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 Abstract. A stable algorithm is proposed for image restoration based on the "mean curvature motion"

 equation. Existence and uniqueness of the "viscosity" solution of the equation are proved, a LX stable

 algorithm is given, experimental results are shown, and the subjacent vision model is compared with those
 introduced recently by several vision researchers. The algorithm presented appears to be the sharpest possible

 among the multiscale image smoothing methods preserving uniqueness and stability.
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 Introduction. In this paper, we propose and study a class of nonlinear parabolic

 differential equations for image processing of the following kind:

 au ~~~Du
 (1) -= g(jG * Du1)jDuj div ID u(0, x, y) = u0(x, y), at IDul'

 where u0(x, y) is the grey level of the image to be processed, u(t, x, y) is its smoothed
 version depending on the "scale parameter" t, G is a smoothing kernel (for instance,
 a Gaussian), G * Du is therefore a local estimate of Du for noise elimination, and
 g(s) is a nonincreasing real function which tends to zero as s -> oo. Roughly speaking,
 the interpretation of the terms of the equation are as follows.

 (a) The term IDul div (Du/lIDuI) = Au - D2u(Du, Du)/lIDuI2 represents a degen-
 erate diffusion term, which diffuses u in the direction orthogonal to its gradient Du
 and does not diffuse at all in the direction of Du. (Here and everywhere below, D2u
 denotes the Hessian of u.) The aim of the degenerate diffusion term is to make u
 smooth on both sides of an "edge" with a minimal smoothing of the edge itself. (An
 edge is defined as a line along which the gradient is "large.")

 (b) The term g(lG * Dul) is used for the "enhancement" of the edges. Indeed, it
 controls the speed of the diffusion: if Du has a small mean in a neighborhood of a
 point x, this point x is considered the interior point of a smooth region of the image
 and the diffusion is therefore strong. If Du has a large mean value on the neighborhood

 of x, x is considered an edge point and the diffusion spread is lowered, since g(s) is
 small for large s.

 Thus, the proposed model is a selective smoothing of the image, where the "edges"
 are relatively enhanced and preserved as much as possible.

 The present model may seem complicated. However, it has the minimal number
 of parameters required by any image processing model: a "contrast" function, represen-
 ted by g, which allows us to decide whether a detail is sharp enough to be kept, and
 a "scale parameter," given by the variance of G, which fixes the minimal size of the
 kept details in the processed picture.
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 In many applications, these parameters can remain constant for all processed

 images.

 On the other side, this model generalizes or specializes most of the models that

 have been proposed for image smoothing and edge detection. As we shall see, among

 the partial differential equation (PDE) models, this model seems to be at the frontier

 of the stable models which preserve L' norms of the image and can therefore be
 associated with efficient numerical schemes.

 In ? 1, we shall first present the new aspect of the model: the degenerate diffusion.
 We shall then present the whole model and discuss its relation to the classical models

 of image processing. In ? 2, we present an approximate model whose numerical analysis

 will be easier. In ? 3 we prove the mathematical validity of the model and of its

 approximated one. In other words, we prove the existence and uniqueness of the

 solution of the associated parabolic equation. Finally, in ? 4, we show the numerical

 scheme and some experimental results.

 1. The model.

 1.1. Quasilinear anisotropic models of edge detection. The "low level" analysis of

 images presents two opposite requirements. It is generally desirable to smooth the

 homogeneous regions of the picture with two scopes: noise elimination and image

 interpretation.

 On the other side, we wish to keep the accurate location of the boundaries of

 these regions. Those boundaries are called "step edges" [17]. In the classical theory,

 these aims are achieved by a previous low pass filtering [27], [29], [30]. Then the edges
 are defined as the curves where the gradient of the smoothed picture has a maximum.

 (The set of "edges" is therefore contained in the set of the points where the Laplacian

 of the smoothed signal changes sign.)
 This theory comes from Marr and Hildreth [18] and has been improved by Witkin

 [29], Koenderink [13], and Canny [3]. The low pass filtering is generally made by

 convolution with Gaussians of increasing variance. It is easy to understand the necessity

 of a previous low pass filtering: if the signal is noisy, the gradient will have a lot of

 irrelevant maxima which must be eliminated. Of course, strong oscillations can be due

 to different causes, for instance, the presence of "textures." Koenderink [13] noticed
 that the convolution of the signal with Gaussians at each scale was equivalent to the

 solution of the heat equation with the signal as initial datum. Denote this datum by
 u0; the "scale space" analysis associated with u0 consists in solving the system

 &u(x, y, t)
 (2) = Au(x, y, t), u(x, y, 0) = u0(x, y).

 The solution of this equation for an initial datum with bounded quadratic norm is

 u(x, y, t) = G,*uo, where

 G,(x, y) = Ca-' exp (-(X2+y2)/4o-)

 is the Gauss function.

 Then (x, y) is an edge point for the "scale" t at points where Au(x, y, t) changes

 sign and IDu(x, y, t)I is "big." Of course, this last condition introduces some a priori
 defined threshold. Unfortunately, it is well known (and it is enough to look at the
 "edges" found by this method to observe it [17]) that the edges at low scales give an
 inexact account of the boundaries which, according to our perception, should be

 considered correct. This is still true for the low pass filtering of Canny [3], [25], which
 is generally used as the best linear filter for white noise elimination and edge detection.
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 On the opposite side, if we make a sharp low filtering, with small variance, all the

 edges will keep their correct location. Now, the "main" edges will be embedded in a

 crowd of "spurious" edges due to noise, texture, etc. The theory of Witkin [29] proposes

 therefore to identify the main edges at a low scale, and then to "follow them backward"

 by making the scale decreasing again. This method could theoretically give the exact

 location of all main edges. However, its implementation is rather heavy from the

 computational viewpoint and unstable, because of the following of edges across scales

 and the multiple thresholdings involved in the edge detection at each scale.
 The intuitive idea of "edges" is that they are generally piecewise smooth. Therefore,

 it seems natural to modify the diffusion operator so that it diffuses more in the direction

 parallel to the edge and less in the perpendicular one. In the extreme case, we could
 think of a diffusion which is made only in the direction of the edge: such a diffusion

 would apparently keep exactly the location and sharpness of the edge, while smoothing
 the picture on both sides on this edge. Let us first consider this limit case in a linear

 framework. It is not difficult to see that the diffusion equation, which does not diffuse
 at all in the direction of the gradient Du, can be written as

 (3) a = Au-I D2u(Du, Du).
 a9t jDuj12

 The first term, the Laplacian, is the same as in scale space theory, and the second is
 an "inhibition" of the diffusion in the direction of the gradient.

