B
0
(assumption (b

2
)) and 𝜇

1
is a measure of

noncompactness in BC(R
+
).

In the sequel, let us consider the sequence of sets (𝐵𝑛
𝑟
0

),
where 𝐵1

𝑟
0

= ConvH(𝐵
𝑟
0

), 𝐵2
𝑟
0

= ConvH(𝐵
1

𝑟
0

), and so on.
Notice that the sequence is decreasing; that is, 𝐵𝑛+1

𝑟
0

⊂ 𝐵
𝑛

𝑟
0

for 𝑛 = 1, 2, 3, . . .. Moreover, 𝐵1
𝑟
0

⊂ 𝐵
𝑟
0

and the sets in this
sequence are closed, convex, and nonempty.

On the other hand, in view of (32), we get

𝜇
1
(𝐵
1

𝑟
0

) = 𝜇
1
(ConvH (𝐵

𝑟
0

))

= 𝜇
1
(H (𝐵

𝑟
0

))

≤ 𝜑 (𝜇
1
(𝐵
𝑟
0

)) ,

𝜇
1
(𝐵
2

𝑟
0

) = 𝜇
1
(ConvH (𝐵

1

𝑟
0

))

= 𝜇
1
(H (𝐵

1

𝑟
0

))

≤ 𝜑 (𝜇
1
(𝐵
1

𝑟
0

))

≤ 𝜑 (𝜑 (𝜇
1
(𝐵
𝑟
0

)))

= 𝜑
2

(𝜇
1
(𝐵
𝑟
0

))

(37)

and, by using induction,

𝜇
1
(𝐵
𝑛

𝑟
0

) ≤ 𝜑
𝑛

(𝜇
1
(𝐵
𝑟
0

)) , (38)

where we have used the nondecreasing character of 𝜑 and
where 𝜑(𝑛) denotes the 𝑛th iteration. Taking into account (𝑏

2
),

since 𝜑(𝑡)/𝑡 ∈ B
0
, we have 𝜑(𝑡) < 𝑡 for 𝑡 > 0 and as 𝜑 is

continuous, it follows that 𝜑(𝑛)(𝑡) → 0 for 𝑡 > 0 [10].
Therefore, we deduce that

lim
𝑛→∞

𝜇
1
(𝐵
𝑛

𝑟
0

) = lim
𝑛→∞

𝜑
𝑛

(𝜇
1
(𝐵
𝑟
0

)) = 0. (39)

Now, taking into account Definition 1, we deduce that the set
𝑌 = ⋂

∞

𝑛=1
𝐵
𝑛

𝑟
0

is nonempty, bounded, closed, and convex.
Moreover, since 𝜇

1
(𝑌) ≤ 𝜇

1
(𝐵
𝑛

𝑟
0

) for any 𝑛 ∈ N,𝑌 is amember
of the kernel ker𝜇

1
of themeasure of noncompactness 𝜇

1
. Let

us also observe that the operatorH transforms the set 𝑌 into
itself.

Next, we will prove that H is continuous on the set 𝑌.
To do this let us fix a number 𝜀 > 0 and we take a sequence
(𝑥
𝑛
) ⊂ 𝑌 and 𝑥 ∈ 𝑌 such that 𝑥

𝑛
→ 𝑥. We have to prove that

H𝑥
𝑛
→ H𝑥.

In fact, since 𝑌 ∈ ker 𝜇
1
, we have 𝜇

1
(𝑌) = 0 and,

particularly, lim sup
𝑡→∞

diam𝑌(𝑡) = 0. Then, for 𝜀 > 0 we
can find 𝑇 > 0 such that |𝑥(𝑡) − 𝑦(𝑡)| < 𝜀 for any 𝑥, 𝑦 ∈ 𝑌 and
𝑡 ≥ 𝑇. Particularly, sinceH : 𝑌 → 𝑌 we haveH𝑥

𝑛
,H𝑥 ∈ 𝑌

for any 𝑛 ∈ N, and, thus, for 𝑡 ≥ 𝑇,

󵄨󵄨󵄨󵄨(H𝑥
𝑛
) (𝑡) − (H𝑥) (𝑡)

