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We introduce the concept of cone measure of noncompactness and obtain some generalizations of Darbo’s theorem via this new
concept. As an application, we establish an existence theorem for a system of integral equations. An example is also provided to
illustrate the obtained result.

1. Introduction and Preliminaries

The measure of noncompactness concept is a very useful
tool in nonlinear analysis, in particular when we deal with
existence problems for functional operator equations. The
measure of noncompactness concept was defined by many
authors in different manners. See, for examples, Kuratowski
[1], Akhmerov et al. [2], Appell [3], Deimling [4], Vath [5],
Zeidler [6], Banaś and Goebel [7], and Dhage [8]. For the
applications of themeasure of noncompactness argument, we
refer to [9–14] and the references therein.

In this paper, we introduce the concept of the cone
measure of noncompactness and we establish some gener-
alizations/extensions of Darbo’s fixed point theorem with
respect to such a measure. The obtained results generalize
several fixed point theorems obtained recently by many
authors. Next, we present an application to functional integral
equations.

At first, let us fix some notations and recall some basic
concepts on cones in Banach spaces. For more details, we
refer to books [4, 15, 16].

Let E be a Banach space with respect to a certain norm‖ ⋅ ‖E. We denote by 0E the zero vector of E.

Definition 1. A subset𝐾 of the Banach space E is said to be a
cone if it satisfies the following conditions:
(K1) 𝐾 is a nonempty and closed subset of E.
(K2) For every 𝜆, 𝜇 ≥ 0 and (𝑥, 𝑦) ∈ 𝐾 × 𝐾, one has 𝜆𝑥 +𝜇𝑦 ∈ 𝐾.
(K3) For every 𝑥 ∈ E, one has𝑥 ∈ 𝐾,−𝑥 ∈ 𝐾⇓𝑥 = 0E.

(1)

Given a cone𝐾 ⊂ E, one can define a partial order ≤𝐾 in
E by (𝑥, 𝑦) ∈ E × E,𝑥 ≤𝐾 𝑦⇕𝑦 − 𝑥 ∈ 𝐾.

(2)

Hindawi Publishing Corporation
Journal of Function Spaces
Volume 2016, Article ID 9896502, 11 pages
http://dx.doi.org/10.1155/2016/9896502



2 Journal of Function Spaces

For (𝑥, 𝑦) ∈ E×E, the notation 𝑥<𝐾 𝑦means that 𝑥≤𝐾 𝑦 and𝑥 ̸= 𝑦, while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ int𝐾 (interior of𝐾).

Definition 2. Let 𝐾 be a cone of the Banach space E. Then 𝐾
is called normal if there exists a number𝑁 > 0 such that(𝑥, 𝑦) ∈ E × E,0E ≤𝐾 𝑥≤𝐾 𝑦⇓‖𝑥‖E ≤ 𝑁󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩E .

(3)

The least positive number𝑁 satisfying (3) is called the normal
constant of𝐾. It is clear that𝑁 ≥ 1.
Definition 3. Let𝐾 be a cone of the Banach space E. One says
that𝐾 is nonnormal if 𝐾 is not a normal cone.

Example 4 (see [4]). Let E = 𝐶1([0, 1];R) be the set of
functions𝑓 : [0, 1] → R such that𝑓 is𝐶1 in [0, 1]. We endow
the set E with the norm󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩E = 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩∞ + 󵄩󵄩󵄩󵄩󵄩𝑓󸀠󵄩󵄩󵄩󵄩󵄩∞ , 𝑓 ∈ E, (4)

where ‖ ⋅ ‖∞ is the uniform norm. Then E is a Banach space
with respect to the norm ‖ ⋅ ‖E. Let𝐾 = {𝑓 ∈ E : 𝑓 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} . (5)

Then𝐾 is a nonnormal cone of E.

Definition 5. A cone 𝐾 is solid if it contains interior points;
that is, int𝐾 ̸= 0.
Definition 6. Let 𝐾 be a cone in E. One says that the cone𝐾 is regular if every decreasing sequence {𝑥𝑛} ⊂ E which
is bounded from below is convergent; that is, if {𝑥𝑛} is a
sequence such that𝑦≤𝐾 ⋅ ⋅ ⋅ ≤𝐾 𝑥𝑛 ≤𝐾 ⋅ ⋅ ⋅ ≤𝐾 𝑥1 ≤𝐾 𝑥0, (6)

for some 𝑦 ∈ E, then there is some 𝑥 ∈ E such that ‖𝑥𝑛 −𝑥‖E → 0 as 𝑛 → ∞.

Definition 7. Let𝐾 be a solid cone of the Banach space E. Let{𝑢𝑛} be a sequence in E. One says that {𝑢𝑛} is 0E-convergent
if it satisfies the following condition:∀𝑐 ≫ 0E, ∃𝑁0 (a positive integer)

such that 𝑢𝑛 ≪ 𝑐, 𝑛 ≥ 𝑁0. (7)

We denote 𝑢𝑛 󴁄󴀼 0E to indicate that {𝑢𝑛} is 0E-convergent.
Lemma 8 (see [17]). Let𝐾 be a solid cone of the Banach space
E. Let {𝑢𝑛} be a sequence in E such that {𝑢𝑛} ⊂ 𝐾. Then󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩E 󳨀→ 0 𝑎𝑠 𝑛 󳨀→ ∞ 󳨐⇒ 𝑢𝑛 󴁄󴀼 0E. (8)

Lemma 9 (see [17]). (i) If 𝑢≤𝐾 V and V ≪ 𝑤, then 𝑢 ≪ 𝑤.
(ii) If 0E ≤𝐾 𝑢 ≪ 𝑐 for every 𝑐 ≫ 0E, then 𝑢 = 0E.

Lemma 10. Let 𝐾 be a solid cone of the Banach space E. Let{𝑢𝑛} and {V𝑛} be two sequences in E such that0E ≤𝐾 𝑢𝑛 ≤𝐾 V𝑛, ∀𝑛. (9)

Then 󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩E 󳨀→ 0 𝑎𝑠 𝑛 󳨀→ ∞ 󳨐⇒ 𝑢𝑛 󴁄󴀼 0E. (10)

Proof. It follows from Lemma 8 and (i) in Lemma 9.

Remark 11. If 𝐾 is a nonnormal cone of the Banach space E,
then the sandwich theorem does not hold. In particular, if{𝑢𝑛} and {V𝑛} are two sequences in E such that0E ≤𝐾 𝑢𝑛 ≤𝐾 V𝑛, ∀𝑛,󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩E 󳨀→ 0 as 𝑛 󳨀→ ∞, (11)

this does not imply that ‖𝑢𝑛‖E → 0 as 𝑛 → ∞ (see [17]).

Remark 12. Obviously, the sandwich theorem is satisfied
when we deal with a normal cone.

We denote by L(E) the set of linear and bounded
operators onE. In the sequel,𝐾 is supposed to be a solid cone
of E (not necessarily normal).

