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Abstract 

 

This paper proposes a hand shape biometric device with two sensors, respectively working 

in the visible and 1470nm bands. The inclusion of the 1470nm band sensor is to improve 

both security and performance. The security is improved by including a spoof detector and 

the performance by combining both bands. The spoof detector combines three skin 

detection indices obtained by comparing the reflectance of the hand image in the red, green 

and blue bands with that from the 1470nm band. The hand tissues reflect the visible 

radiation while absorbing the 1470nm radiation. The band combination is carried out at a 

score level which reduces the error rate because different images were obtained under 

different physical principles (reflection and absorption). The system performance has been 

evaluated with a database containing 10 acquisitions from each of a group of 100 users and 

390 acquisitions from 62 imitated hands made of different materials.  The experimental 

results confirm both security and performance improvement. 

 

 

Index Terms: Biometrics, Hand-shape biometrics, aliveness detection, spoof detection, 

Biometric vulnearibilities. 
 



I. INTRODUCTION 

 

Personal identification based on the hand shape biometric has become a more and more 

popular technique for identity verification. This can be deduced from the number of recent 

reviews published [1 to 4]. It could be said that the three main research areas that cover the 

development of hand shape biometric schemes are the following: 1) research on hand 

acquisition devices, 2) research on hand characterization, and 3) research on feature 

classification. Obviously, there are other research areas such as evaluation and testing, 

normalization, etc. 

Focusing our attention on the first research area mentioned above, most of the academic 

and industrial devices acquire the hand image in the visible band. These devices pay special 

attention to obtaining a good hand shape or hand contour in order to allow a precise 

measure of the hand shape and therefore to obtain a good model for the hand silhouette. For 

this reason, they frequently use backlighting [5] in order to increase the hand contrast. The 

same effect can be obtained using reflective material under the hand [6] or a uniformly 

colored material as background [7][8].  

These techniques work well, but they can be physically spoofed, i.e., to can accept as 

genuine a fake or imitated hand. Even a simple, printed hand picture is able to deceive the 

system. To alleviate this weakness, spoof detection techniques are used, which are based on 

intrinsic properties of a living body (density, elasticity, capacitance, etc.) or involuntary 

signals from living tissue, such as pulse, blood pressure, etc. These countermeasures come 

into effect when the hand (genuine or imitated) touches the device [9] although recently 

[10] has proposed a touchless antispoofing approach based on pulse oximetry. Other 

touchless spoof detectors have been developed in the visible band, which analyze the R-G-



B components of a skin picture. In [11] the authors develop a statistical model for human 

skin with a skin acceptance rate around 95% and false skin acceptance at approximately 

30%. In [12], the RGB space is transformed into another color space as YIQ and compared 

to different classifiers with similar results. Solutions based on color eliminate the need for 

secondary sensors but provide lower antispoofing accuracy levels although [13] presents a 

spoof detector for fingerprints based on multispectral imaging in the visible band where a 

rigorous test gives a true accept rate of 99.5% and a false accept rate of 0.9% 

Spoof detectors based on color can be improved by looking for spectroscopy solutions. 

In [14] the reflectance spectroscopic curve between 300nm and 1100nm is used for both 

spoof detection and personal identification. Spoof is characterized by the area of the 

spectroscopic curve enclosing seven relevant bands, which correspond to absorption peaks 

of specific physiological components. In people search and rescue applications, [15] 

studied 81 bands from 800 to 1600nm proposing a normalized difference skin index 

(NDSI) obtained by combining the reflectance of 1100nm and 1400nm bands. The bands 

selected by the NDSI coincide with the results of spectroscopic studies of the human skin 

reflectance [16] which has a minimum around 1470nm due to the water (H2O) content of 

the human body. This minimum is due to the vibrational absorption maximum of the OH 

molecule (OH-stretching Raman overtones) at 1470nm  [17].   