󵄨󵄨󵄨󵄨 < 𝜀, for any 𝑛 ∈ N. (40)

On the other hand, since 𝑔 : [0, 𝑇] × [0, 𝑇] × [−𝑟
0
, 𝑟
0
] → R

is continuous on a compact set, it is uniformly continuous.
This means that for 𝜀 > 0 we can find 𝛿 > 0 such that if
max{|𝑡 − 𝑡󸀠|, |𝑠 − 𝑠󸀠|, |𝑢 − V|} < 𝛿 for 𝑡, 𝑡󸀠, 𝑠, 𝑠󸀠 ∈ [0, 𝑇] and
𝑢, V ∈ [−𝑟

0
, 𝑟
0
], we have |𝑔(𝑡, 𝑠, 𝑢) − 𝑔(𝑡󸀠, 𝑠󸀠, V)| < 𝜀/2𝑇.

Taking into account that 𝑥
𝑛
→ 𝑥, we can find 𝑛

0
∈ N

such that, for 𝑛 ≥ 𝑛
0
, ‖𝑥
𝑛
− 𝑥‖ < min{𝜀/2, 𝛿}.
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For 𝑛 ≥ 𝑛
0
and 𝑡 ∈ [0, 𝑇], we have

󵄨󵄨󵄨󵄨(H𝑥
𝑛
) (𝑡) − (H𝑥) (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥𝑛 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡))

󵄨󵄨󵄨󵄨

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥𝑛 (𝑠)) − 𝑔 (𝑡, 𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝜑 (
󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥 (𝑡)

󵄨󵄨󵄨󵄨)

+ ∫

𝑇

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥𝑛 (𝑠)) − 𝑔 (𝑡, 𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩) + ∫

𝑇

0

𝜀

2𝑇
𝑑𝑠

≤ 𝜑 (
𝜀

2
) +

𝜀

2

<
𝜀

2
+
𝜀

2

= 𝜀,

(41)

where we have used the fact that 𝜑(𝑡) < 𝑡 for 𝑡 > 0 and the
nondecreasing character of 𝜑.

From (40) and (41), ‖H𝑥
𝑛
− H𝑥‖ < 𝜀 for 𝑛 ≥ 𝑛

0
. This

proves our claim.
Finally, taking into account that as 𝑌 ∈ ker 𝜇

1
and,

consequently, 𝑌 is relatively compact, H : 𝑌 → 𝑌 is a
continuous operator, applying the classical Schauder fixed
point theorem, we infer that the operator H has at least one
fixed point in 𝑌.

In order to prove that solutions of (17) are asymptotically
stable, we notice that any solution 𝑥(𝑡) of (17) in 𝐵

𝑟
0

is a fixed
point ofH. Now, taking into account thatH transforms 𝐵

𝑟
0

into itself, we have

𝜇
1
(H (𝐵

𝑟
0

∩ FixH)) = 𝜇
1
(𝐵
𝑟
0

∩H (FixH))

= 𝜇
1
(𝐵
𝑟
0

∩ FixH) .

(42)

Since 𝜇
1
(H𝑋) ≤ 𝛽(𝜇

1
(𝑋)) ⋅ 𝜇

1
(𝑋) for any nonempty subset

𝑋 of 𝐵
𝑟
0

, we have

𝜇
1
(H (𝐵

𝑟
0

∩ FixH)) = 𝜇
1
(𝐵
𝑟
0

∩ FixH)

≤ 𝛽 (𝜇
1
(𝐵
𝑟
0

∩ FixH))

⋅ 𝜇
1
(𝐵
𝑟
0

∩ FixH) .

(43)

Further, we distinguish two cases.

Case 1 (𝛽(𝜇
1
(𝐵
𝑟
0

∩FixH)) = 0). In this case, by (43), 𝜇
1
(𝐵
𝑟
0

∩

FixH) = 0.