Lemma 13. Let 𝐴 ∈ L(E) be such that 𝐴𝐾 ⊆ 𝐾. Then(𝑥, 𝑦) ∈ E × E,𝑥 ≤𝐾 𝑦⇓𝐴𝑥≤𝐾𝐴𝑦.
(12)

Proof. Let (𝑥, 𝑦) be a pair of points in E×E such that 𝑥≤𝐾 𝑦.
By the definition of the partial order ≤𝐾 , this means that 𝑦 −𝑥 ∈ 𝐾. Since 𝐴 is linear and 𝐴𝐾 ⊆ 𝐾, we obtain 𝐴𝑦 − 𝐴𝑥 =𝐴(𝑦 − 𝑥) ∈ 𝐾; that is, 𝐴𝑥≤𝐾𝐴𝑦.

Let 𝐸 be a Banach space with respect to a certain norm‖ ⋅ ‖𝐸 with zero vector 0𝐸. For any subsets 𝑋 and 𝑌 of 𝐸, we
consider the following notations:𝑋 denotes the closure of𝑋.

conv(𝑋) denotes the convex hull of𝑋.𝑃(𝑋) denotes the set of nonempty subsets of𝑋.𝑋 + 𝑌 and 𝜆𝑋 (𝜆 ∈ R) stand for algebraic operations
on sets 𝑋 and 𝑌.

We denote byB𝐸 the family of all nonempty bounded subsets
of 𝐸.

We introduce the concept of the cone measure of non-
compactness as follows.

Definition 14. Let 𝜇 : B𝐸 → 𝐾 be a given mapping. One
says that 𝜇 is a cone measure of noncompactness on 𝐸 if the
following conditions are satisfied:
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(i) For every 𝑋 ∈ B𝐸, 𝜇(𝑋) = 0E ⇒ 𝑋 is precompact.
(ii) For every pair (𝑋, 𝑌) ∈ B𝐸 ×B𝐸, one has𝑋 ⊆ 𝑌 󳨐⇒𝜇 (𝑋) ≤𝐾 𝜇 (𝑌) . (13)

(iii) For every 𝑋 ∈ B𝐸, one has𝜇 (𝑋) = 𝜇 (𝑋) = 𝜇 (conv (𝑋)) . (14)

(iv) If {𝑋𝑛}∞𝑛=0 ⊆ B𝐸 is a decreasing sequence (with
respect to ⊆) of closed sets such that 𝜇(𝑋𝑛) 󴁄󴀼 0E,
then𝑋∞ fl ⋂∞𝑛=0𝑋𝑛 is nonempty.

Remark 15. Observe that if 𝐾 is a normal cone with normal
constant 𝑁 = 1 and 𝜇 : B𝐸 → 𝐾 is a cone measure of
noncompactness on 𝐸, then the mapping 𝜎 : 𝐸 → [0,∞)
defined by 𝜎 (𝑀) = 󵄩󵄩󵄩󵄩𝜇 (𝑀)󵄩󵄩󵄩󵄩E , 𝑀 ∈ B𝐸, (15)

is a measure of noncompactness in the sense of Dhage [8].

Example 16. Let 𝜇1, 𝜇2, . . . , 𝜇𝑞 : B𝐸 → [0,∞) be 𝑞 standard
measures of noncompactness (real valued measures of non-
compactness) on 𝐸. Define the mapping 𝜇 : B𝐸 → [0,∞)𝑞
by

𝜇 (𝑋) = (
(

𝜇1 (𝑋)𝜇2 (𝑋)...𝜇𝑞 (𝑋)
)
)

, 𝑋 ∈ B𝐸. (16)

For 𝑞 = 1, 𝜇𝑞 is a standard measure of noncompactness.
However, for 𝑞 > 1, 𝜇𝑞 is a cone measure of noncompactness
on 𝐸 with respect to E = R𝑞 and the cone𝐾 = [0,∞)𝑞, but it
is not a standard measure of noncompactness.

Now, we are ready to state and prove our main results.
This is the aim of the next section.

2. Main Results

We continue to use the same notations fixed in the previous
section.

Our first result is a Darbo-type fixed point theorem with
respect to a cone measure of noncompactness.

We denote by L∗(E) the set of elements 𝐴 ∈ L(E)
satisfying the following conditions:

(A1) 𝐴𝐾 ⊆ 𝐾.
(A2) For all 𝑢 ∈ 𝐾, ‖𝐴𝑛𝑢‖E → 0 as 𝑛 → ∞.

Theorem 17. Let 𝐶 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a
mapping satisfying the following conditions:

(i) 𝑇 is continuous.
(ii) There exist𝐴 ∈ L∗(E) and a conemeasure of noncom-

pactness 𝜇 : B𝐸 → 𝐾 such that𝜇 (𝑇𝑋) ≤𝐾𝐴𝜇 (𝑋) , 𝑋 ∈ 𝑃 (𝐶) . (17)

Then 𝑇 has at least one fixed point. Moreover, the set of fixed
points of 𝑇 is precompact.

Proof. Consider the sequence {X𝑛} of subsets of 𝐸 defined by

X0 = 𝐶,
X𝑛+1 = conv (𝑇X𝑛) , 𝑛 = 0, 1, 2, . . . . (18)

By induction, we obtain easily that

X𝑛+1 ⊆ X𝑛, 𝑛 = 0, 1, 2, . . . . (19)

Then {X𝑛}∞𝑛=0 is a decreasing sequence of closed and convex
sets. On the other hand, we have𝜇 (X𝑛+1) = 𝜇 (conv (𝑇X𝑛)) = 𝜇 (𝑇X𝑛)≤𝐾𝐴𝜇 (X𝑛) , 𝑛 = 0, 1, 2, . . . . (20)

Take 𝑛 = 0 in the above inequality; we obtain𝜇 (X1) ≤𝐾𝐴𝜇 (X0) . (21)

For 𝑛 = 1, we have 𝜇 (X2) ≤𝐾𝐴𝜇 (X1) , (22)

which yields from Lemma 13

𝜇 (X2) ≤𝐾𝐴 (𝐴𝜇 (X0)) fl 𝐴2𝜇 (X0) . (23)

Continuing this process, by induction, we obtain0E ≤𝐾 𝜇 (X𝑛) ≤𝐾𝐴𝑛𝜇 (X0) , 𝑛 = 0, 1, 2, . . . . (24)

Since ‖𝐴𝑛𝜇(X0)‖E → 0 as 𝑛 → ∞, by Lemma 10, we obtain𝜇 (X𝑛) 󴁄󴀼 0E. (25)

On the base of axiom (iv) of Definition 14, we infer that the
setX∞ = ⋂∞𝑛=1X𝑛 is nonempty, closed, and convex. Since

X∞ ⊆ X𝑛, 𝑛 = 1, 2, 3, . . . , (26)

from axiom (ii) of Definition 14, we have0E ≤𝐾 𝜇 (X∞) ≤𝐾 𝜇 (X𝑛) , 𝑛 = 1, 2, 3, . . . . (27)

Let 𝑐 ≫ 0E be fixed. From (25), there exists 𝑁0, a positive
integer, such that 𝜇 (X𝑛) ≪ 𝑐, 𝑛 ≥ 𝑁0. (28)

Using property (i) in Lemma 9, we obtain0E ≤𝐾 𝜇 (X∞) ≪ 𝑐. (29)
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Then by property (ii) in Lemma 9, we deduce that𝜇 (X∞) = 0E, (30)

which gives us from axiom (i) of Definition 14 that X∞ is
precompact; then it is compact since it is closed. Observe that𝑇X∞ ⊆ X∞. Then the continuity of the mapping 𝑇 : X∞ →
X∞ and Schauder’s fixed point theorem give us that 𝑇 has
at least one fixed point in X∞. Finally, since the set of fixed
points of 𝑇 is a nonempty subset ofX∞ and 𝜇(X∞) = 0E, on
the base of axioms (i) and (ii) of Definition 14, we deduce that
the set of fixed points of 𝑇 is precompact.