 Let us denote by { the coordinate associated with the direction orthogonal to Du.

 Therefore a formulation of the preceding equation with respect to this new coordinate
 is

 -9 = Ug
 a t

 where, of course, s depends on Du.

 In a quasi "divergence form," the equation can also be written as

 (4) d = IDul div jDu/'

 and in more literal formulation as

 (5) au 1+ 2
 at 2 + 2 (yUxx2 uyuxy + uyy).

 This equation has recently received a lot of attention because of its geometrical
 interpretation; indeed, at least formally (see Osher and Sethian [24] and Evans and
 Spruck [8]) the level sets of the solution move in the normal direction with a speed
 proportional to their mean curvature. (This "mean curvature motion" effect will be
 shown in the experimental results presented below.)

 A theory of weak solutions based upon the so-called viscosity solution theory has

 been proposed by Chen, Giga, and Goto [5], Evans and Spruck [8], Giga, Goto, Ishii,

 and Sato [9], and Soner [28].

 1.2. Relation with the Malik and Perona theory. The preceding idea is, as we shall

 see, quite close to an important improvement of the edge detection theory proposed
 by Malik and Perona [25]. Their main idea is to introduce a part of the edge detection
 step in the filtering itself, allowing an interaction between scales from the beginning
 of the algorithm.
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 They propose to replace the heat equation by a nonlinear equation

 (6) = div (g(IDuI)Du), u(0) = UO.
 at

 In this equation, g is a smooth nonincreasing function with g(O) = 1, g(s)_O0

 and g(s) - 0 at infinity. The idea is that the smoothing process obtained by the equation

 is "conditional": if Du(x, y) is big, then the diffusion will be low and therefore the

 exact localization of the "edges" will be kept. If Du(x, y) is small, then the diffusion

 will tend to smooth still more around (x, y). Thus the choice of g corresponds to a

 sort of thresholding which has to be compared to the thresholding of IDul used in the

 final step of the classical theory explained above. Since this thresholding introduced

 a nonlinear device anyway, it was natural to use it earlier in the method, in the

 smoothing process itself. The experimental results obtained by Malik and Perona are

 perceptually impressive and show that an "edge detector" based on this theory gives

 edges which remain much more stable across the scales, therefore making the backward

 following of edges across scales unnecessary. (This property has been sought by many
 researchers in the last two decades.)

 However, the Malik and Perona model had several serious, practical, and theoreti-

 cal difficulties which have been improved in a recent work by some of the authors of

 this paper [4]. The first difficulty was a straightforward objection that Malik and Perona

 acknowledged themselves. Assume that the signal is noisy, with white noise for instance.

 Then the noise introduces very large, in theory unbounded, oscillations of the gradient

 Du. Thus, the conditional smoothing introduced by the model will not give good

 results, since all these noise edges will be kept!
 The second difficulty arose from the equation itself; among the functions g which

 Malik and Perona consider advisable, we find functions of the type g(s) = e-s or

 g(s) = (+ s2)-1 for which no correct theory of equation (2) is available. Indeed, in
 order to obtain both existence and uniqueness of the solutions, g must verify that

 sg(s) is nondecreasing. If this condition is not verified, we can observe, for some

 functions g with sg(s) nonincreasing, a nondeterministic and therefore unstable pro-
 cess; the same picture can in theory be the initial condition of solutions divergent in

 time (see [11] for simple and explicit examples, and also [7]). In practice, that means
 that very close pictures could produce divergent solutions and therefore diferent edges.

 However, it was reasonable to try to define a model where the function g, which is a

 sort of thresholding, could be quickly decreasing, as e-S for instance.

 The model which has been proposed in [4] is a synthesis of Malik and Perona's

 ideas which avoids the above-mentioned difficulties; it is robust in the presence of

 noise and consistent from the formal viewpoint mentioned above. Since we shall use

 this improvement in our final model, let us first explain it.

 We shall define the "selective smoothing of uo at scale t"12 based on estimates at
 the scale u-" as the function u(x, y, t), verifying

 --div (g( DG*u )Du = O in ]0, T[ x f,
 at

 u(0) = uo

 where

 G,(x, y) = Co" exp (_(x + y )/4(r).
 It is easily seen that G(x, y, t) = G,(x, y) is nothing but the fundamental solution of
 the heat equation. Therefore the term (DG,*u)(x, y, t) which appears inside the

This content downloaded from 193.145.130.55 on Tue, 18 Jun 2019 14:57:58 UTC
All use subject to https://about.jstor.org/terms



 IMAGE SMOOTHING BY NONLINEAR DIFFUSION 849

 divergence term of (3) is simply the gradient of the solution at time oa of the heat

 equation with u(x, y, 0) as initial datum. Therefore, it appears to be an estimate of the

 gradient of u at point (x, y), obtained by the classical Marr-Hildreth-Witkin theory

 recalled above. Thus, the modification of the model of Malik and Perona is only to

 replace the gradient IDul by its estimate IDG,*ul. As proved in [4], this slight change
 of the model is enough to avoid both inconsistencies of the Malik and Perona model.

 The equation diffuses at a point with more or less strength, according to the estimate

 of the gradient. This estimate is achieved by the new term. This term, as in Witkin's

 theory, serves to recognize the location of the main edges. This information is then

 used in the equation to avoid too much diffusion at these locations.

 However, this last model keeps some of the drawbacks of the previous models.

 First it has no clear geometric interpretation, because the term inside the divergence

 is hybrid and combines the estimate of the gradient and the gradient. Moreover, even

 if existence and uniqueness are proved, the stability of the model as the scale parameter

 cr-> 0 is generally not true, because the limit model can "invert" the heat equation. As

 we shall see, these drawbacks are related to the excessive generality of the model.

 Let us now see which equation is given by the combination of the degenerate

 diffusion and the above-mentioned "estimate method":

 au Du
 - g(jDG,*uj)jDujdivD =0 in]0,T[xfQ,

 (7) a9t jDul

 u(O) = uO.

 Note that if g(s) = 1/s and a = 0, we then obtain as a limit case of this new model

 the equation au/at = div (Du/IDuI) which is a particular case of the Malik and Perona
 model. This limit case is particularly important because it explains the geometric

 behaviour of the solution, which might be hidden in our general formulation. Indeed,

 the equation au/at = div (Du/iDuj) corresponds to the descent method (au/at =
 -VE(u)), associated with the energy functional:

 E(u) = IDu(x, y)I dx dy.