Case 2 (𝛽(𝜇
1
(𝐵
𝑟
0

∩ FixH)) > 0). In this case, by (43) and
taking into account that the range of the function 𝛽 is [0, 1),
we infer

𝜇
1
(H (𝐵

𝑟
0

∩ FixH))

= 𝜇
1
(𝐵
𝑟
0

∩ FixH)

≤ 𝛽 (𝜇
1
(𝐵
𝑟
0

∩ FixH)) ⋅ 𝜇
1
(𝐵
𝑟
0

∩ FixH)

< 𝜇
1
(𝐵
𝑟
0

∩ FixH)

(44)

which is a contradiction. Therefore 𝜇
1
(𝐵
𝑟
0

∩ FixH) = 0.
Since 𝜇

1
(𝑋) = (1/2)𝜇(𝑋) for any nonempty subset 𝑋,

we deduce that 𝜇(𝐵
𝑟
0

∩ FixH) = 0. Taking into account
the definition of the measure of noncompactness 𝜇 (see
Section 2), we have

lim sup
𝑡→∞

diam [(𝐵
𝑟
0

∩ FixH) (𝑡)] = 0. (45)

But this means that for any 𝜀 > 0 we can find 𝑇 > 0 such that

diam [(𝐵
𝑟
0

∩ FixH) (𝑡)] ≤ 𝜀 for any 𝑡 ≥ 𝑇. (46)

As all solutions of (17) in 𝐵
𝑟
0

are in 𝐵
𝑟
0

∩ FixH, by (46) we
have that for 𝜀 > 0 there exists 𝑇 > 0 such that

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜀 for any 𝑡 ≥ 𝑇, (47)

where 𝑥, 𝑦 ∈ 𝐵
𝑟
0

and they are solutions of (17). This means
that solutions of (17) are asymptotically stable. The proof is
complete.

4. Example

In order to present an example which illustrates our results,
we need to prove some properties about the inverse tangent
function.

Lemma 9. The function 𝜑 : R
+
→ [0, 𝜋/2) defined as 𝜑(𝑡) =

arctan 𝑡 has the following properties.

(a) 𝜑 is continuous, nondecreasing and satisfies 𝜑(0) = 0.
(b) For 𝑡, 𝑠 ∈ R

+
: (𝜑(𝑡) + 𝜑(𝑠))/2 ≤ 𝜑((𝑡 + 𝑠)/2).

Proof. (a) It is clear that𝜑 is continuous, nondecreasing (since
𝜑
󸀠
(𝑡) = 1/(1 + 𝑡

2
) > 0) and 𝜑(0) = 0.

(b) Since 𝜑󸀠󸀠(𝑡) = −2𝑡/(1 + 𝑡
2
)
2

≤ 0 for any 𝑡 ∈ R
+
, we

infer that 𝜑 is concave and, therefore,

𝜑 (𝑡) + 𝜑 (𝑠)

2
≤ 𝜑 (

𝑡 + 𝑠

2
) , (48)

for any 𝑡, 𝑠 ∈ R
+
.

Definition 10. A function 𝑓 : R
+

→ R
+
is said to be

subadditive if

𝑓 (𝑥 + 𝑦) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) , for any 𝑥, 𝑦 ∈ R
+
. (49)
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Lemma 11. Suppose that 𝑓 : R
+
→ R
+
is subadditive. Then,

for 𝑦 ≤ 𝑥, one has that

𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝑓 (𝑥 − 𝑦) . (50)

Proof. In fact, since

𝑓 (𝑥) = 𝑓 (𝑥 − 𝑦 + 𝑦) ≤ 𝑓 (𝑥 − 𝑦) + 𝑓 (𝑦) (51)

the desired result follows.

Remark 12. From Lemma 11, we infer that if 𝑓 : R
+
→ R
+
is

subadditive, then
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑓 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) , for any 𝑥, 𝑦 ∈ R
+
. (52)

Lemma 13. Let 𝑓 : R
+
→ R

+
be a concave function with

𝑓(0) = 0. Then 𝑓 is subadditive.