We denote byΘ the set of functions 𝜃 : 𝐾\{0E} → (1,∞)
satisfying the following condition: for every sequence {𝑢𝑛} in𝐾 \ {0E}, we have

lim
𝑛→∞

𝜃 (𝑢𝑛) = 1 󳨐⇒ 𝑢𝑛 󴁄󴀼 0E. (31)

We have the following result.

Theorem 18. Let 𝐶 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a
mapping satisfying the following conditions:

(i) 𝑇 is continuous.
(ii) There exist 𝜃 ∈ Θ, 𝑘 ∈ (0, 1), and a cone measure of

noncompactness 𝜇 : B𝐸 → 𝐾 such that

𝑋 ∈ 𝑃 (𝐶) ,𝜇 (𝑋) 𝜇 (𝑇𝑋) ̸= 0E⇓
𝜃 (𝜇 (𝑇𝑋)) ≤ [𝜃 (𝜇 (𝑋))]𝑘 .

(32)

Then 𝑇 has at least one fixed point.

Proof. Let us consider the sequence {X𝑛} of subsets of 𝐸
defined by (18). Then {X𝑛}∞𝑛=0 is a decreasing sequence of
closed and convex sets. If for some 𝑁 we have 𝜇(X𝑁) = 0E,
then by axiom (i) of Definition 14,X𝑁 will be compact. Since𝑇X𝑁 ⊆ X𝑁, Schauder’s fixed point theorem applied to the
self-mapping 𝑇 : X𝑁 → X𝑁 gives the desired result. So we
may suppose that 𝜇(X𝑛) ̸= 0𝐸 for every 𝑛 = 0, 1, 2, . . .. For𝑛 = 0, since 𝜇(X0) ̸= 0𝐸 and 𝜇(𝑇X0) = 𝜇(X1) ̸= 0𝐸 (from
axiom (iii) of Definition 14) and then by assumption (ii), we
have

𝜃 (𝜇 (X1)) ≤ [𝜃 (𝜇 (X0))]𝑘 . (33)

Again, for 𝑛 = 1, we have
𝜃 (𝜇 (X2)) ≤ [𝜃 (𝜇 (X1))]𝑘 . (34)

From (33) and (34), we obtain

𝜃 (𝜇 (X2)) ≤ [𝜃 (𝜇 (X0))]𝑘2 . (35)

Continuing this process, by induction, we get

1 < 𝜃 (𝜇 (X𝑛)) ≤ [𝜃 (𝜇 (X0))]𝑘𝑛 , 𝑛 = 0, 1, 2, . . . . (36)

Passing to the limit as 𝑛 → ∞, we obtain

lim
𝑛→∞

𝜃 (𝜇 (X𝑛)) = 1, (37)

which yields 𝜇 (X𝑛) 󴁄󴀼 0E. (38)

By axiom (iv) of Definition 14, we infer that the set X∞ =⋂∞𝑛=1X𝑛 is nonempty, closed, and convex. The rest of the
proof is similar to the proof of Theorem 17.

Let Φ be the set of functions 𝜑 : 𝐾 → 𝐾 satisfying the
following conditions:

(Φ1) 𝜑 is a nondecreasing function with respect to the
partial order ≤𝐾 ; that is,(𝑢, V) ∈ 𝐾 × 𝐾,𝑢 ≤𝐾 V⇓𝜑 (𝑢) ≤𝐾 𝜑 (V) .

(39)

(Φ2) For all 𝑢 ∈ 𝐾 \ {0E}, the sequence {𝜑𝑛(𝑢)} ⊂ 𝐾
converges to 0E as 𝑛 → ∞.

Theorem 19. Let 𝐶 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a
mapping satisfying the following conditions:

(i) 𝑇 is continuous.
(ii) There exist 𝜑 ∈ Φ and a cone measure of noncompact-

ness 𝜇 : B𝐸 → 𝐾 such that𝜇 (𝑇𝑋) ≤𝐾 𝜑 (𝜇 (𝑋)) , 𝑋 ∈ 𝑃 (𝐶) . (40)

Then 𝑇 has at least one fixed point.

Proof. As previously mentioned, we consider the sequence{X𝑛} of subsets of 𝐸 defined by (18). Then {X𝑛}∞𝑛=0 is a
decreasing sequence of closed and convex sets. In the same
manner as before, we may assume that 𝜇(X𝑛) ̸= 0E for every𝑛 = 0, 1, 2, . . . Taking into account our assumptions, for all𝑛 = 0, 1, 2, . . ., we have𝜇 (X𝑛+1) = 𝜇 (𝑇X𝑛) ≤𝐾 𝜑 (𝜇 (X𝑛))≤𝐾 𝜑2 (𝜇 (X𝑛−1)) ≤𝐾 ⋅ ⋅ ⋅≤𝐾 𝜑𝑛+1 (𝜇 (X0)) ;

(41)

that is,0 ≤𝐾 𝜇 (X𝑛) ≤𝐾 𝜑𝑛 (𝜇 (X0)) , 𝑛 = 0, 1, 2, . . . . (42)
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Since ‖𝜑𝑛(𝜇(X0))‖E → 0 as 𝑛 → ∞, by Lemma 10, we obtain𝜇 (X𝑛) 󴁄󴀼 0E. (43)

By axiom (iv) of Definition 14, we infer that the set X∞ =⋂∞𝑛=1X𝑛 is nonempty, closed, and convex. The rest of the
proof is similar to the proof of Theorem 17.

Theorem 20. Let 𝐶 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸 and 𝜇 : B𝐸 → 𝐾 be a
cone measure of noncompactness on 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a
mapping satisfying the following conditions:

(i) 𝑇 is continuous.
(ii) For any (𝑢, V) ∈ 𝐾 × 𝐾 with 0E <𝐾 𝑢<𝐾 V, there exists0 < 𝑘(𝑢, V) < 1 such that𝑋 ∈ 𝑃 (𝐶) ,𝑢 ≤𝐾 𝜇 (𝑋) ≤𝐾 V⇓𝜇 (𝑇𝑋) ≤𝐾 𝑘 (𝑢, V) 𝜇 (𝑋) .

(44)

Moreover, we suppose that

(iii) 𝐾 is a regular cone.

Then 𝑇 has at least one fixed point.

