
Research Article
In Situ Miniaturised Solid Phase Extraction (m-SPE) for Organic
Pollutants in Seawater Samples
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Solid phase extraction (SPE) is a consolidated technique for determining pollutants in seawater samples. ,e current tendency is to
miniaturise systems that extract and determine pollutants in the environment, reducing the use of organic solvents, while
maintaining the quality in the extraction and preconcentration. On the other hand, there is a need to develop new extraction systems
that can be fitted to in situ continual monitoring buoys, especially for the marine environment.,is work has developed a first model
of a low-pressure micro-SPE (m-SPE) for persistent organic pollutants (POPs) that can be simply applied to in situ monitoring in the
marine environment. ,is system reduces the volumes of sample and solvents required in the laboratory in comparison with
conventional SPE. In the future, it could be used in automated or robotic systems in marine technologies such as marine gliders and
oceanographic buoys. ,is system has been optimised and validated to determine polycyclic aromatic hydrocarbons (PAH) in
seawater samples, but it could also be applied to other kinds of persistent organic pollutants (POPs) and emerging pollutants.

1. Introduction

Interest in controlling and monitoring different kinds of
organic pollutants in marine environments has grown [1–4],
due to the harm they can do to the marine environment and
human health [5]. One example of these are polycyclic ar-
omatic hydrocarbons (PAHs) that are considered as priority
pollutants by the European Union (EU) and the Environ-
mental Protection Agency (EPA) because they are carci-
nogenic and they can genetically mutate [3, 5–8] and what is
more, these compounds could activate oxidative stress of
DNA, hence damaging metabolic activation and the gen-
eration of reactive kinds of oxygen [9, 10] making the ex-
traction, preconcentration, and determination of these
compounds in the environment very important [11, 12].
PAHs are ubiquitous pollutants in the environment, with
special importance in seawater [4, 11, 13, 14], sediments [15],
plankton, and filtering organisms [5, 10, 16].

,e concentration of PAHs in seawater is normally in the
range of 0.05 to 0.25 µg·L−1 [6, 17], due to their low solubility
in water [1, 5, 18, 19]. A high concentration generally in-
dicates PAH pollution of recent anthropogenic origin [6].

Over time, these compounds tend to accumulate in solid
matrixes like sediment and marine plastic, with a strong
tendency to bioaccumulate [16]. ,at is why new analytical
methods are required that allow them to be monitored in
situ while maintaining current levels of sensitivity and se-
lectivity [6, 11, 20, 21].

,e most commonly used techniques for determining
PAHs are gas chromatography with mass spectrometry (GC-
MS) [1, 2, 4] and high-pressure liquid chromatography with
ultraviolet-visible detector or diode array ultra-violet-visible
detector and fluorescence detector [11, 22–25]. In order to
enhance the sensitivity and selectivity of the analyses, a first
stage of extraction, purification, and preconcentration is
required [5].

,ere are several preconcentration techniques for organic
pollutants in liquid matrixes, such as liquid-liquid extrac-
tion (LLE), supercritical fluid extraction (SFE), and solid phase
extraction (SPE) [5, 26, 27].

Solid phase extraction (SPE) is currently a highly consol-
idated technique for extracting pollutants from liquid samples
[11, 28]. SPE gives high recoveries with a low consumption of
organic solvents and high preconcentrations if volumes of
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water of around 1 litre are �ltered. SPE has beenwidely used for
extracting hydrocarbons and other persistent pollutants from
seawater and other kinds of marine samples [1, 3, 4, 12, 29].
However, these laboratory studies require large volumes of
seawater that are processed in laboratories, rather than directly
at the place where the sampling is done, entailing the transport
and storage of the samples, which makes the sampling oper-
ation more di�cult [14]. �is explains the special interest in
miniaturising the extraction and its application in situ, to fa-
cilitate enormously the logistics of sampling, and also opening
up the possibility of future automation.

�ere are other systems that have attempted to minia-
turise extraction, like solid phase microextraction (SPME)
[5, 30–32] or fabric phase sorptive extraction (FPSE) [33],
which combine extraction and preconcentration in a single
step [6, 17, 34]. �e disadvantage of SPME is that it is not
a very robust or reproducible system, and it is very di�cult
to handle in situ in the marine environment. FPSE is a new
technique that has yet to be tested on marine samples.

�ere are very few studies that consider monitoring the
e�ects of a polycyclic aromatic hydrocarbon spill; most have
been done with biomarkers, without any analytical quan-
ti�cation [16]. Portable systems are required to facilitate the
task and reduce time and material, which allow a study to be
conducted in situ.

�e m-SPE presented here has the advantage of its sim-
plicity, low cost, and ease of installation in the place the sampling
is to be conducted (in situ). �is method has been validated for
extracting and preconcentrating PAHs in seawater.