 How can we interpret this energy? A particular case for u, which is also the ideal

 case for the detection of "step edges," is when uo = XA is the characteristic function
 of some set A with smooth boundary. Then E(uo) is nothing but the perimeter of A,
 and the evolution equation can therefore be interpreted as a smoothing of the boundary

 of this characteristic function which tends to preserve the "edges." This effect is quite
 visible in the experiments in ? 4.

 This model is still not quite optimal. Indeed, it is not necessary to diffuse anisotropi-

 cally at points where the gradient is low. We do not want to enhance, or even to

 preserve, the edges without contrast. Therefore, rather than (7), we shall prefer the
 following formulation, which separates the behaviour for large gradients from the

 behaviour small gradients:

 ?ig(DG-K hDu (8) a-g(tDG_u1)(1-h(jDuj))Au+h(jDuj)jDujdivlD ) =0,

 where h(s) is a smooth nondecreasing function such that h(s) = 0 if s 5 e, h(s) = 1 if
 s _ 2e. The parameter e is not an additional parameter. It is only a refinement of our

 contrast model. We know that if IDul is large, g(IDul) is small. Thus e must depend
 on the same contrast parameter as g: it is the upper bound of the interval where u is

 allowed to diffuse freely.

This content downloaded from 193.145.130.55 on Tue, 18 Jun 2019 14:57:58 UTC
All use subject to https://about.jstor.org/terms



 850 L. ALVAREZ, P.-L. LIONS, AND J.-M. MOREL

 In order to understand this further refinement well, let us take the example where

 u0(x, y) = u0(x) is a cylindrical function. Then the gradient has constant orientation
 and therefore the pure anisotropic diffusion (7) will simply have no effect on u0. It
 yields u(x, y, t) = u0(x) for all t. The model (8), instead, will act as a Perona and Malik
 model in dimension 1: it will diffuse at points where the gradient is too low.

 1.3. The role of the scale parameter and its relation with "time." As we commented

 in [4], the function G to be considered can be any "low pass filter," or, to use the
 calculus terminology, any smoothing kernel. However, to preserve the notion of scale

 in the gradient estimate, it is convenient that this kernel depends on a scale parameter.

 A good and classical example is, as mentioned above, the Gaussian. It is important

 to keep this particular case in mind. Indeed, a question which arises immediately in
 the consideration of model (3) is what time is best for "stopping" the evolution of the
 signal u(x, y, t). Now, we may appeal to the Witkin model to answer this question:
 according to this model, time is interpreted as a "scale factor." (More precisely, the
 solution u(x, y, t) at time t corresponds to a scale t"'2. Indeed, roughly speaking,
 u(x, y, t) appears in the Witkin model as a smoothed version of u0, obtained by

 convolving it with a filter of spatial width t112.) Thus in model (3) it is coherent to

 correlate the stopping time t and the time introduced via the estimator G,. One should
 therefore choose a stopping time t of the order of cr. Then the scale above which the
 signal is smoothed in regular zones of the image will be of the order of t1"2.

 On the parts of the picture where edges are present, the situation is different.
 Since the scope of the equation is to delay diffusion in these zones, the time at which
 edge information is lost will depend on the sharpness of the edge and on the shape
 of the enhancement function g. Therefore, there is no inconsistency in looking at what
 happens to the signal u(x, y, t) for times greater than a. In experiments, it might be
 convenient to play with two parameters which are already at hand in any edge detection
 model: the scale parameter (spatial width of the filtering) on the one side, U.l/2 and
 the enhancement parameter for edges which is implicit in the shape of g: if g is near
 1 on some interval containing zero and decreases briskly at the end b of this interval,

 then b is the enhancement parameter for edges: where IDuI is greater than b, the edges
 will remain and where it is smaller, they will disappear. Thus it is clear that if our
 model is used as a preliminary step for an edge detection device, it would be possible

 to use the same enhancement parameter b on the gradient for keeping the edges as
 the one implicit in g.

 1.4. Related models. Before beginning with the proofs of the mathematical validity

 of our model, let us give a brief account of several related works. Osher and Rudin's
 theory [23] tries to get as close as possible to the inverse heat equation by defining
 some conservative scheme like

 au
 -=-ju,IF(u,,) with initial value u0.
 at

 F is a function such that sF(s) 0 O. The big advantage of this new method is to have

 a scheme which lets the image develop true edges, that is, shock lines along which
 u(x, y, t) becomes discontinuous in (x, y).

 Nordstr6m [22] proposes a new presentation of Perona and Malik's theory which
 relates it to the well-known variational global edge detection methods of Kass, Witkin,
 and Terzopoulos [12] and Mumford and Shah [20]. Nordstr6m introduces a new term
 in equation (6) which forces u(x, y, t) to remain close to u0. Because of the forcing
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 term u - uo, the new equation

 du
 --div (g(Du)Du) = uo- u
 a9t

 has the advantage of having a nontrivial steady state, therefore eliminating the problem

 of choosing a stopping time. (Of course, we can do the same in our model, and the
 proof below is not altered by this modification.)

 The approach of Nitzberg and Shiota [21] is related to adaptive filtering methods

 which were introduced by Graham [10] for TV images denoising. The idea is to blur,

 selectively and anisotropically, the signal with "oblong" Gaussians. The Gaussian used

 for blurring at a point (x, y) depends on the intensity and direction of the gradient in

 the neighborhood. Roughly speaking, the blurring will be faster in the direction
 orthogonal to the gradient. Therefore, the signal will be smoothed on both sides of an

 edge, but the edge is conserved. Since a corner is the crossing point of two edges, there
 will be two directions of "nondiffusion" instead of one, and therefore corners are well
 conserved by this method. Moreover, Nitzberg and Shiota prove by a scaling argument

 that as the size of the Gaussians tends to zero, their diffusion method tends to some

 ill-posed partial differential equation analogous to the one by Malik and Perona.