Proof. We consider the sequence {X𝑛} of subsets of 𝐸 defined
by (18). Then {X𝑛}∞𝑛=0 is a decreasing sequence of closed and
convex sets. From axiom (ii) of Definition 14, we have0E ≤𝐾 ⋅ ⋅ ⋅ ≤𝐾 𝜇 (X𝑛) ≤𝐾 ⋅ ⋅ ⋅ ≤𝐾 𝜇 (X1) ≤𝐾 𝜇 (X0) ,𝑛 = 1, 2, 3, . . . . (45)

Since𝐾 is a regular cone, there is some 𝜎 ∈ 𝐾 such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇 (X𝑛) − 𝜎󵄩󵄩󵄩󵄩E = 0. (46)

In the same manner as before, we may assume that 𝜇(X𝑛) ̸=0E for every 𝑛 = 0, 1, 2, . . . Suppose now that 𝜎 ̸= 0E. Take𝑢 = 𝜎/2 and V = 𝜇(X0); we have
0E <𝐾 𝑢 = 𝜎2 <𝐾 V = 𝜇 (X0) , (47)

𝑢 = 𝜎2 ≤𝐾 𝜇 (X𝑛) ≤𝐾 V = 𝜇 (X0) , 𝑛 = 0, 1, 2, . . . . (48)

Then there exists 𝑘(𝑢, V) ∈ (0, 1) such that0E ≤𝐾 𝜇 (X𝑛+1) ≤𝐾 𝑘 (𝑢, V) 𝜇 (X𝑛) , 𝑛 = 0, 1, 2, . . . . (49)

Passing to the limit as 𝑛 → ∞, we obtain(𝑘 (𝑢, V) − 1) 𝜎 ∈ 𝐾. (50)

On the other hand, since 𝑘(𝑢, V) < 1, we have(1 − 𝑘 (𝑢, V)) 𝜎 ∈ 𝐾. (51)

Therefore, (𝑘 (𝑢, V) − 1) 𝜎 = 0E, (52)

which is a contradiction with 𝜎 ̸= 0E. As a consequence, we
have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇 (X𝑛)󵄩󵄩󵄩󵄩E = 0, (53)

which implies from Lemma 8 that𝜇 (X𝑛) 󴁄󴀼 0E. (54)

By axiom (iv) of Definition 14, we infer that the set X∞ =⋂∞𝑛=1X𝑛 is nonempty, closed, and convex. The rest of the
proof is similar to the proof of Theorem 17.

The following result is a Sadovskii’s fixed point theorem
with respect to a cone measure of noncompactness.

Theorem 21. Let 𝐶 be a nonempty, bounded, closed, and con-
vex subset of the Banach space 𝐸 and 𝜇 : B𝐸 → 𝐾 be a
cone measure of noncompactness on 𝐸 satisfying the following
condition:

(i) There exists 𝑥0 ∈ 𝐶 such that𝜇 (𝑋 ∪ {𝑥0}) = 𝜇 (𝑋) , 𝑋 ∈ B𝐸. (55)

Let 𝑇 : 𝐶 → 𝐶 be a mapping satisfying the following condi-
tions:

(ii) 𝑇 is continuous.
(iii) For every 𝑋 ∈ 𝑃(𝐶), we have𝜇 (𝑋) ̸= 0E 󳨐⇒ 𝜇 (𝑇𝑋) <𝐾 𝜇 (𝑋) . (56)

Then 𝑇 has at least one fixed point.

Proof. Let us denote byM the set of subsets𝑀 ⊆ 𝐶 satisfying
the following conditions: 𝑥0 ∈ 𝑀, 𝑀 is closed, 𝑀 is convex,
and 𝑇𝑀 ⊆ 𝑀. ClearlyM is a nonempty set since 𝐶 ∈ M. Set

X = ⋂
𝑀∈M

𝑀. (57)

Then X is a nonempty (𝑥0 ∈ X), closed, and convex set.
Moreover, we have 𝑇X ⊆ X. Set

Y = conv (𝑇X ∪ {𝑥0}) . (58)

We claim thatX = Y. In fact, we have 𝑥0 ∈ 𝑋 and 𝑇X ⊆ X,
which yields Y ⊆ X. On the other hand, the inclusion Y ⊆
X implies that 𝑇Y ⊆ 𝑇X ⊆ Y. Note also that 𝑥0 ∈ Y. Then
Y ∈ M and X ⊆ Y. This proves our claim. Next, from (i)
and axiom (iii) of Definition 14, we obtain𝜇 (X) = 𝜇 (𝑇X ∪ {𝑥0}) = 𝜇 (𝑇X) . (59)
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Suppose that 𝜇(X) ̸= 0E; then from (iii), we have𝜇 (X) = 𝜇 (𝑇X) <𝐾 𝜇 (X) , (60)

which is a contradiction. As a consequence, 𝜇(X) = 0E,
which implies from axiom (i) of Definition 14 that X is
precompact, so it is compact since it is closed. Finally, by
Schauder’s fixed point theorem, the mapping 𝑇 : X → X
has at least one fixed point.

Theorem 22. Let 𝐶 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸 and 𝜇 : B𝐸 → 𝐾 be a
cone measure of noncompactness on 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a
given mapping. Suppose that

(i) 𝑇 is continuous.
(ii) There exists 𝑥0 ∈ 𝐶 such that, for all 𝜆 ∈ (0, 1) and𝑋 ∈ B𝐸,𝜇 (𝜆𝑇𝑋 + (1 − 𝜆) {𝑥0}) = 𝜆𝜇 (𝑇𝑋) . (61)

(iii) (𝐼 − 𝑇)𝐶 is closed, where 𝐼 : 𝐶 → 𝐶 is the identity
mapping.

(iv) One has 𝜇 (𝑇𝑋) ≤𝐾 𝜇 (𝑋) , 𝑋 ∈ B𝐸. (62)

Then 𝑇 has at least one fixed point.

Proof. Let {𝜆𝑛} be a sequence in (0, 1) such that 𝜆𝑛 → 1 as𝑛 → ∞. Consider the sequence of operators 𝑇𝑛 : 𝐶 → 𝐶
defined by𝑇𝑛𝑥 = 𝜆𝑛𝑇𝑥 + (1 − 𝜆𝑛) 𝑥0, 𝑥 ∈ 𝐶, 𝑛 = 0, 1, 2, . . . . (63)

Note that 𝑇𝑛 is well-defined since 𝐶 is a closed set. Using the
considered assumptions, for all𝑋 ∈ B𝐸, for all 𝑛 = 0, 1, 2, . . .,
we have𝜇 (𝑇𝑛𝑋) = 𝜇 (𝜆𝑛𝑇𝑋 + (1 − 𝜆𝑛) {𝑥0}) ≤𝐾 𝜆𝑛𝜇 (𝑇𝑋)≤𝐾 𝜆𝑛𝜇 (𝑋) . (64)

Define the sequence of operators 𝐴𝑛 : E → E by𝐴𝑛𝑢 = 𝜆𝑛𝑢, 𝑢 ∈ E, 𝑛 = 0, 1, 2, . . . . (65)

Clearly, we have𝐴𝑛 ∈ L
∗ (E) , 𝑛 = 0, 1, 2, . . . . (66)

By Theorem 17, for all 𝑛 = 0, 1, 2, . . ., the operator 𝑇𝑛 has a
fixed point 𝑥𝑛 ∈ 𝐶; that is,𝑇𝑛𝑥𝑛 = 𝜆𝑛𝑇𝑥𝑛 + (1 − 𝜆𝑛) 𝑥0 = 𝑥𝑛, 𝑛 = 0, 1, 2, . . . . (67)

This yields(𝐼 − 𝑇) 𝑥𝑛 = 𝑇𝑛𝑥𝑛 − 𝑇𝑥𝑛= (𝜆𝑛 − 1) 𝑇𝑥𝑛 + (1 − 𝜆𝑛) 𝑥0,𝑛 = 0, 1, 2, . . . . (68)

Passing to the limit as 𝑛 → ∞ and using the fact that {𝑇𝑥𝑛} is
a bounded sequence, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥𝑛󵄩󵄩󵄩󵄩𝐸 = 0. (69)

Since (𝐼 − 𝑇)𝐶 is closed, we deduce that 0𝐸 ∈ (𝐼 − 𝑇)𝐶. As a
consequence, there is some 𝑥 ∈ 𝐶 such that (𝐼 − 𝑇)𝑥 = 0𝐸,
which means that 𝑥 ∈ 𝐶 is a fixed point of 𝑇.