A. Our work 

In this work we propose a hand shape biometric device with two sensors: a visible camera 

and a 1470nm camera which operates in the Short Wave InfraRed band (SWIR). The 

inclusion of the second sensor is justified because the resulting system improves both the 

security and the performance. The security is improved further by including a spoof 

detector and the performance is improved by combining the hand shape biometric schemes 



for both bands. This reduces significantly the verification error rate. Fig. 1 shows a 

schematic view of the proposed device. 

 
Fig 1. Schematic view of the device  

 

The physical principles behind the improvements are simple. The human skin reflects 

the visible band radiation and absorbs the 1470nm wavelength because of the skin’s water 

content [17]. Therefore, the hand appears bright in the image of the visible band because of 

reflection and dark in the image of the 1470nm band because of skin absorption. 

The underlying hypotheses of this work are: 1) The combination of the biometric system 

for each band will improve the overall performance because each is able to correct the 

errors from the other since they are each based on different physical principles (reflection 

and absorption); therefore, some noise present in the visible image, such as shading or 

shadowing, will not be present in the 1470nm image. 2) It is possible to design a skin 

detector by comparing the relationship between the pixel values of the hand image in the 

visible and the 1470nm bands. 



 Both hypotheses have been evaluated with a database containing 10 acquisitions for 

each band of a group of 100 users. The spoof detector system is verified with 400 hand 

images of the database users and 390 images of 62 imitated hands made of different 

materials.  

The paper is organized as follows. Section 2 proposes a hand shape biometric device 

acquiring hand images in the visible and 1470nm bands. The hand shape based verifiers 

and spoof detector are described in section 3 and 4 respectively. Section 5 is devoted to the 

evaluation and section 6 closes the paper with the conclusions. 

 

II. SYSTEM DESIGN 

 

The experimental device designed consists of two cameras, a flat plate and illumination. The 

image in the 1470nm band is acquired by a XENICS camera XEVA 1.7-320 with an 

InGaAs sensor, sensitive from 900 to 1700nm, with a band pass filter lens centered on 

1470nm and bandwidth of 250nm. Its resolution is 𝑁𝑥𝑀  equal to 320x256 pixels. The 

image in the visible band is acquired with a color webcam, the quickcam E2500, with a 

resolution of 640x480 pixels. For illumination, we used an incandescent bulb with a 

tungsten filament which radiates from 400nm to 2500nm, covering both cameras bands. 

The individual whose identity is going to be verified has to place his/her right hand freely 

over the flat plate with the fingers spread. We do not use pegs, templates or any other user 

constraining method, to capture the hand image. The illumination and the video cameras are 

positioned directly above the hand position to reduce the shadowing effect.  

The minimum spatial resolution required for hand geometry biometry with a reasonable 

performance is 𝑅 = 45 𝑑𝑝𝑖. To ensure such a spatial resolution in the hand image, the 

cameras are located 30cm over the flat plate.  



This distance has been obtained as follows. The XEVA 1.7-320 camera contains a 

sensor of size 𝐿𝑥𝑃 equal to 0.96x0.768 cm. The focal length of its lens is 𝑓 = 1.6𝑐𝑚 and 

the relative aperture can be selected from 1.4 to 16. So, its horizontal field of view is 

𝐹𝑂𝑉ℎ = 2.4 ∙ 𝑁/𝑅 = 17.07 𝑐𝑚   and its vertical field of view is 𝐹𝑂𝑉𝑣 = 2.4 ∙ 𝑀/𝑅 =

13.65𝑐𝑚 . This gives a magnification parameter equal to 𝑚 = 𝐿/𝐹𝑂𝑉ℎ = 𝑃/𝐹𝑂𝑉𝑣 =

0.0563. As the horizontal and vertical angles of view are 𝛼ℎ = 2 ∙ 𝑎𝑡𝑎𝑛(𝐿/(2 ∙ 𝑓 ∙ (1 +

𝑚))) = 31.71°  and 𝛼𝑣 = 2 ∙ 𝑎𝑡𝑎𝑛(𝑃/(2 ∙ 𝑓 ∙ (1 + 𝑚))) = 25.60°  respectively, the 

distance between the lens and the object to cover the field of view should be: 

𝑝 =
𝐹𝑂𝑉ℎ

2⁄

𝑡𝑎𝑛(
𝛼ℎ

2⁄ )
≅

𝐹𝑂𝑉𝑣
2⁄

𝑡𝑎𝑛(
𝛼𝑣

2⁄ )
≅ 30𝑐𝑚. 