Proof. Since𝑓 is concave and𝑓(0) = 0, we have for 𝑥, 𝑦 ∈ R
+

𝑓 (𝑥) = 𝑓(
𝑥

𝑥 + 𝑦
(𝑥 + 𝑦) +

𝑦

𝑥 + 𝑦
⋅ 0)

≥
𝑥

𝑥 + 𝑦
𝑓 (𝑥 + 𝑦) +

𝑦

𝑥 + 𝑦
𝑓 (0)

=
𝑥

𝑥 + 𝑦
𝑓 (𝑥 + 𝑦) ,

𝑓 (𝑦) = 𝑓(
𝑥

𝑥 + 𝑦
⋅ 0 +

𝑦

𝑥 + 𝑦
(𝑥 + 𝑦))

≥
𝑥

𝑥 + 𝑦
𝑓 (0) +

𝑦

𝑥 + 𝑦
𝑓 (𝑥 + 𝑦)

=
𝑦

𝑥 + 𝑦
𝑓 (𝑥 + 𝑦) .

(53)

Adding these inequalities side by side, we obtain

𝑓 (𝑥) + 𝑓 (𝑦) ≥
𝑥

𝑥 + 𝑦
𝑓 (𝑥 + 𝑦) +

𝑦

𝑥 + 𝑦
𝑓 (𝑥 + 𝑦)

= 𝑓 (𝑥 + 𝑦) .

(54)

Therefore 𝑓 is subadditive.

Remark 14. Since the function 𝑓 : R
+
→ [0, 𝜋/2) defined by

𝜑(𝑡) = arctan 𝑡 is concave and 𝜑(0) = 0, by Lemma 13, 𝜑 is
subadditive. Taking into account Remark 12, we get

󵄨󵄨󵄨󵄨𝜑 (𝑡) − 𝜑 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝜑 (|𝑡 − 𝑠|) for any 𝑡, 𝑠 ∈ R

+
(55)

or

|arctan 𝑡 − arctan 𝑠| ≤ arctan (|𝑡 − 𝑠|) for any 𝑡, 𝑠 ∈ R
+
.

(56)

Lemma 15. The function 𝛽 : R
+
→ [0, 1) defined by 𝛽(𝑡) =

𝜑(𝑡)/𝑡 for 𝑡 > 0, where 𝜑(𝑡) = arctan 𝑡, belongs to the classB
0
.

Proof. From mathematical analysis, we know that 𝜑(𝑡) =

arctan 𝑡 < 𝑡, for 𝑡 > 0. Therefore, the function 𝜑 maps R
+

into [0, 1). This completes the proof.

Now, we are ready to present an example illustrating our
results.

Example 16. Consider the following functional integral equa-
tion:

𝑥 (𝑡) =
1

20

𝑡

1 + 𝑡
+ arctan𝑥 (𝑡)

+ ∫

𝑡

0

𝑡𝑠 cos (𝑥2 (𝑡))

30√𝑡8 + 𝑠2 + 𝑡8𝑠2 + 2

𝑑𝑠, 𝑡 ∈ R
+
.

(57)

Notice that (57) is a particular case of (17), provided we put

𝑓 (𝑡, 𝑥) =
1

20

𝑡

1 + 𝑡
+ arctan𝑥,

𝑔 (𝑡, 𝑠, 𝑥) =

𝑡𝑠 cos (𝑥2)

30√𝑡8 + 𝑠2 + 𝑡8𝑠2 + 2

.

(58)

It is clear that 𝑓 : R
+
×R → R is continuous and, moreover,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

20

𝑡

1 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

20
, for any 𝑡 ∈ R

+
. (59)

Thus, assumption (a) of Theorem 8 is satisfied.
On the other hand, taking into accountRemark 14, for any

𝑥, 𝑦 ∈ R and 𝑡 ∈ R
+
, we obtain

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨arctan𝑥 − arctan𝑦󵄨󵄨󵄨󵄨

≤ arctan (󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨) .

(60)

Thus, by Lemmas 9 and 15, the function 𝜑(𝑡) = arctan 𝑡
satisfies assumption (b) of Theorem 8.