2. Materials and Methods

2.1. Developing an m-SPE System. �e miniaturised solid
phase extraction system in question is shown in Figure 1 in-
cluded an ISMATEC peristaltic pump, model: ISM 846
(60 rpm, dimensions 125× 88×135mm), with SKALAR con-
nectors, model: 3091 with a theoretical �ow rate of 0.14ml·s−1.
Behind the sample reservoir, there is a �bre-glass Whatman
GF/C �lter (porosity of 1.2µm) to eliminate possible solids
from the seawater that could interfere with the analysis. �e
peristaltic pump pumps water up to the miniaturised SPE
cartridge, which consists of a TYGON tube (inert, SC0359)

with a diameter of 4.8mm �lled with the appropriate solid
SPE sorbent for each analysis.

2.2.ChemicalReagents. �ePAHs studied were �uoranthene,
chrysene, benzo(b)�uoranthene, dibenzo(a,h)anthracene
(Sigma-Aldrich®), and benzo(a)pyrene (Supelco®). �e initial
individual standard was dissolved in HPLC-grade acetonitrile
(Panreac®).

Amixture of the 6 PAHs was prepared at a concentration
of 10mg·L−1 in methanol to study the recovery rates
(LiChrosolv® Reag. Ph Eur Methanol gradient grade for
liquid chromatography, Merck®). �e seawater samples to
be analysed are enriched with this mixture to validate the
m-SPE system. In this case, 1 L of pre�ltered seawater
(Whatman GF/C glass-�bre �lter, porosity of 1.2 µm) was
contaminated to eliminate any possible solutes that could
interfere in the analysis. �e concentration of seawater used
to optimise the system was 0.2 µg·L−1.

2.3. SolidPhaseExtractionProcedure (m-SPE). Miniaturising
the SPE system is based onmanufacturing sorbent cartridges
that can be coupled to a peristaltic pump (avoiding the
traditional vacuum pump). �ese cartridges were prepared
with 0.3 g of Envi-18 (Supelco) silica gel, placed inside a tube
with an internal diameter of 4.8mm and 6 cm long. �ere
is an IDEX 5mm ISM560 joint at each end and a piece of
polyethylene frit (Supelco) with a porosity of 20 µm on the
inside of each joint.

Samples of one litre of seawater with 0.2µg·L−1 of each of the
six PAHs analysed were used to optimise extraction. After
sampling, 50mL of Milli-Q water is added through the system
and it is left to dry, hence minimising the amount of water
present before extraction. �e presence of water can trigger
a lower recovery and low reproducibility [28]. Finally, the
pollutants are disorbedwithmethanol, and the �rstmLof extract
is collected for analysis by HPLC with �uorescence detector.

2.4. PAH Analysis by High-Pressure Liquid Chromatography
(HPLC) with Fluorescence Detector. �e analysis of the
samples was conducted in Varian® 230, �tted with a ProStar
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Figure 1: Miniaturised solid phase extraction system (m-SPE).
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3012 binary pump, which requires up to three entry lines of
solvent and a ProStar Varian 410 self-sampler. �e analytes of
interest are put through a ProStar 363 �uorescence detector.
�e valve in the column is a 500-LC, with a Microsorb–MV
100-5 C18 ODS 150× 4.6mm× 1/4″ column.

�e chromatographic columnwas kept at 30°C throughout
the HPLC process to prevent variability due to environmental
conditions. Consideration was given to the excitation and
emission wavelengths of each of the PAHs to be analysed [35],
and the range of an excitation length of 260 nm and an
emission length of 440 nm was determined for the �uo-
rescence detector, which enables the entire spectrum of the
di�erent PAHs to be seen.

�e work was done on a gradient with a mobile phase A,
methanol : water, in a proportion of 80 : 20, and a mobile
phase B of 100% methanol. �e method was applied on
a gradient, lasting 18 minutes. It starts with 100% A, and
then progressively increases the proportion of B until this
reaches 100% B for 14 minutes. �e last 4 minutes are to
reestablish the initial conditions, ending with 100% A after
18 minutes.

3. Results and Discussion

3.1. Optimising the Miniaturised Solid Phase Extraction Sys-
tem (m-SPE). In order to study the best SPE sorbent, ex-
tractions were made under di�erent conditions for
a reference sample (seawater with 0.2 µg·L−1 for the 5 PAHs
studied). �e main conditions studied were the kind of
sorbent used and how much of it, in grams.

3.1.1. Comparison of Di�erent Solid Sorbents. �e di�erent
kinds of cartridges to be used in the SPE are classi�ed in
accordance with the analytes of interest [17]. In this work,
the right adsorbent for studying PAHs in seawater was
assessed. Di�erent brands andmodels of SPE cartridges were
used for the �lling. �e cartridges used were the Supelco
Envi-18, �ermo® scienti�c Hypersep SCX, and the Inter-
chim® Upti-Clean.