Let 𝜇1, 𝜇2 : 𝐵𝐸 → 𝐾 be two cone measures of non-
compactness on 𝐸, where 𝐾 is a normal cone with normal
constant𝑁 > 0. We define the mapping 𝜇 : 𝐵𝐸 ×𝐵𝐸 → 𝐾×𝐾
by

𝜇 (𝑋, 𝑌) = (𝜇1 (𝑋) , 𝜇2 (𝑌)) , (𝑋, 𝑌) ∈ 𝐵𝐸 × 𝐵𝐸. (70)

We endow the product set E×Ewith the norm ‖ ⋅ ‖2,E defined
by

‖(𝑢, V)‖2,E = ‖𝑢‖E + ‖V‖E , (𝑢, V) ∈ E × E. (71)

Let ≤2,𝐾 be the partial order on E × E defined by

(𝑢1, V1) , (𝑢2, V2) ∈ E × E,(𝑢1, V1) ≤2,𝐾 (𝑢2, V2)⇕𝑢1 ≤𝐾 𝑢2,
V1 ≤𝐾 V2.

(72)

Observe that (0E, 0E) ≤2,𝐾 (𝑢1, V1) ≤2,𝐾 (𝑢2, V2) 󳨐⇒󵄩󵄩󵄩󵄩(𝑢1, V1)󵄩󵄩󵄩󵄩2,E ≤ 𝑁󵄩󵄩󵄩󵄩(𝑢2, V2)󵄩󵄩󵄩󵄩2,E . (73)

We denote byL(2,E) the set of linear and bounded operators
on E × E. We denote by L∗(2,E) the set of elements 𝐴 ∈
L(2,E) satisfying the following conditions:

(A1) 𝐴(𝐾 × 𝐾) ⊆ 𝐾 × 𝐾.
(A2) For all 𝑈 ∈ 𝐾 × 𝐾, ‖𝐴𝑛𝑈‖2,E → 0 as 𝑛 → ∞.

We endow also the product set 𝐸×𝐸with the norm ‖ ⋅ ‖2,𝐸
defined by󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩2,𝐸 = ‖𝑥‖𝐸 + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝐸 , (𝑥, 𝑦) ∈ 𝐸 × 𝐸. (74)

We are interested to study the existence of solutions to the
problem: find (𝑥, 𝑦) ∈ 𝐶 × 𝐶 such that

𝑥 = 𝑇1 (𝑥, 𝑦) ,𝑦 = 𝑇2 (𝑥, 𝑦) , (75)

where 𝐶 is a nonempty, bounded, closed, and convex subset
of 𝐸 and 𝑇𝑖 : 𝐶 × 𝐶 → 𝐶, 𝑖 = 1, 2, are continuous mappings.
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We have the following result.

Theorem23. Suppose that there exists𝐴 ∈ L∗(2,E) such that𝜇 (𝑇1 (𝑋 × 𝑌) , 𝑇2 (𝑋 × 𝑌)) ≤2,𝐾𝐴𝜇 (𝑋, 𝑌) ,(𝑋, 𝑌) ∈ 𝑃 (𝐶) × 𝑃 (𝐶) . (76)

Then Pb. (75) has at least one solution.

Proof. Let us define the mapping 𝑇 : 𝐶 × 𝐶 → 𝐶 × 𝐶 by𝑇 (𝑥, 𝑦) = (𝑇1 (𝑥, 𝑦) , 𝑇2 (𝑥, 𝑦)) , (𝑥, 𝑦) ∈ 𝐶 × 𝐶. (77)

Observe that (𝑥, 𝑦) ∈ 𝐶 × 𝐶 is a solution to Pb. (75) if and
only if (𝑥, 𝑦) ∈ 𝐶 ×𝐶 is a fixed point of 𝑇. Let us consider the
two sequences {X𝑛} and {Y𝑛} of subsets of 𝐸 defined by

X0 = Y0 = 𝐶,
X𝑛+1 = conv (𝑇1 (X𝑛 ×Y𝑛)) , 𝑛 = 0, 1, 2, . . . ,
Y𝑛+1 = conv (𝑇2 (X𝑛 ×Y𝑛)) , 𝑛 = 0, 1, 2, . . . . (78)

Then {X𝑛}∞𝑛=0 is a decreasing sequence of closed and convex
sets. Similarly, {Y𝑛}∞𝑛=0 is a decreasing sequence of closed and
convex sets. On the other hand, we have𝜇1 (X𝑛+1) = 𝜇1 (conv (𝑇1 (X𝑛 ×Y𝑛)))= 𝜇1 (𝑇1 (X𝑛 ×Y𝑛)) , 𝑛 = 0, 1, 2, . . . . (79)

Similarly, we have𝜇2 (Y𝑛+1) = 𝜇2 (conv (𝑇2 (X𝑛 ×Y𝑛)))= 𝜇2 (𝑇2 (X𝑛 ×Y𝑛)) , 𝑛 = 0, 1, 2, . . . . (80)

Then by the definition of 𝜇, we have𝜇 (X𝑛+1,Y𝑛+1) = (𝜇1 (X𝑛+1) , 𝜇2 (Y𝑛+1))= (𝜇1 (𝑇1 (X𝑛 ×Y𝑛)) , 𝜇2 (𝑇2 (X𝑛 ×Y𝑛)))= 𝜇 (𝑇1 (X𝑛 ×Y𝑛) , 𝑇2 (X𝑛 ×Y𝑛)) ,𝑛 = 0, 1, 2, . . . .
(81)

Using (76), we obtain𝜇 (X𝑛+1,Y𝑛+1) ≤2,𝐾𝐴𝜇 (X𝑛,Y𝑛) , 𝑛 = 0, 1, 2, . . . . (82)

Using the properties of the operator 𝐴, by induction, we
obtain(0E, 0E) ≤2,𝐾 𝜇 (X𝑛,Y𝑛) ≤2,𝐾𝐴𝑛𝜇 (X0,Y0) ,𝑛 = 0, 1, 2, . . . , (83)

which yields󵄩󵄩󵄩󵄩𝜇 (X𝑛,Y𝑛)󵄩󵄩󵄩󵄩2,E ≤ 𝑁󵄩󵄩󵄩󵄩𝐴𝑛𝜇 (X0,Y0)󵄩󵄩󵄩󵄩2,E ,𝑛 = 0, 1, 2, . . . . (84)

Passing to the limit as 𝑛 → ∞, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇 (X𝑛,Y𝑛)󵄩󵄩󵄩󵄩2,E = 0, (85)

which is equivalent to

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇1 (X𝑛)󵄩󵄩󵄩󵄩E = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇2 (Y𝑛)󵄩󵄩󵄩󵄩E = 0. (86)

Since 𝜇𝑖 (for 𝑖 = 1, 2) is a cone measure of noncompactness,
we deduce that X∞ = ⋂∞𝑛=1X𝑛 and Y∞ = ⋂∞𝑛=1Y𝑛 are
nonempty, convex, and compact sets of 𝐸. Moreover, we have𝑇1(X∞ × Y∞) ⊆ X∞ and 𝑇2(X∞ × Y∞) ⊆ Y∞. Then
the operator 𝑇 : X∞ × Y∞ → X∞ × Y∞ is well-defined.
Finally, Schauder’s fixed point theorem gives us the desired
result.