Further, notice that 𝑔 : R
+
×R
+
×R → R is continuous

and, for any 𝑡, 𝑠 ∈ R
+
and for 𝑥 ∈ R, one has

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡𝑠 cos (𝑥2)

30√𝑡8 + 𝑠2 + 𝑡8𝑠2 + 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑡

30√𝑡8 + 1

⋅
𝑠

√𝑠2 + 1

.

(61)

Putting 𝑢(𝑡) = 𝑡/30√𝑡8 + 1 and V(𝑠) = 𝑠/√𝑠2 + 1, it is clear
that 𝑢(𝑡) and V(𝑠) are continuous functions onR

+
. Moreover,

∫

𝑡

0

V (𝑠) 𝑑𝑠 = ∫
𝑡

0

𝑠

√𝑠2 + 1

= √𝑡2 + 1 − 1. (62)

Since

lim
𝑡→∞

𝑢 (𝑡) ∫

𝑡

0

V (𝑠) 𝑑𝑠 = lim
𝑡→∞

𝑡

30√𝑡8 + 1

(√𝑡2 + 1 − 1) = 0,

(63)

assumption (c) of Theorem 8 is satisfied.
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Now, we estimate the constant 𝑞 appearing in assumption
(d) of Theorem 8. Indeed, we have

𝑞 = sup
𝑡∈R
+

{
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 + 𝑢 (𝑡) ∫

𝑡

0

V (𝑠) 𝑑𝑠}

= sup
𝑡∈R
+

{
1

20

𝑡

1 + 𝑡
+

𝑡

30√𝑡8 + 1

(√𝑡2 + 1 − 1)}

≤ sup
𝑡∈R
+

{
1

20
+

𝑡

30√𝑡8 + 1

√𝑡2 + 1}

= sup
𝑡∈R
+

{
1

20
+

√𝑡4 + 𝑡2

30√𝑡8 + 1

} .

(64)

Notice that if 𝑡 < 1, then

√𝑡4 + 𝑡2

√𝑡8 + 1

≤
√2

√𝑡8 + 1

≤ √2 (65)

and when 𝑡 ≥ 1, we have

√𝑡4 + 𝑡2

√𝑡8 + 1

≤

√2𝑡8

√𝑡8 + 1

≤ √2. (66)

Thus, from the last inequality, we obtain

𝑞 ≤ sup
𝑡∈R
+

{
1

20
+

√𝑡4 + 𝑡2

30√𝑡8 + 1

}

≤
1

20
+
1

30

√2 < 0.0972.

(67)

Now, we consider the inequality

𝜑 (𝑟) + 0.0972 = arctan 𝑟 + 0.0972 < 𝑟. (68)

An application of Bolzano’s theorem gives that this inequality
is satisfied by a number 𝑟

0
∈ (0, 1). Therefore, assumption (d)

of Theorem 8 is satisfied.
Finally, by Theorem 8, we conclude that (57) has at least

one solution 𝑥 in BC(R
+
) satisfying ‖𝑥‖ ≤ 𝑟

0
.

5. Final Remarks

In [10] the authors proved the following result.

Theorem 17 (Theorem 2.2 of [10]). Let Ω be a nonempty,
bounded, closed, and convex subset of a Banach space 𝐸 and
let 𝑇 : Ω → Ω be a continuous operator satisfying

𝜇 (𝑇𝑋) ≤ 𝜑 (𝜇 (𝑋)) (69)

for any nonempty subset 𝑋 of Ω, where 𝜇 is an arbitrary
measure of noncompactness and 𝜑 : R

+
→ R

+
is a

nondecreasing function such that lim
𝑛→∞

𝜑
𝑛
(𝑡) = 0 for each

𝑡 ∈ R
+
, where 𝜑𝑛 denotes the 𝑛-iteration of 𝜑. Then 𝑇 has at

least one fixed point in Ω.