 In a recent paper, Mallat and Zhong [16] follow Marr's suggestion that the edge

 representation at several dyadic scales should be a complete representation of a picture.
 They propose an algorithm, based on some stability properties of the wavelet transform,
 which indeed reconstructs the picture from the edges at five scales. An interesting and

 suggestive fact of this algorithm is that if the "spurious edges" (e.g., the edges which
 have low gradient or cannot be prolongated) are removed, then the reconstruction is

 still almost perfect. This justifies a posteriori the importance given to edge detection
 and enhancement in the literature. An important application of this algorithm is, as

 in this paper, selective smoothing. Indeed, these authors are able to clean up the picture

 by eliminating the "spurious" edges (i.e., the edges which are not stable across several

 scales) and thereafter by reconstructing the picture. The visual result looks like ours,
 with some artifact near the main edges, however.

 2. Approximated models. In order to define a numerical scheme associated with

 the equation, we must take into account that the image is sampled on a grid. Of course,

 the discretizations of the differential operators at a point (ij) of the grid, for obvious
 fastness and simplicity reasons, must involve a few other points around it. Typically,
 we would consider four other points for the discretization of the Laplacian, namely

 (i + 1, j) and (i, j + 1). Now, in our case, the differential operator is strongly anisotropic
 and can hardly be represented by two directions. Denote by f = -x sin 0+ y cos 0,
 where (cos 0, sin 0) = Du/jDul, the coordinate in the diffusion direction (which is
 orthogonal to the gradient). The anisotropic term of the equation is therefore a2u/a2 e
 and can easily be discretized only if, in the direction (-sin 0, cos 0), one can find

 points of the grid near (ij). Therefore, the accuracy of the scheme depends strongly
 on the cardinality of the neighborhood. Anyway, we are led to a new formulation of

 the equation, which will take into account the discrete number of diffusion directions.
 Let 0 ? 0n < 0 n < ... < on <K r be n angles and xl,. *, xn the coordinates defined

 by x, = -x sin 0+ y cos Ojn. In other terms, xJ is the coordinate orthogonal to the
 direction given by the angle o0. We shall decompose the anisotropic diffusion operator

 2u a2 0) 2- 0 a 2U (COS2 0) d2 0) (i 2(sin 0cos 0) a +co2 a
 (9 2 a2x axay a9x
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 852 L. ALVAREZ, P.-L. LIONS, AND J.-M. MOREL

 into a linear nonnegative combination of the fixed directional diffusion operators

 a2u/a 2X.
 Consider the degenerate elliptic operator A' defined by

 (9) Anv= E f ( Duj a2v

 where the fjn(cos 0, sin 0) 0 O are smooth functions designed to be "active" (that is,
 nonzero) only when 0 is close to ojn.

 By rearranging An as a differential operator, with respect to the space variables

 x and y, we can set

 a2v a2v a2v
 A nv=a--+b, ~+Cn 2.

 na2 + bn axay a y

 We shall now state and prove two results which indicate to which extent this kind of
 operator can approximate our degenerate diffusion.

 PROPOSITION 1. Let (O1,.*n*, On) and (fn, *_,fn ) be such that

 (i) maxkI-0k lI-*0, k k I , ne X as n -cx,
 (ii Ej=1 ,n fin-+ 1 as n --- oco,
 (iii) On [Ok, ok], only fk andf k are nonzero.
 Then for any coordinate e, the coefficients an bn cn of the operator An tend to the

 coefficients of a2u/d2e.
 Proof It is obvious. Note that the approximation is stable in the sense that the

 approximate operator is also elliptic. Thus the meaning of the proposition is that when

 the number of points of the grid involved in the discretization of the differential

 operator tends to infinity, the operator tends to represent perfectly all diffusion
 directions.

 PROPOSITION 2. If g is not one of the coordinates xj, then no nonnegative coefficients
 An can be found ensuring that

 82u a2u

 2e Z A3 2 826 j=1,Xn j

 This proposition explains why the preceding approximation cannot be perfect.

 Proof The preceding equality is equivalent to

 sin2 6= E Aj sin2 j,,

 sin 0 cos 0= E Aj sin Oj cos Oj,
 j=1,---,n

 cos2 0 = j COS2 9,.
 j=l,---,n

 By combining these equations we obtain

 ( Aj sin 2 A j cos2 9,) = ( Aj sin Oj cos O)j

 Since the Aj are nonnegative, equality in this Cauchy-Schwarz relation is only achieved
 if the vectors (Ak'/2 sin Oj)j and (A'l,2 cos Oj)j are collinear. Since 6 is different from each
 Oj by hypothesis, we know that at least two of the Aj are nonzero. Thus for two different
 indices i and j and some real number a, we get cos Oi = a sin Oi and cos Oj = a sin O9.
 Since these angles are different and contained in [0, r] we get a contradiction.
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 We are finally in a position to state the exact model which will contain all the

 successive improvements and be easy to discretize. This is obtained by plugging into

 model (8) the approximated operator Au defined by (9), instead of

 "jDul div (Du/lDul)."

 2.1. Final model.

 (10) d=g(IDG*uI) ((1-h(IDuI))Au+h(IDuI) 2 fi i a2x

 The only assumption to be used in the mathematical analysis is that the f are smooth
 and nonnegative. However, they must be chosen for the applications according to the

 assumptions of Proposition 1. We shall give some examples in ? 4.

 3. Mathematical validity of the models. In this section, we wish to show that (1)
 and (10) (or the approximated equations presented in ? 2) are well posed. In fact, we

 shall show uniqueness and existence of Lipschitz solutions (for Lipschitz initial data)
 for a general class of equations which contain our models. Indeed, we first observe

 that these equations all take the form

 alu
 (11) -- g( u * DG)aij(Du),31ju = O in [0, +cx] x R,

 where we denote by oiu = ou/lxi and use the convention on repeated indices. Of course,
 in our models, n = 2 or 3, but mathematically we can take any n _ 2. Next, we assume

 that

 (12) g E C11(Rn, lR), g(p) > 0 for all p in IR',

 (13) DaGELl(Rn) forall Ijaj2,

 (14) ajj(p)e.jj0 for all p E Rn \{0}, te f-Rnf
 (15) aij is continuous and bounded on R n\1O}.

 It is a trivial fact to check that (1) and (10) are indeed of the above form. Of
 course, the application of such models to image processing requires solving (11) only
 in a domain R of lRn (in fact, a rectangle in R2), that we can assume to be convex and
 piecewise smooth to simplify the presentation. To fix ideas we should think of R=

 [0, 1]n. In that case, we have to prescribe boundary conditions for u on aR, and the
 most natural choice for image processing is Neumann boundary conditions, i.e.,

 (16) -=0 on AR,
 aIJ

 where v denotes the unit exterior normal. Indeed, the Neumann condition corresponds

 to the reflection of the picture across the boundary and has the advantage of not
 imposing any value on the boundary and not creating "edges" on it. It is therefore

 very natural if we assume that the boundary of the picture is an arbitrary cutoff of a
 larger scene in view.