As the hand width ranges from 2 to 4 cm, the depth of field should be in the approximate 

range ±2𝑐𝑚. So the relative aperture is selected to be 7.1. 

The webcam contains a sensor of 640x480 pixels which has a size equal to 0.418x0.364 

cm. and its lens focal length is 𝑓 = 0.6𝑐𝑚 . The distance 𝑝 = 30𝑐𝑚  implies a 𝐹𝑂𝑉ℎ =

24 𝑐𝑚 , 𝐹𝑂𝑉𝑣 = 18 𝑐𝑚  and a spatial resolution of 𝑅 = 64  dpi. The camera is focused 

manually.  

The plate size will take the minimum 𝐹𝑂𝑉ℎ and 𝐹𝑂𝑉𝑣 values, which are 17 by 13 cm. 

An example of image captured by the proposed device is shown in Fig. 2. 

 

Fig 2. Images of the hand in the 1470nm (SWIR) band (left) and in the visible band (right) 

 



III. HAND BIOMETRIC VERIFIERS 

 

In order to be able of verify the first hypothesis in different scenarios, we will use three 

different hand shape biometric approaches, one based on geometrical measures and two 

based on global hand shape: ICA architecture 2 for hand silhouette and Hausdorf distance 

for hand contour data. All hand biometric verifiers used will be applied to the images acquired 

in both bands in the same way, except in the image preprocessing step. 

A. Hand detection and image preprocessing 

The cameras of our hand biometric device are continuously acquiring images. The hand is 

automatically detected: when the absolute difference between two consecutive frames of 

the XEVA 1.7-320 camera is greater than a threshold, it is assumed that a hand is being put 

on the plate. When the movement finishes, it is assumed that the hand has been placed and 

it is still. Then both images are acquired: the image in the visible band 𝐼𝑣𝑐(𝑥, 𝑦, 𝑧),   0 ≤

𝐼𝑣𝑐(𝑥, 𝑦, 𝑧) ≤ 255,   1 ≤ 𝑥 ≤ 640,   1 ≤ 𝑦 ≤ 480,   1 ≤ 𝑧 ≤ 3   where the z coordinate is 

the red, yellow and green colour components respectively, and the image in the SWIR band 

𝐼𝑆𝑊𝐼𝑅(𝑥, 𝑦),   0 ≤ 𝐼𝑆𝑊𝐼𝑅(𝑥, 𝑦) ≤ 255,   1 ≤ 𝑥 ≤ 320,   1 ≤ 𝑦 ≤ 240 . Note that the last 15 

columns of the SWIR images have been discarded in order to keep a size proportional 

relationship between 𝐼𝑣𝑐(𝑥, 𝑦, 𝑧) and 𝐼𝑆𝑊𝐼𝑅(𝑥, 𝑦). 

Due to the 99% pixel operability of the XEVA 1.7-320, the contents of the 298 

erroneous pixels located are interpolated as the mean of the surrounding pixels and the 

stripped aspect of the image is alleviated by subtracting an acquired black background image.  

The visible image is converted from color to gray by means of: 𝐼𝑣(𝑥, 𝑦) = 1.2 ∙

𝐼𝑣𝑐(𝑥, 𝑦, 1) − 0.3 ∙ (𝐼𝑣𝑐(𝑥, 𝑦, 2) + 𝐼𝑣𝑐(𝑥, 𝑦, 3)). The Otsu’s threshold [18] is used to binarize 

𝐼𝑣(𝑥, 𝑦) and 𝐼𝑆𝑊𝐼𝑅(𝑥, 𝑦). 