Notice that we can rewrite condition (69) in the form

𝜇 (𝑇𝑋) ≤
𝜑 (𝜇 (𝑋))

𝜇 (𝑋)
⋅ 𝜇 (𝑋) , (70)

for any nonempty subset𝑋 ofΩwith𝜇(𝑋) > 0.When𝜇(𝑋) =
0, this means that 𝑋 is a relatively compact subset of 𝐸 and,
since 𝑇 is continuous, 𝑇𝑋 is also relatively compact subset of
𝐸 and, therefore, 𝜇(𝑇𝑋) = 0. Consequently, condition (70)
is satisfied for any nonempty subset 𝑋 of Ω. This tells us that
Theorem 2.2 of [10] can be reformulated in the following way.

Theorem 18. Let Ω be a nonempty, bounded, closed, and
convex subset of a Banach space 𝐸 and let 𝑇 : Ω → Ω be
a continuous operator satisfying

𝜇 (𝑇𝑋) ≤ 𝛾 (𝜇 (𝑋)) ⋅ 𝜇 (𝑋) , (71)

for any nonempty subset 𝑋 of Ω, where 𝜇 is an arbitrary
measure of noncompactness and 𝛾 belongs to the class A of
functions 𝜙 : R

+
→ R
+
with 𝜙(𝑡) = 𝜑(𝑡)/𝑡, where 𝜑 : R

+
→

R
+
is a nondecreasing function such that lim

𝑛→∞
𝜑
𝑛
(𝑡) = 0

for each 𝑡 ∈ R
+
. Then 𝑇 has at least one fixed point inΩ.

Now, we compare the classes of functions B
0
and A

appearing in Proposition 6 and Theorem 18, respectively. To
do this, we need the following lemma which appears in
[10] under weaker assumptions. For the paper to be self-
contained, we present a proof.

Lemma 19. Let 𝜑 : R
+

→ R
+
be a continuous and

nondecreasing function. Then the following conditions are
equivalent:

(a) lim
𝑛→∞

𝜑
𝑛
(𝑡) = 0 for any 𝑡 > 0,

(b) 𝜑(𝑡) < 𝑡 for any 𝑡 > 0.

Proof. (a)⇒(b) Suppose that the conclusion is not true. This
means that we can find 𝑡

0
> 0 such that 𝜑(𝑡

0
) ≥ 𝑡

0
. Since

𝜑 is nondecreasing, we obtain 𝜑𝑛(𝑡
0
) ≥ 𝑡
0
> 0 for any 𝑛 =

1, 2, . . . and the sequence {𝜑𝑛(𝑡
0
)} is nondecreasing.Therefore

lim
𝑛→∞

𝜑
𝑛
(𝑡
0
) ≥ 𝑡
0
> 0 and this contradicts (a).

(b)⇒(a) Let 𝑡 be an arbitrary number but fixed with 𝑡 >
0. Since 𝜑(𝑡) < 𝑡 and 𝜑 is nondecreasing we infer that the
sequence of nonnegative real numbers (𝜑𝑛(𝑡)) is decreasing.
Thus, lim

𝑛→∞
𝜑
𝑛
(𝑡) = 𝑟 for certain 𝑟 ≥ 0. Suppose that 𝑟 > 0.

Then, by (b), 𝜑(𝑟) < 𝑟. On the other hand, since 𝑟 ≤ 𝜑𝑛(𝑡) for
any 𝑛 = 1, 2, . . ., the continuity of 𝜑 gives us

𝑟 ≤ lim
𝑛→∞

𝜑
𝑛

(𝑡) = lim
𝑛→∞

𝜑 (𝜑
𝑛−1

(𝑡))

= 𝜑 ( lim
𝑛→∞

𝜑
𝑛−1

(𝑡)) = 𝜑 (𝑟) < 𝑟,

(72)

which leads to a contradiction. Therefore, 𝑟 = 0 and this
completes the proof. In virtue of Lemma 19, it is obvious that
A ⊂ B

0
.
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Now, we will prove thatB
0

̸⊂ A. To this end consider the
function 𝛾 : R

+
→ R
+
given by

𝛾 (𝑡) =

{

{

{

−
1

2
𝑡 +

1

2
, if 0 ≤ 𝑡 ≤ 1,

0, if 𝑡 > 1.
(73)

It is clear that 𝛾maps R
+
into [0, 1/2] and therefore 𝛾 ∈ B.