 To simplify the presentation, we shall work with periodic boundary conditions
 or, in other words, solve (11) with solutions satisying u(x + h) = u(x) for all x in Rn, h
 in Zn. In fact, everything we show below could be adapted directly to the case of (16)

 but this adaptation requires some tedious and unpleasant technicalities at the corners

 of R. Anyway, the natural extension of a picture adopted in image processing is, as
 we mentioned, to extend u by reflection across the boundary of the rectangle. Thus
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 we set u(-x, y) = u(x, y) if -i c x c o, and O _ y _ 1, etc. It is easily seen that with this
 extension, u can be assumed to be periodic on (2Z)'. (This extension preserves the
 Lipschitz assumption on u.)

 Of course, we complement (11) with an initial condition

 (17) u(0, x) = uo(x) in R',

 where uo is continuous on Rl' and periodic, as above. In all that follows, we shall no
 longer mention periodicity, and the reader should remember that all initial data and

 all solutions are periodic, as described above.

 Next, we have to explain the meaning of (11) which is a second-order parabolic

 equation with possible high degeneracy and two types of nonlinear terms, namely, a

 quasilinear term (a0j(Du)ajju) and a nonlocal term g(u * DG).
 This is why it is important to work here with viscosity solutions (see the survey

 of Crandall, Ishii, and Lions [6]) as was done in [5], [8], [9], [28] for the case when
 g = 1. This is not the place to explain the use of viscosity solutions; let us only point

 out that classical solutions are automatically viscosity solutions and that general
 existence, uniqueness, and approximation results are available for viscosity solutions

 [6].
 As we shall see, the additional nonlinear term g(. ) induces some tricky

 modifications of the uniqueness proofs made in these papers. Now, except for these

 modifications, the strategy of the uniqueness proof is the by now classical one (see [6]).
 We begin by a brief recall of the definition of viscosity solutions of (11) periodic

 on R. Let u in C([O, T] x lR') for some T in ]0, +oo[. Then u is a viscosity subsolution
 of (11) if, for all 4 in C2Q(R x R'n), the following condition holds at any point (to, xo)
 in ]0, T] x R' which is a local maximum point of (u -()

 ?a (to, xo) - g(U * DG(to, xo)) aij(Do (to, xo))aijo (to, xo) co-
 a t

 if Do (to, xo) $ 0,
 (18)

 (to, xo)-g(u * DG(to, xo)) lim sup aij(p)aijo(to, xo)0
 at p-'0-

 if Do (to, xo) = 0.

 Notice that the above inequality (in the case when Do (to, xo) $ ) is the inequality
 expected from the classical maximum principle, the other case being a technical variant.

 We define a viscosity supersolution in a similar manner, replacing "local maximum
 point" by "local minimum point," "O0" by "->0" and "lim sup" by "lim inf." Finally,
 a viscosity solution is a function which is both a subsolution and a supersolution.

 Notice that u * DG is in C([O, T] x Rn); hence, its value at (to, xo) is meaningful. We
 may now state our main result.

 THEOREM. Let uo, vo be, respectively, Lipschitz continuous and continuous on R.
 (1) Then the system (11)-(17) has a unique viscosity solution u in C([O, ax[xRn )fn

 L??(O, T; W1l??(R n)) for any T < oo. Moreover, infRn uo _ u(x, t) supRn uo.
 (2) Let v in C([0, oo[x Rn) be a viscosity solution of (11) satisfying (17) with uo

 replaced by vo. Then for all T in [0, +oo[, there exists a constant K which depends only

 on 11 uoll iw" and 11 VolI L? such that

 (19) sup || -u(Lt,-* )-v((t,*)||L(R )_K||uo-volL(R ).
 0o t _T
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 Remarks.

 (1) In fact, the proof of (19) will provide an estimate of K of the form exp (MT),

 where M depends on II uO||1w1, and IIvO11oL-.
 (2) Analogous results hold if we add a right-hand side f(t, x) to (11), provided

 we assume, for instance, thatf is in C([O, oo[xRn) nf L??(O, T; Wl"(R n)) for any T< 00.
 By adapting this remark, it is easy to see that f can be a term which forces u to remain

 close to uo; that is,f(x, t)=-u(x, t)+uo(x).
 (3) The uniqueness of solutions of (11)-(17) is not clear if we do not assume

 uo, u, or v to be Lipschitz continuous. It is, however, possible to prove the existence
 of a solution assuming only that uo is continuous. Any such solution satisfies infRn uo E
 u(x t) c SUpR n uo.

 (4) Above and below, we denote by Wl"(R n) the space of bounded Lipschitz
 continuous functions in R'.

 Proof of the theorem. We begin with the uniqueness part and the stability estimate

 claimed in Part (2) of the theorem. We follow the arguments given in Crandall, Ishii,

 and Lions [6], and we consider a maximum point (to, xo, yo) of

 (20) u(t, x)-v(t, y)-(4E)YIx-y14-At, tE[O, T], x,yE
 where T, E, A E ]O, oo[ will be determined later.

 We first assume that to> O. Then, as in [6], we find a and b in R, X, Y, (n x n)
 symmetric matrices such that

 X O A +/A+pA2 -A- /xA22
 (21) a-b =A, 2 2

 for each ,u > O,

 (22) a - g((u * DG)(to , xo))aij(E lIxo-yoI2(x - jy))XiV jO,

 (23) b-g((v * DG)(toyo))aij(E j -

 where

 A = E |IXO_Yol2In + 2E 1(Xo-yo0)(8(Xo-Yo),

 so that

 A2= E2IXo-YI4In +8E Ixo-yo 2(Xo-yo) 0(Xo yo).

 In fact, (22), (23) have to be interpreted if xo = yo. In that case, A = 0 so that by
 (21) X<0 and Y'O. We then write

 (22') a - g((u * DG)(to, xo)) lim sup aij(p)Xij o,

 (23') b - g((v * DG)(to, yo)) lim inf aij(p) Yij-._

 Hence, in particular, a c 0, b 0: a contradiction with a - b = A > 0.
 Therefore, xo0# yo and we may write and use (22), (23). We next choose =

 Elxo-yoK-2, and we deduce

 (24) (0 _y)(2/E( B JR)
 where B = IXo-Yo_I2n + 5(xo - yo) 0 (xo - yo).