3. An Application to a System of
Functional Integral Equations

In this section, we provide an application to study the exis-
tence of solutions to the following system of integral equa-
tions:

𝑥 (𝑡) = 𝐹1 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , ∫𝑡
0
𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ 𝐼,
𝑦 (𝑡) = 𝐹2 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , ∫𝑡

0
𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ 𝐼,
(87)

where 𝐼 = [0, 1],𝐹𝑖 : 𝐼×R×R×R → R, and𝑓𝑖 : 𝐼×R×R → R,𝑖 = 1, 2.
At first, let us fix some notations and recall some results

that will be used later.
We denote by 𝐸 = 𝐶(𝐼;R) the set of real continuous

functions defined in 𝐼. We endow this set with the norm ‖ ⋅ ‖𝐸
defined by ‖𝑥‖𝐸 = max {|𝑥 (𝑡)| : 𝑡 ∈ 𝐼} . (88)

Then (𝐸, ‖ ⋅ ‖𝐸) is a Banach space over R.
Let 𝑋 ∈ B𝐸, where B𝐸 is the set of nonempty and

bounded subsets of 𝐸. For 𝑥 ∈ 𝑋 and 𝜀 ≥ 0, set𝜔 (𝑥, 𝜀)= sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : (𝑡, 𝑠) ∈ 𝐼 × 𝐼, |𝑡 − 𝑠| ≤ 𝜀} . (89)

We define the mapping Ω : B𝐸 × [0,∞) → [0,∞) byΩ (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,(𝑋, 𝜀) ∈ B𝐸 × [0,∞) . (90)

It was proved in [7] that the mapping 𝜂 : B𝐸 → [0,∞)
defined by 𝜂 (𝑋) = lim

𝜀→0+
Ω (𝑋, 𝜀) , 𝑋 ∈ B𝐸, (91)
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is a measure of noncompactness (in the sense of Banaś and
Gobel) on the Banach space 𝐸. Then it is a cone measure of
noncompactness on 𝐸 with respect to the normal cone 𝐾 =[0,∞) of the Banach space E = R. Let 𝜇 : B𝐸×B𝐸 → 𝐾×𝐾
be the mapping defined by𝜇 (𝑋, 𝑌) = (𝜂 (𝑋) , 𝜂 (𝑌)) , (𝑋, 𝑌) ∈ B𝐸 ×B𝐸. (92)

For 𝑖 = 1, 2, let𝑇𝑖 (𝑥, 𝑦) (𝑡)
= 𝐹𝑖 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , ∫𝑡

0
𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠) ,

(𝑥, 𝑦, 𝑡) ∈ 𝐸 × 𝐸 × 𝐼.
(93)

We consider the following assumption:

(A1) The functions 𝐹𝑖 : 𝐼 ×R×R×R → R and 𝑓𝑖 : 𝐼 ×R×
R → R, 𝑖 = 1, 2, are continuous.

The following result is immediate.

Lemma 24. Under assumption (A1), for all 𝑖 = 1, 2, the
mapping 𝑇𝑖 maps 𝐸 × 𝐸 into 𝐸; that is,𝑇𝑖 : 𝐸 × 𝐸 󳨀→ 𝐸, 𝑖 = 1, 2, (94)

is a well-defined mapping.

Now, we consider the following additional assumptions:

(A2) For 𝑖 = 1, 2,󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡, 𝑥, 𝑦, 𝑧) − 𝐹𝑖 (𝑡, 𝑢, V, 𝑤)󵄨󵄨󵄨󵄨≤ 𝜆𝑖 |𝑥 − 𝑢| + 𝛾𝑖 󵄨󵄨󵄨󵄨𝑦 − V󵄨󵄨󵄨󵄨 + 𝜃𝑖 |𝑧 − 𝑤| ,(𝑡, 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤) ∈ 𝐼 ×R
6, (95)

where 𝜆𝑖, 𝛾𝑖, 𝜃𝑖 > 0 are constants.
(A3) For 𝑖 = 1, 2,󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡, 𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝜑𝑖 (max {|𝑥| , 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨}) ,(𝑡, 𝑥, 𝑦) ∈ 𝐼 ×R ×R, (96)

where 𝜑𝑖 : [0,∞) → [0,∞) are nondecreasing func-
tions.

(A4) There exists some 𝑟0 > 0 such that(𝜆 + 𝛾) 𝑟0 + 𝜃𝜑 (𝑟0) + 𝑀 ≤ 𝑟0, (97)

where 𝜆 = max{𝜆1, 𝜆2}, 𝛾 = max{𝛾1, 𝛾2}, 𝜃 =
max{𝜃1, 𝜃2}, 𝜑(𝑟0) = max{𝜑1(𝑟0), 𝜑2(𝑟0)}, 𝑀 =
max{𝑀1,𝑀2}, and 𝑀𝑖 = max{|𝐹𝑖(𝑡, 0, 0, 0)| : 𝑡 ∈ 𝐼},𝑖 = 1, 2.

We denote by 𝐵(0𝐸, 𝑟0) the closed ball in 𝐸 with center 0𝐸
and radius 𝑟0; that is,𝐵 (0𝐸, 𝑟0) = {𝑥 ∈ 𝐸 : ‖𝑥‖𝐸 ≤ 𝑟0} . (98)

Lemma 25. Under assumptions (A1)–(A4), for all 𝑖 = 1, 2, the
mapping 𝑇𝑖 maps 𝐵(0𝐸, 𝑟0) × 𝐵(0𝐸, 𝑟0) into 𝐵(0𝐸, 𝑟0); that is,

𝑇𝑖 : 𝐵 (0𝐸, 𝑟0) × 𝐵 (0𝐸, 𝑟0) 󳨀→ 𝐵 (0𝐸, 𝑟0), 𝑖 = 1, 2, (99)

is a well-defined mapping.