�e same procedure was used with each kind of car-
tridge. It was run three times with 1 litre of pre�ltered
seawater contaminated with 0.2 µg·L−1. �e pollutants are
disorbed with 1mL of methanol, and then they are analysed
in the HPLC. Two di�erent amounts were used to determine
the best sorbent, 0.4 g in the �rst, and then the two best
results were studied with 0.3 g for each kind of sorbent.

�ermo scienti�c Hypersep SCX is the sorbent that
presents the lowest recovery percentage with 0.4 g of sorbent
(Figure 2), which is why it was eliminated from the next
study, using a smaller amount of sorbent. Figure 3 shows
that the recovery percentage for the Supelco Envi-18 sorbent
shows better results than the Interchim Upti-Clean.

3.1.2. Comparison of Di�erent Amounts of Sorbent. Once the
kind of sorbent to be used was optimised, the results for the
di�erent doses of sorbent (in grams) were analysed. �e
three di�erent doses of Envi-18 silica gel in the extraction
cartridge were compared: 0.3, 0.2, and 0.1 grams. One litre of

pre�ltered seawater was contaminated with 0.2 µg·L−1, and it
was run through the extraction system with each of the
dosages. �e results are shown in Figure 4, showing that
the concentrations are higher in the m-SPE cartridge with
the highest dose of silica gel.

3.2. Analytical Reproducibility and Application. �e ana-
lytical method proposed was assessed under the optimum
conditions mentioned above, giving a relative standard
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Figure 2: Comparison of di�erent sorbents using a dosage of 0.4
grams: �uoranthene (Flra), chrysene (Chry), benzo(b)�uoranthene
(B(b)�u), and benzo(a)pyrene (B(a)pyr).
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Figure 3: Comparison of the best two sorbents using a dosage of
0.3 grams: �uoranthene (Flra), chrysene (Chry), benzo(b)�uo-
ranthene (B(b)�u), and benzo(a)pyrene (B(a)pyr).
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deviation (RSD) for an extraction of a sample of 1 litre at
0.2 µg·L−1 of the mixture of PAHs.

�eRSDs (%) obtained are shown inTable 1 and are around
4.21 and 10.27% for each PAH analysed. �e limit of detection
study gave very low results, as did the limit of quanti�cation.

�e applicability of the method was assessed using real
samples in situ (without spike) collected from di�erent
places on the island of Gran Canaria, Canary Islands, Spain:
two points in the east of the island, (Port of Taliarte and Port
of Salinetas) and one further north, where the largest port of
the island is located (Port of Las Palmas de Gran Canaria). In
each case, 1 litre of surface seawater was collected per
sample, with three samples taken at each point.

�e volume taken for each sample was measured by col-
lection time based on its �ow rate, giving a total of 119 minutes
per sample.�e results of the real samples analysed are shown in
Figure 5.�e PAHs with the highest molecular weight are more
hydrophobic than the PAHswith lowmolecular weight [36–38]
(the chrysene is the most soluble, and dibenzo(a,h)anthracene is
the least soluble), and this is re�ected in the concentrations
obtained, as they always have a lower presence in water.

�e concentrations in the di�erent areas of Gran Canaria
varied signi�cantly in several cases below the limit of de-
tection. �ese �gures do not exceed the limits permitted by
the legislation in e�ect [39].

4. Conclusions

�e m-SPE in this study was developed to extract PAHs for
seawater samples and presented a robust PAH extraction ca-
pacity, even for very low concentrations in liquid samples, thus,
guaranteeing that the method is able to detect and quantify
concentrations below the limits set by law.�is means that it is
a reliable method for assessing concentrations of directive
2008/105/CE [39].

�e reproducibility of the method could be improved by
using pollutant separation with gas chromatography with mass
spectroscopy (GC-MS) that o�ers improvements against high-
pressure liquid chromatography (HPLC) [2, 9, 21, 40], showing
greater sensitivity in the analysis of these pollutants.

�ese results show the feasibility of the in situ extrac-
tion process using miniaturised, solid phase extraction. �e
methodology developed in this study is simple, fast, easy, and
allows for in situ sampling. It is also a sustainable methodology
because the use of organic solvents is minimal. It represents the
�rst step towards automating extraction in ports and coastal
areas such that monitoring can be conducted more frequently
without the need for frequent sampling.

�e potential of this system is that it can be �tted to
submarine vehicles and oceanic buoys, allowing for continual,
e�cient, and low-cost monitoring of the quality of the ocean.
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Chrysene Chry 4.21 0.22 0.72
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�uorantene B(b)Flu 9.57 0.20 0.67

Benzo(a)
pyrene B(a)Pyr 10.27 0.30 1.00
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Figure 5: Results of applying the method to real, uncontaminated
samples at di�erent points of Gran Canaria, Canary Islands, Spain.
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