 We then set

 g, = g((u * DG)(to, Xo)) g2= g((V * DG)(to, Xo)),

 a = (aij(E-llxo _ Yo12(Xo YO)) 1,-'n 5
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 and we consider the matrix

 r gla (9192) 1'2a
 F =(9192) 1/2a g2a J

 Obviously, F is a nonnegative symmetric matrix so that multiplying (24) to the left by

 F and taking the trace we find

 gIa iXij - g2aijYij ?2E'-(g 1/2 -_g/2)2 trace (aB)
 (25) ?CtK(1 -g2 Io

 CCOE -(g1/2_ 1/2)21XO_ 12

 for some C0 which depends only on (aij(p)) l_i,j'n. Next, if we combine (21)-(23) and
 (25) we obtain

 (26) A 5CoE-1(g1/2_ 1/2)21XO_yO12

 We now estimate (gl92-gl/2). First of all, we observe that (12) yields that gl/2 iS
 Lipschitz on bounded sets, therefore

 (gi12-g2/2)?C 2 I(u * DG)(to, xo)-(v * DG)(to, yo)

 for some Cl, depending only on g and on sup lul, sup lvi.
 But this last quantity is estimated by C2(sup[0TJXR n Iu - vI + Ixo-yol), where C2

 depends only on G and on sup lul, sup lvi. This allows us to deduce from (26) that

 (27) A_C{( sup lu-vI2 jX0 Yo + X0-Yol4}
 [O,T]xRn E E

 where C = 2C CC2
 Next, we estimate lxo-yol. To this aim, we observe that

 U (to xo) - V(to, Yo)- y -Ato_ u(to y0)-v(to y0)-Ato

 and thus

 lx4-y LI xo-yol,

 where L is a Lipschitz constant (in x) for u on [0, T] x R . Therefore, lxo-yol E (48L)'13.
 This bound and (27) finally yield

 / \ ~~~~2~

 (28) A - uME + E SUp lu-v ),
 [O,T]xRn

 where M = max ((4L)2/3, (4L)4/3)C. Without loss of generality, we may assume

 sup[O,T]xR' Iu - vi >0 (otherwise, we conclude!) and we choose

 E1/3 = sup lu-vI, A=(1+8+1/8)M sup Iu-vI,
 [0, T] xRn [0, T] xRn

 where 8 > 0 will be determined later. These choices contradict (28). This contradiction

 proves, in fact, that to = 0. Therefore,

 (29) u(t, x)- v(t, y) - 4 At-=- sup {uo(x) vo(y) }

 In particular, we may choose x = y in (29) while the right-hand side can be estimated

 by supR n (uo - vo) + supr,o (Lr - r4/ 4E).
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 We finally obtain

 sup (u-v) _ sup Iuo-vo +-L4 38[4L4 R sup Iu-vI
 [0,T]XRnt pn [0,T]XRnt

 (30) [T]r R
 +M(l+8+8-)T sup lu-vl.

 [O,T]xRn

 Exchanging the role of u and v, and choosing 8 = L43 we deduce

 (31) sup Iu-vI'4supIuo-voI+KT sup Iu-vI,
 nOTx wn [0,T]XRn

 where K = 4M(l + 8 + 8-1). In order to conclude, we choose T = = 1/2K, and we find

 (32) sup lu-vJI-8supluo-voJ.
 [O,t1]xRn n

 Therefore, if T is an arbitrary time in [0, +X{ and N '-1 is such that Nt, ' T, we
 deduce easily by reiterating this argument that

 (33) sup |u-vL<8 Nsup Iuovol.
 [0,T]xRn n

 This proves part (2) of the theorem and the uniqueness claim in part (1).
 We next prove the existence claim in part (1). We begin by remarking that definition

 (18) of viscosity solutions immediately implies that if u is a solution, then

 inf uo - St c u ' sup uo + St on [0, +X] x Rn for all 8 > 0.
 Rn Rn

 Therefore, we have

 (34) inf u0 c u c sup uo on [0, +x] x OR.
 Rn Rn

 Indeed, set +k(x, t) = supRn uo+ 8t and assume that u - c has a local maximum at a
 point (to, xo) with to> 0. Then by the definition of subsolution, we get by the second
 relation of (18) that a4/&t(to,xo) <O. Thus 8?O, which yields a contradiction and
 therefore u - 4 attains its maximum, zero, for to = 0.

 Next, we prove an a priori estimate on Du. This estimate will be formal at that
 level and will be justified later. In fact, we consider a smooth solution u of

 aun
 (35) a- g(W * DG)ay(Du)ai,u = 0 in ]O, +oo[ x RA,

 where aij is now supposed to be smooth on R n, and c E Lw(]O, +oX] x Rn). We are going
 to show that

 (36) ||Du(t,* )jj L(R) e CtIIlDuoII L(R"),

 where C depends only on SUPPJI-R ID2g(p)l and supp lay(p)l with R=
 j/w L( n) 1DG I L1(Rn). Everywhere below, C will denote positive constants depending
 only on these quantities. To prove the a priori estimate (36), we use the "classical"
 Bernstein method and derive a parabolic inequality for IDu 12. To this end, we differenti-
 ate (35) with respect to Xk, and we find

 ak--g ( * DG)aij(Du)aijuk-g (w * DG) * (c * a1kG)aij(Du)aiju
 at al

 (37)

 -g( * DG) d- (Du)ku = 0 in ]0, +x{ x Rn
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 where we denote by Uk = Oku. Hence, we obtain by multiplying by Uk

 aIDu2 - ( * DG)aij(Du)&jj(IDu 2) - g(W * DG) aali (Du)d1(lDuj2)
 a t a!

 (38) =-2g(w * DG) aij (Du) ukiukj + 2-(g * DG)
 a!

 (w * alkG)aij(Du)Ukaiju in ]0, +x[ x R".

 Next, we observe that in terms of constants C only depending on sup IwI and g,
 we have

 1w * alkGI ' C, -l (w * DG) |?c C(g(w * DG))

 and

 Kaij(Du)uij C(aij(Du)ukiukj)"-2.

 (This last inequality is purely algebraic and only uses that aijxixj is nonnegative.)
 Inserting these bounds in (38) and using the Cauchy-Schwarz inequality we get

 a3) 12-g(w * DG)aij(Du)aij(1Du12)-g(W * DG) a( ) a,(IDuI2)
 (39) at a!

 ' CIDu12 in ]0, +x[ x Rn.