Proof. Let 𝑖 ∈ {1, 2} be fixed. Let (𝑥, 𝑦) ∈ 𝐵(0𝐸, 𝑟0) ×𝐵(0𝐸, 𝑟0).
For all 𝑡 ∈ 𝐼, we have󵄨󵄨󵄨󵄨𝑇𝑖 (𝑥, 𝑦) (𝑡)󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , ∫𝑡
0
𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)

− 𝐹𝑖 (𝑡, 0, 0, 0)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡, 0, 0, 0)󵄨󵄨󵄨󵄨 ≤ 𝜆𝑖 |𝑥 (𝑡)|
+ 𝛾𝑖 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 + 𝜃𝑖 ∫𝑡

0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠 + 𝑀𝑖
≤ 𝜆𝑖 |𝑥 (𝑡)| + 𝛾𝑖 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨
+ 𝜃𝑖 ∫𝑡
0
𝜑𝑖 (max {|𝑥 (𝑠)| , 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨}) 𝑑𝑠 + 𝑀𝑖

≤ 𝜆𝑖𝑟0 + 𝛾𝑖𝑟0 + 𝜃𝑖𝜑𝑖 (𝑟0) + 𝑀𝑖 ≤ (𝜆 + 𝛾) 𝑟0+ 𝜃𝜑 (𝑟0) + 𝑀 ≤ 𝑟0.

(100)

Then for all 𝑖 = 1, 2, we have
󵄩󵄩󵄩󵄩𝑇𝑖 (𝑥, 𝑦)󵄩󵄩󵄩󵄩𝐸 ≤ 𝑟0, (𝑥, 𝑦) ∈ 𝐵 (0𝐸, 𝑟0) × 𝐵 (0𝐸, 𝑟0). (101)

This proves our result.

Lemma 26. Under assumptions (A1)–(A4), for all 𝑖 = 1, 2,
the mapping 𝑇𝑖 maps continuously 𝐵(0𝐸, 𝑟0) × 𝐵(0𝐸, 𝑟0) into𝐵(0𝐸, 𝑟0).
Proof. Let 𝜀 ≥ 0 and (𝑥, 𝑦), (𝑢, V) ∈ 𝐵(0𝐸, 𝑟0) such that‖(𝑥, 𝑦) − (𝑢, V)‖2,𝐸 ≤ 𝜀; that is, ‖𝑥 − 𝑢‖𝐸 + ‖𝑦 − V‖𝐸 ≤ 𝜀. Let𝑖 ∈ {1, 2} be fixed. For all 𝑡 ∈ 𝐼, we have󵄨󵄨󵄨󵄨𝑇𝑖 (𝑥, 𝑦) (𝑡) − 𝑇𝑖 (𝑢, V) (𝑡)󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , ∫𝑡
0
𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)

− 𝐹𝑖 (𝑡, 𝑢 (𝑡) , V (𝑡) , ∫𝑡
0
𝑓𝑖 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 𝜆𝑖 |𝑥 (𝑡) − 𝑢 (𝑡)| + 𝛾𝑖 󵄨󵄨󵄨󵄨𝑦 (𝑡) − V (𝑡)󵄨󵄨󵄨󵄨

+ 𝜃𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡0 󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) − 𝑓𝑖 (𝑠, 𝑢 (𝑠) , V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ (𝜆 + 𝛾) 𝜀 + 𝜃𝜉 (𝜀) ,

(102)
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where 𝜁(𝜀) = max{𝜁1(𝜀), 𝜁2(𝜀)} and
𝜉𝑖 (𝜀) = max {󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠, 𝑥, 𝑦) − 𝑓𝑖 (𝑠, 𝑢, V)󵄨󵄨󵄨󵄨 : 𝑠∈ 𝐼, (𝑥, 𝑦, 𝑢, V) ∈ [−𝑟0, 𝑟0]4 , |𝑥 − 𝑢| + 󵄨󵄨󵄨󵄨𝑦 − V󵄨󵄨󵄨󵄨≤ 𝜀} .

(103)

Note that from the uniform continuity of the function(𝑠, 𝑥, 𝑦) ∈ 𝐼 × [−𝑟0, 𝑟0] × [−𝑟0, 𝑟0] 󳨃→ 𝑓𝑖(𝑠, 𝑥, 𝑦), we have𝜁(𝜀) → 0 as 𝜀 → 0. Then we have󵄩󵄩󵄩󵄩𝑇𝑖 (𝑥, 𝑦) − 𝑇𝑖 (𝑢, V)󵄩󵄩󵄩󵄩𝐸 ≤ (𝜆 + 𝛾) 𝜀 + 𝜃𝜉 (𝜀) 󳨀→ 0
as 𝜀 󳨀→ 0. (104)

This gives us the desired result.

Next, we consider the following assumption:

(A5) The parameters 𝜆𝑖, 𝛾𝑖, 𝑖 = 1, 2, satisfy the following
inequality:

𝜆1 + 𝛾2 + √(𝜆1 + 𝛾2)2 + 4𝜆2𝛾1 < 2. (105)

Our main result in this section is the following existence
theorem.

Theorem 27. Under assumptions (A1)–(A5), Pb. (87) has at
least one solution (𝑥∗, 𝑦∗) ∈ 𝐸 × 𝐸 with ‖𝑥∗‖𝐸 ≤ 𝑟0 and‖𝑦∗‖𝐸 ≤ 𝑟0.
Proof. Let (𝑋, 𝑌) ∈ 𝑃(𝐵(0𝐸, 𝑟0)) × 𝑃(𝐵(0𝐸, 𝑟0)). Let (𝑥, 𝑦) ∈𝑋 × 𝑌, 𝜀 ≥ 0, and (𝑡1, 𝑡2) ∈ 𝐼 × 𝐼 be such that |𝑡1 − 𝑡2| ≤ 𝜀.
Without restriction of the generality, wemay assume that 𝑡1 ≥𝑡2. For all 𝑖 = 1, 2, we have󵄨󵄨󵄨󵄨𝑇𝑖 (𝑥, 𝑦) (𝑡1) − 𝑇𝑖 (𝑥, 𝑦) (𝑡2)󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡1, 𝑥 (𝑡1) , 𝑦 (𝑡1) , ∫𝑡1
0

𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)
− 𝐹𝑖 (𝑡2, 𝑥 (𝑡2) , 𝑦 (𝑡2) , ∫𝑡2

0
𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡1, 𝑥 (𝑡1) , 𝑦 (𝑡1) , ∫𝑡1
0

𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)
− 𝐹𝑖 (𝑡2, 𝑥 (𝑡1) , 𝑦 (𝑡1) , ∫𝑡1

0
𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡2, 𝑥 (𝑡1) , 𝑦 (𝑡1) , ∫𝑡1
0

𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)
− 𝐹𝑖 (𝑡2, 𝑥 (𝑡2) , 𝑦 (𝑡2) , ∫𝑡2

0
𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= (𝐼) + (𝐼𝐼) .