If 𝛾 ∈ A, then 𝛾(𝑡) = 𝜑(𝑡)/𝑡, where 𝜑 : R
+
→ R

+
is a

nondecreasing and lim
𝑛→∞

𝜑
𝑛
(𝑡) = 0 for 𝑡 ∈ R

+
. In view of

the equality

𝜑 (𝑡) = 𝑡𝛾 (𝑡) =

{

{

{

−
1

2
𝑡
2
+
1

2
𝑡, if 0 ≤ 𝑡 ≤ 1,

0, if 𝑡 > 1,
(74)

it is obvious that 𝜑 is not nondecreasing and, consequently,
𝛾 ∉ A. This proves thatB

0
̸⊂ A.

In [7], the authors investigated the following functional
integral equation:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼 (𝑡)))

+ ∫

𝛽(𝑡)

0

𝑔 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠, 𝑡 ∈ R
+
,

(75)

under the following assumptions.

(i) The functions 𝛼, 𝛽, 𝛾 : R
+
→ R
+
are continuous and

𝛼(𝑡) → ∞ as 𝑡 → ∞.
(ii) The function 𝑓 : R

+
× R → R is continuous and

there exist positive constants 𝐿,𝑀 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤

𝑀
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝐿 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

(76)

for 𝑡 ∈ R
+
and for 𝑥, 𝑦 ∈ R. Moreover, we assume that

𝑀 < 𝐿.
(iii) The function 𝑡 → 𝑓(𝑡, 0) is bounded onR

+
with 𝐹 =

sup{|𝑓(𝑡, 0)| : 𝑡 ∈ R
+
}.

(iv) The function 𝑔 : R
+
× R
+
× R → R is continuous

and there exist functions 𝑎, 𝑏 : R
+
→ R
+
such that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) 𝑏 (𝑠) (77)

for 𝑡, 𝑠 ∈ R
+
. Moreover, we assume that

lim
𝑡→∞

𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠 = 0. (78)

The main result of [7] is formulated as follows.

Theorem 20. Under the above assumptions, the functional
integral equation (75) has at least one solution in the space
𝐵𝐶(R

+
).

Notice that (17) is a particular case of (75) with 𝛼(𝑡) =
𝛽(𝑡) = 𝛾(𝑡) = 𝑡.

If we compare assumptions of Theorems 8 and 20, then
we see that assumption (b) ofTheorem 8 and assumption (ii)
of Theorem 20 are essentially distinct.

Next, we prove that assumption (ii) of Theorem 20 is
a particular case of assumption (b) of Theorem 8. Indeed,
consider the function 𝜑 : R

+
→ R

+
defined by 𝜑(𝑡) =

𝑀𝑡/(𝐿+𝑡)with 0 < 𝑀 < 𝐿. Obviously,𝜑 is continuous,𝜑(0) =
0, and 𝜑 is nondecreasing (since 𝜑󸀠(𝑡) = 𝑀𝐿/(𝐿 + 𝑡)

2

> 0).
Since 𝜑󸀠󸀠(𝑡) = −2𝑀𝐿/(𝐿 + 𝑡)

3

< 0, 𝜑 is concave and by
Lemma 13, 𝜑 is subadditive. Moreover, since

𝛽 (𝑡) =
𝜑 (𝑡)

𝑡
=

𝑀

𝐿 + 𝑡
<
𝑀

𝐿
< 1, (79)

we have that 𝛽 ∈ B.
Therefore, we infer that assumption (b) of Theorem 8

is more general than assumption (ii) of Theorem 20. Con-
sequently, Theorem 8 generalizes and improves Theorem 20
(which is the main result of [7]) when 𝛼(𝑡) = 𝛽(𝑡) = 𝛾(𝑡) = 𝑡
for 𝑡 ∈ R

+
.
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