 We then deduce easily (36) by applying the maximum principle [2]. In order to
 conclude, we only have to approximate (11) by a (slightly) simpler one of a similar
 form for which we will be able to produce smooth solutions. Then, we will conclude

 using the above a priori estimate (which will be valid on the approximated solutions).
 To this end, we consider u' in C'(Rf ) (periodic) such that u' -* uo uniformly, i Duo II L- C

 || Duo|IL?, I|UO|llL ?-l IUO||Lw. We also introduce g = g + e, a' = ,y + a'i, where the a ij
 tend monotonically to aij, satisfy (14), and have compact support in Rn\{0}.

 Using the general theory of quasilinear uniformly parabolic equations (Ladyzhen-
 skaya, Solonnikov and Uralt'seva [14]), it can easily be checked that there exists u6
 smooth on [0, +oo[ x R"n solution of

 au E u- (40) - g6(u6 * DG)a (Du')agu6 =O in ]O, +oo[xR.
 at

 In view of the general consistency-stability properties of viscosity solutions, there

 just remains to show that u6 (or a subsequence) converges uniformly on [0, T] x R to
 some function u in C([O, T] x R) nn L(0, T; W1',(R n)) for any T <cc. This will follow
 from the Ascoli-Arzela theorem. Indeed, we may now apply the proof of estimate
 (36), and we find for all t in [0, T]

 (41) IIDue(t * )IlL~(R,)_ ectllDu'IlLc-(ORn)? ect IDUOIILw(R n) CT-
 In other words,

 (42) 1u6(t,x)-u6(t y)I?CTIX-YI for any x, y inR n and t in [0, T],
 where CT denotes various constants independent of s, t, x, y. In addition, this estimate
 combined with (40) yields, by a (somewhat) standard argument, that

 (43) 1u6(s, x) -u6(t, x)I CCTIt-s112 for any x in R" and s, t in [0, T].

 We conclude then by combining (42) and (43).
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 Let us sketch the proof of (43). It follows upon remarking that if s ' t ' T,

 CT(t -s)+IU
 (44) IIU(t, U)-u || L?(Rn) 8 + | U(S U|

 where 8 is arbitrary in ]O,co[, u'e W2W'(R'), 11u'(s, )-u'IIL,t(R'yCT8 and
 ||D'u' 11| L-(Rn) '- CT/ S-

 Indeed, we have for s-' t ? T, x e R,

 (45) -g(u6 a uCT
 (45) |--g,(u' * DG)a'(Due)ajju, c

 and (44) is deduced from the maximum principle. We then derive (43) by choosing
 8 = (t-s)112.

 4. Numerical scheme and experimental results

 4.1. Definition of the functions f,. In order to discretize the degenerate diffusion
 operator IDul div (Du/lDul) we shall use the approximated operator Au defined by
 (9) in ? 2, which corresponds to a slight preference given to a discrete set of directions

 on , There are several techniques to define the "partition of unity" given by the fn. If
 the directions On are given by On = (n - 1)ir/2NP n =1,* , 2N then define an even
 smooth function f with support in [-ir/2IN ir/2N] verifying fl(Tl/2N - 0) + f(0) = 1.
 Then we define fn(0) =f( - 0), where for simplicity we identify the bounds of the
 interval [0, 1T].

 In our experiments, we took a nine points square neighborhood for each point

 (ij) of the grid. Thus four directions were present in the discretization: those of
 (i-i,j) to (i+ 1,j), (i1j-1) to (i,j+1), (i-1,j-1) to (i+ 1,j+1), and (i- 1,j+1)
 to (i+ 1, j- 1). We then defined

 f(0)= 1 ifIo 1? 00

 f(0) =0 ifI 01 _i/4- 0o0

 f(0) = (4/ 7T)4(I0l - _/4+ +0)4 elsewhere.

 The constant 00 is defined in order to penalize the diffusion as 0 is not close to a
 principal direction. We chose 00 so that the diffusion coefficient is nearly 1j6 for both
 closest principal directions in the worst case for our scheme: when 0 lies in the middle

 of the interval defined by two principal directions. This inhibition of the diffusion

 contradicts the assumption made in Proposition 1, that the fn should be asymptotically
 a partition of unity. Now, our experience is that this asymptotic assumption cannot
 be respected with so few directions in the scheme.

 4.2. Discretization of the equation. We use the semi-implicit form

 uk+1 uk

 St =-g(lG * u kI) ((1-h(IDukI))Auk+1 + h(IDUkI)

 ZfDu)( ta 2uk+1)
 w E fn ear syte m 2

 which yields Uk+1 as the solution of a linear system.
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 4.3. The algorithm.

 (1) Define the contrast and accuracy parameters yielding the functions g, h, and
 the variance a. Fix St. (The spatial increment is assumed to be 1.)

 (2) Computation of Duk. We use the following approximate of the gradient:

 ux(i,j) = (2+4C)-1{u(i+ 1,j) - u(i - 1,j)

 + C[u(i+ 1,j+ 1) - u(i - 1,j+ 1)

 + u(i + 1,j- 1) - u(i - 1,j- -1,

 uy(i,j) = (2+4C)-1{u(ij+ 1) - u(ij - 1)

 + C[u(i+ 1,j+ 1) - u(i+ 1,j- 1)

 + u(i - 1,j + 1) - u(i - 1,j-l}.

 The constant C is chosen in order to get the right value of Dul in the case where the
 direction of Du is one of the principal directions and u is a step function. Then we
 get C = (21/2 - 1)/(2 - 21/2). This same discretization is used in Nitzberg and Shiota [21].

 (3) Computation of g(G, * Duk)(i,j), and of h(IDukI)(i4j).
 (4) If h(IDukI)( ) > 0, computation of fn(DUk/IDUkI)(iI).

 (5) U k+1(i' j) =0.5 SUk+1(j + 1, j) + Uk+l(i- j) + uk 1(i, j + 1) + uk (i, j _1)

 +0.25

 .uk (ij+ l,j+l1)+u U1(ji-l,j-l )+ U+(j_i- + 1) + Ul(i + l,j-1).
 L -~~~~~~_Urk+1( U9P

 This choice is made in order to use the nine points in the discretization.

 2 k+1

 2Xn uP (m 2+ 12)-l(uk+l(i+ m,j + 1) -2uk+l (ij) + uk+1 (i ,

 (6) With this discretization we obtain a linear system in uk+' which can be solved
 by any iterative relaxation method and for which sup Iuk+1I ' sup IukI. Of course, we
 have to fix natural boundary conditions to our problem. We impose that the normal

 derivative auk+l/n is zero, which corresponds to a prolongation by reflection of the
 image across the boundary.