(106)

(i) Estimate of (𝐼). Observe that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡10 𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫𝑡1
0

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 𝜑𝑖 (𝑟0) . (107)

Set𝐶𝐹𝑖 (𝜀) = max {󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡, 𝑥, 𝑦, 𝑧) − 𝐹𝑖 (𝑠, 𝑥, 𝑦, 𝑧)󵄨󵄨󵄨󵄨 : (𝑡, 𝑠)∈ 𝐼2, |𝑡 − 𝑠| ≤ 𝜀, (𝑥, 𝑦, 𝑧) ∈ [−𝑟0, 𝑟0]2× [−𝜑𝑖 (𝑟0) , 𝜑𝑖 (𝑟0)]} .
(108)

We obtain (𝐼) ≤ 𝐶𝐹𝑖 (𝜀) . (109)

Note that, by the uniform continuity of the function(𝑡, 𝑥, 𝑦, 𝑧) ∈ 𝐼 × [−𝑟0, 𝑟0] × [−𝑟0, 𝑟0]× [−𝜑𝑖 (𝑟0) , 𝜑𝑖 (𝑟0)] 󳨃󳨀→ 𝐹𝑖 (𝑡, 𝑥, 𝑦, 𝑧) , (110)

we have 𝐶𝐹𝑖(𝜀) → 0 as 𝜀 → 0.
(ii) Estimate of (𝐼𝐼). We have(𝐼𝐼) ≤ 𝜆𝑖 󵄨󵄨󵄨󵄨𝑥 (𝑡1) − 𝑥 (𝑡2)󵄨󵄨󵄨󵄨 + 𝛾𝑖 󵄨󵄨󵄨󵄨𝑦 (𝑡1) − 𝑦 (𝑡2)󵄨󵄨󵄨󵄨

+ 𝜃𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡10 𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠
− ∫𝑡2
0

𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜆𝑖𝜔 (𝑥, 𝜀)
+ 𝛾𝑖𝜔 (𝑦, 𝜀) + 𝜃𝑖 ∫𝑡1

𝑡2

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 𝜆𝑖𝜔 (𝑥, 𝜀) + 𝛾𝑖𝜔 (𝑦, 𝜀) + 𝜃𝑖𝜑𝑖 (𝑟0) 󵄨󵄨󵄨󵄨𝑡2 − 𝑡1󵄨󵄨󵄨󵄨≤ 𝜆𝑖𝜔 (𝑥, 𝜀) + 𝛾𝑖𝜔 (𝑦, 𝜀) + 𝜃𝑖𝜑𝑖 (𝑟0) 𝜀 ≤ 𝜆𝑖Ω (𝑋, 𝜀)+ 𝛾𝑖Ω (𝑌, 𝜀) + 𝜃𝑖𝜑𝑖 (𝑟0) 𝜀.

(111)

Therefore,(𝐼𝐼) ≤ 𝜆𝑖Ω (𝑋, 𝜀) + 𝛾𝑖Ω (𝑌, 𝜀) + 𝜃𝑖𝜑𝑖 (𝑟0) 𝜀. (112)

Using (106), (109), and (112), we obtainΩ(𝑇𝑖 (𝑋, 𝑌) , 𝜀) ≤ 𝐶𝐹𝑖 (𝜀) + 𝜆𝑖Ω (𝑋, 𝜀) + 𝛾𝑖Ω (𝑌, 𝜀)+ 𝜃𝑖𝜑𝑖 (𝑟0) 𝜀. (113)

Passing to the limit as 𝜀 → 0, we obtain𝜂 (𝑇𝑖 (𝑋, 𝑌)) ≤ 𝜆𝑖𝜂 (𝑋) + 𝛾𝑖𝜂 (𝑌) , 𝑖 = 1, 2. (114)

Let 𝐴 : R2 → R2 be the bounded operator defined by

𝐴 (𝑢, V) = A(𝑢
V
) , (𝑢, V) ∈ R

2, (115)
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where A is the 2 × 2 matrix given by

A = (𝜆1𝛾1𝜆2𝛾2) . (116)

As a consequence, we have𝜇 (𝑇1 (𝑋, 𝑌) , 𝑇2 (𝑋, 𝑌)) ≤2,𝐾𝐴𝜇 (𝑋, 𝑌) ,
(𝑋, 𝑌) ∈ 𝑃 (𝐵 (0𝐸, 𝑟0)) × 𝑃 (𝐵 (0𝐸, 𝑟0)) . (117)

Since 𝜆𝑖, 𝛾𝑖 > 0 for 𝑖 = 1, 2, then 𝐴(𝐾 × 𝐾) ⊆ 𝐾. Moreover,
from (A5), we have

𝜌 (A) = 𝜆1 + 𝛾2 + √(𝜆1 + 𝛾2)2 + 4𝜆2𝛾12 < 1, (118)

where 𝜌(A) denotes the spectral radius of the matrixA. Then𝐴 ∈ L∗(2,E). Finally, fromTheorem 23, Pb. (87) has at least
one solution (𝑥∗, 𝑦∗) ∈ 𝐵(0𝐸, 𝑟0) × 𝐵(0𝐸, 𝑟0).

We end the paper with the following illustrative example.

Example 28. Consider the system of integral equations:

𝑥 (𝑡) = 𝑡2 + 𝑥 (𝑡)4 + 𝑦 (𝑡)5 (𝑡 + 1)
+ sin( 110 ∫𝑡

0
(𝑥 (𝑠) + 𝑦 (𝑠)) 𝑒−√𝑠𝑑𝑠) ,

𝑡 ∈ [0, 1] ,
𝑦 (𝑡) = 𝑡 + 𝑥 (𝑡)(𝑡 + 2) + 𝑒−𝑡𝑦 (𝑡)4

+ 115 ∫𝑡
0

(𝑥 (𝑠) + 𝑦 (𝑠)) cos𝑥 (𝑠) sin𝑦 (𝑠)(𝑠3 + 𝑠 + 2) 𝑑𝑠,
𝑡 ∈ [0, 1] .

(119)

Pb. (119) can be written in the form (87) with

𝐹1 (𝑡, 𝑥, 𝑦, 𝑧) = 𝑡2 + 𝑥4 + 𝑦5 (𝑡 + 1) + sin 𝑧,
(𝑡, 𝑥, 𝑦, 𝑧) ∈ [0, 1] ×R ×R ×R,

𝐹2 (𝑡, 𝑥, 𝑦, 𝑧) = 𝑡 + 𝑥(𝑡 + 2) + 𝑒−𝑡𝑦4 + 𝑧,
(𝑡, 𝑥, 𝑦, 𝑧) ∈ [0, 1] ×R ×R ×R,

𝑓1 (𝑡, 𝑥, 𝑦) = (𝑥 + 𝑦) 𝑒−√𝑡10 ,
(𝑡, 𝑥, 𝑦) ∈ [0, 1] ×R ×R,

𝑓2 (𝑡, 𝑥, 𝑦) = (𝑥 + 𝑦) cos𝑥 sin𝑦15 (𝑡3 + 𝑡 + 2) ,
(𝑡, 𝑥, 𝑦) ∈ [0, 1] ×R ×R.

(120)

We can check easily that all the assumptions of Theorem 27
are satisfied with

(𝜆1, 𝛾1, 𝜃1) = (14 , 15 , 1) ,
(𝜆2, 𝛾2, 𝜃2) = (12 , 14 , 1) ,

(𝜑1 (𝑡) , 𝜑2 (𝑡)) = ( 𝑡5 , 𝑡15) , 𝑡 ≥ 0,
𝑟0 ≥ 20.

(121)

Then by Theorem 27, Pb. (119) has at least one solution(𝑥∗, 𝑦∗) ∈ 𝐸 × 𝐸 with ‖𝑥∗‖𝐸 ≤ 𝑟0 and ‖𝑦∗‖𝐸 ≤ 𝑟0, where𝐸 = 𝐶([0, 1];R).
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