B. Fingers tips and valley location 

Let {𝑥𝑐(𝑖), 𝑦𝑐(𝑖)}, 1 ≤ 𝑖 ≤ 𝐿 be the Cartesian coordinates of consecutive contour pixels of 

the hand binary image acquired by one of the cameras. To locate the tips and valleys 

between the fingers, the coordinates of the contour are converted to polar coordinates (𝑟𝑐(𝑖) 

and 𝜙𝑐(𝑖), 1 ≤ 𝑖 ≤ 𝐿  for radius and angle respectively) considering as the coordinate’s 

origin the center of the first column, which corresponds to the wrist side (see Fig. 2).  The 

indices 𝑖𝑝
𝑓

 1 ≤ 𝑓 ≤ 4 of 𝑟𝑐(𝑖) maxima are considered to be the finger tips, corresponding to 

𝑓 = 1,2,3 and 4  the little, ring, medium and index fingers. The indices of the valleys 

between fingers are obtained as: 

𝑖𝑣
𝑓

 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖𝑝

𝑓
≤𝑖≤𝑖𝑝

𝑓+1

{𝑟𝑐(𝑖)} 1 < 𝑓 < 3. 

 The exterior bases of the index and little fingers are obtained as the nearest pixel of the 

exterior contour to the valley between the index and middle fingers and the valley between 

the ring and little fingers, respectively, i.e.:   

 𝑖𝑣
4 = 𝑖𝑖𝑛𝑑𝑒𝑥  = argmin

𝑖𝑝
4≤𝑖≤𝑖𝑝

5
{𝑑({𝑥𝑐(𝑖), 𝑦𝑐(𝑖)}, {𝑥𝑐(𝑖𝑣

3), 𝑦𝑐(𝑖𝑣
3)})} 

𝑖𝑣
0 = 𝑖𝑙𝑖𝑡𝑡𝑙𝑒  = argmin

1≤𝑖≤𝑖𝑝
1

{𝑑({𝑥𝑐(𝑖), 𝑦𝑐(𝑖)}, {𝑥𝑐(𝑖𝑣
1), 𝑦𝑐(𝑖𝑣

1)})} 

where 𝑑(∙,∙) is the Euclidean distance. Fig 3 illustrates the 𝑖𝑝
𝑓
 and 𝑖𝑣

𝑓
 location. 

 

Fig 3. Example of finger tips, valleys and width measures in the 1470nm band hand image. 

 



The fingertip and valley locations vary with the hand pose on the plate or the camera 

view. So, the position of the tip of each finger is finely adjusted as follows: 

1. Four equally spaced points are selected on each finger side. 

2. The lines that minimize the square error with the selected point of each finger side are 

calculated, where 𝑦 = 𝑚𝑟
𝑓

∙ 𝑥 + 𝑏𝑟
𝑓
 is the line for the right side and 𝑦 = 𝑚𝑙

𝑓
∙ 𝑥 + 𝑏𝑙

𝑓
 for the 

left side. See Fig 4. 

 3. The finger axis is defined as 𝑦 = 𝑚𝑎
𝑓

∙ 𝑥 + 𝑏𝑎
𝑓

 where 𝑚𝑎
𝑓

= (𝑚𝑟
𝑓

+ 𝑚𝑙
𝑓

)/2 and 𝑏𝑎
𝑓

=

(𝑏𝑟
𝑓

+ 𝑏𝑙
𝑓

)/2.  

 4. The new finger tips are the points where the finger axis and the finger contour intersect.  

𝑖𝑝
𝑓

  = argmin
𝑖𝑣

𝑓−1
≤𝑖≤𝑖𝑣

𝑓+1
{𝑑

𝑦=𝑚𝑎
𝑓

∙𝑥+𝑏𝑎
𝑓({𝑥𝑐(𝑖), 𝑦𝑐(𝑖)})} 

where 𝑑
𝑦=𝑚𝑎

𝑓
∙𝑥+𝑏𝑎

𝑓({𝑥(𝑖), 𝑦(𝑖)}) is the Euclidean distance of {𝑥(𝑖), 𝑦(𝑖)}  to the line 𝑦 =

𝑚𝑎
𝑓

∙ 𝑥 + 𝑏𝑎
𝑓
. In our test, this tip adjustment improves the EER of the hand shape biometric 

system by 44%. 