 Let us explain briefly why the scheme does not increase the L' norm of uk+l.

 From the preceding discretization and the fact that the functions (1 - h), h, fn, g are
 nonnegative, it is easily seen that the iteration uk uk+ can be written under the
 generic form:

 uk+1(i j) -Uk (0j) am,l [Uk+l(i+ m,j+ 1) -2u k+1(ij) + Uk(i j-1)]
 m,l

 where the ai are all nonnegative. Let (ij) be the point of the grid where 1k?l attains
 its maximum, then clearly uk+1(ij)?uk(ij). This proves the announced property,
 which is important from the computational viewpoint. Indeed, the pictures are defined
 in the actual technology with entire values between zero and 255 and it is interesting
 to keep these bounds.

 We shall not try to prove the convergence of this scheme. Let us only mention

 the general convergence results of Barles and Souganidis [1] in the context of viscosity
 solutions theory.

This content downloaded from 193.145.130.55 on Tue, 18 Jun 2019 14:57:58 UTC
All use subject to https://about.jstor.org/terms



 IMAGE SMOOTHING BY NONLINEAR DIFFUSION 861

 d4 .1 s I' E HE,J y

 Original image Restored imagei i~ii~;:

 .. * .39 * i * t ; * { t- 1. ............................................................................................. .. 2; w?s**~~~~~~~~~~~~~~~4 ---------- --t- l. --- - -i .. p4~; f
 M*C1*'MOignl mae esoed image

 *s .r t-,

 4
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 FIG. 2. AIsotropic diffusion of the original image (128 X128) withou selective direction. Parameters:
 Times 5 thehldgaintnr50,cl number of iterations = 25, time to calculate on a SUN4/1=75scn.

 . . . . . ... .

 . * q , : . t t .. b * ....... . I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.... ...

 4/ 1 10 7 5 seconds.
 FIGS. 1 AND 2. The left part is a synthetic picture made of the characteristic functions of rectangle and a

 triangle. It is then degraded by giving a random value to a randomly distributed subset of the pixels. In the first
 figure 20 percent of the pixels are degraded The right part of Fig. 1 is the restored image by the classical linear
 theory (isotropic linear diffusion) the right part of Fig. 2 is the restored image by our algorithm.
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 FIG. 3. Isotropic diffusion of the original image (256 x 256) without selective direction. Parameters:
 Times =2.5, number of iterations =20, time to calculate on a SUN 4/1 10 =240 seconds.

 Original utucige 'T,.'U;d- iFiige

 FIG. 4. Anisotropic diffusion of the original image (256 x256) with selective direction. Parameters:
 Times 10, threshold gradient norm = 40, scale =2, number of iterations = 40, time to calculate on a SUN

 4/r110480 seconds
 FIGS. 3 AND 4. Thiey present exactly the same experiments for an initial synthetic image made of several

 disks with several sizes and contrasts. Note the "mean curvature motion" effect which makes the smaller disks
 decrease faster.
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 _r ; _3~~~~~~~~

 Original image Restored image

 FIG. 5. Anisotropic diffusion of the original image (128x128) with selective direction. Parameters:
 Times = 5, threshold gradient norm = 80, scale = 2, number of iterations = 100, time to calculate on a SUN

 4/100 = 300 seconds. This is the same experiment with a highly degraded version of the triangle-rectangle image.
 Indeed, 70 percent of the pixels are degraded. (If 100 percent were degraded, the image would be completely

 lost.) A large number of iterations is neededfor restoration, with the subsequent smoothing effect of the corners.
 The restored image is renormalized for visual presentation, in order that the brightest pixel has value 255 and

 the darkest zero.

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. . ........... . l._ A
 g. inl ia T ' , 'S , . ....... : , z , ....

 2.-V

 Orig in al i mage Treatred im age

 FIG. 6. Anisotropic diffusion of the original image (256 x 256) with selective direction. Parameters:
 Times 5, threshold gradient norm = 80, scale =1, number of iterations =1, time to calculate on a SUN
 4/110 13.5 seconds. Our algorithm applied to a "real picture" (without artificial degradation).
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 4.4. Experimental results. Figures 1-8 have been made on SUN 4/110 with a
 picture processing environment called MEGAWAVE, by Jacques Froment.

 Each of the figures presents a pair of images, on the left the image to be processed
 and on the right the image processed, either by the preceding scheme, or, for com-
 parison, by the linear heat equation. In the upper part of the figure are indicated the

 Original imnage Treated image

 FIG. 7. Isotropic diffusion of the original image (256 x256) without selective direction. Parameters:
 Times = 10.5, number of iterations =2, time to calculate on a SUN 4/1 10 27 seconds. The isotropic diffusion
 algorithm is applied to a satellite image and then our algorithm.

 Orilgintal imiage Treated imnage

 FIG 8. Anisotropic diffusion of the original image (256 x 256) with selective direction. Parameters: Times=

 20, threshold gradient norm = 40, scale =1, number of iterations =2, time to calculate on a SUN 4/1 10 =27
 seconds. The isotropic diffusion algorithm is applied to a satellite image and then our algorithm
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 name of the method and the size of the picture (e.g., 256 x 256 for a square picture

 with 2562 pixels). All of the figures were programmed by Luis Alvarez at CEREMADE,

 University of Paris IX (Dauphine).

 Then the values of the parameters of the method are given in the following order:

 1. The time t.

 2. The enhancement parameter, which is in terms of IDuI2. For instance, if this

 parameter is 49, that means that the diffusion is inhibited at any point where IG * DuI
 is greater than 7. Note that since the spatial unit is 1 (the side of one pixel), and since

 0_ u _ 255, we have, by the kind of discretization explained above, 0 IDul ' 2-1/2255.
 Thus a meaningful threshold must lie between these values.

 3. The scale parameter, which fixes the spatial radius of the smoothing kernel G.

 Thus "Scale = 1" means that this kernel involves (2 + 1)2 = 9 pixels. "Scale = 2" means

 that 25 pixels are involved.

 4. The number of iterations of the scheme.

 5. The real computing time on the SUN4/ 110, which is a machine with approxi-

 mately 7 MIPS and 1.2 MegaFlops. It is the time that it is necessary to wait to see the

 result on the screen.
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