 

Fig. 4. Fingertip adjustment. Contour line approximation of each finger side 𝑦 = 𝑚𝑟
𝑓

∙ 𝑥 + 𝑏𝑟
𝑓

 and 𝑦 = 𝑚𝑙
𝑓

∙

𝑥 + 𝑏𝑙
𝑓
, finger axis 𝑦 = 𝑚𝑎

𝑓
∙ 𝑥 + 𝑏𝑎

𝑓
, and finger tip: first obtained as radius maximum, newly obtained as 

intersection of finger axis and finger contour. 
 
 
 
 
 
 
 



C. Hand shape characterization 

Many methods have been proposed for hand shape characterization [1]. The two main 

approaches are the geometrical and the global shape features. The first focuses on 

characteristics such as finger widths, length, etc. while the second is based either on the 

comparison of the hand silhouettes or the distance between vectors that model the hand 

shape. In order to check that the combination of 𝐼𝑣(𝑥, 𝑦) and 𝐼𝑆𝑊𝐼𝑅(𝑥, 𝑦) improves a hand 

shape based biometric system, we will test both feature approaches. 

C.1. Geometrical based verifier 

Geometrical measures: The geometric features are obtained by measuring the widths of 

each finger. This is conducted as follows: The center of each finger bottom {𝑥𝑓𝑏
𝑓

, 𝑦𝑓𝑏
𝑓

} is 

defined as the point where the finger axis  𝑦 = 𝑚𝑎
𝑓

∙ 𝑥 + 𝑏𝑎
𝑓
 intersects the finger base line 

between {𝑥(𝑖𝑣
𝑓−1

), 𝑦(𝑖𝑣
𝑓−1

)}  and {𝑥(𝑖𝑣
𝑓

), 𝑦(𝑖𝑣
𝑓

)}  (see Fig. 4). Let {𝑥𝑠
𝑓

(𝑘), 𝑦𝑠
𝑓

(𝑘)}  be 12 

equally spaced points in the line going from {𝑥𝑓𝑏
𝑓

, 𝑦𝑓𝑏
𝑓

} to {𝑥𝑐(𝑖𝑝
𝑓

), 𝑦𝑐(𝑖𝑝
𝑓

)}. Supposing that 

the perpendicular line to the finger axis at these points is 𝑦 = 𝑚𝑝𝑎
𝑓

(𝑘) ∙ 𝑥 + 𝑏𝑝𝑎
𝑓

(𝑘), which 

intersects with the right and left finger sides at the points 𝑖𝑐𝑟
𝑓 (𝑘) and 𝑖𝑐𝑙

𝑓
(𝑘) respectively, the 

finger widths at these points are obtained as: 

𝑑𝑤
𝑓

(𝑘) = 𝑑({𝑥𝑐 (𝑖𝑐𝑟
𝑓 (𝑘)) , 𝑦𝑐 (𝑖𝑐𝑟

𝑓 (𝑘))} , {𝑥𝑐(𝑖𝑐𝑙
𝑓

(𝑘)), 𝑦𝑐(𝑖𝑐𝑙
𝑓

(𝑘))}) 

The feature vector is obtained by concatenating the 12 width vectors of index, middle, ring 

and little fingers: 𝑑𝑤
𝑓

(𝑘), 1 ≤ 𝑓 ≤ 4,1 ≤ 𝑘 ≤ 12 and the 4 finger lengths obtained as the 

distance between the finger bottom {𝑥𝑓𝑏
𝑓

, 𝑦𝑓𝑏
𝑓

} and finger tip {𝑥𝑐(𝑖𝑝
𝑓

), 𝑦𝑐(𝑖𝑝
𝑓

)}. An example 

can be seen in Fig. 3. Therefore, the feature vector comprises 12 ∙ 4 + 4 = 52 features. 



Verifier: As verifier we have used a Least Squares Support Vector Machine (LS-SVM) to 

model each user hand in each band. The LS-SVMs are reformulations to standard SVMs 

which improve the robustness, sparseness, and weightings [19]. The toolbox used can be 

freely downloaded from [20].  

 The meta-parameters of the LS-SVM model are the width of the Gaussian kernels σ 

and the regularization factor γ. This is taken as γ = 20 and is identical for all the LS-

SVM models we use. The Gaussian width σ  parameter is optimized for each user as 

follows: the training sequence is randomly partitioned into two equal subsets 𝑃𝑖, 1 ≤ 𝑖 ≤ 2. 

The LS-SVM is trained 𝐿 = 30 times with the first subset 𝑃1, γ = 20 and Gaussian width 

equal to L logarithmically equally spaced values between 101 and 104 𝜎𝑙 ,1 ≤ 𝑙 ≤ 𝐿. Each 

one of the L LS-SVM models is tested with the second subset 𝑃2, obtaining L Equal Error 

Rate 𝐸𝐸𝑅𝑙  , 1 ≤ 𝑙 ≤ 𝐿 measures. The Gaussian width σ of the signature model is selected 

as σ =σj where  𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛1≤𝑙≤𝐿{𝐸𝐸𝑅𝑙}. Finally, the signature model is obtained by 

training the LS-SVM with the whole training sequence. 

Given a questioned hand image, its score is obtained by using the LS-SVM model of the 

identity claimed and the hand geometrical features. If the score is greater than a given 

threshold, the questioned hand image is accepted as genuine. 

C.2. Global shape based schemes 

The silhouettes contain much richer information than geometrical measures of the hand. 

For example, the roundness of fingertips, the shape of the thumb, the sharpness of finger 

valleys, etc., which are not necessarily incorporated in the geometric measurements. The 

global shape methods are based on direct silhouette alignment [21] or distance of between 



vectors that model the hand shape [22]. In this paper both approaches are used to evaluate 

the improvement of combining visible and SWIR band biometric schemes. 

 For the second approach, we used the scheme suggested in [22] which is based on 

independent component analysis ICA architecture 2. As the authors provide freely the 

software to develop such an approach [23], we have used their programs codes in order to 

be sure that our procedure is the same as that described in [22]. 

 The first approach, based on the contour mean alignment error, has been developed as 

follows. Let be {𝑥𝑓
𝐴(𝑖), 𝑦𝑓

𝐴(𝑖)} and {𝑥𝑓
𝐵(𝑖), 𝑦𝑓

𝐵(𝑖)} be 50 equal spaced samples of the finger 

contour 𝑓 of the hands A and B respectively. The finger of hand A is adjusted to the same 

finger of hand B by a linear transformation that includes translation and rotation with no 

shape deformation. The transformation is (𝑢(𝑖)   𝑣(𝑖))𝑇 = 𝑆𝑓 ∗ (𝑥𝑓
𝐴(𝑖)  𝑦𝑓

𝐴(𝑖)   1 )
𝑇
where 

〈𝑢(𝑖), 𝑣(𝑖)〉 are the coordinates of fth finger of hand A adjusted to fth finger of hand B, and 

the matrixes 𝑆𝑓 are obtained as: 

𝑆𝑓 = (
𝑥𝑓

𝐵(1) … 𝑥𝑓
𝐵(50)

 𝑦𝑓
𝐵(1) …  𝑦𝑓

𝐵(50)
)   ∗ 𝑝𝑖𝑛𝑣 (

𝑥𝑓
𝐴(1) … 𝑥𝑓

𝐴(50)

 𝑦𝑓
𝐴(1) … 𝑦𝑓

𝐴(50)

1 …  1

) 

The distance 𝑑𝑓(𝐴, 𝐵) between fth finger of hand A and B is calculated as the modified 

Hausdorff distance defined in [3] which measures how far   {𝑥𝑓
𝐵(𝑖), 𝑦𝑓

𝐵(𝑖)} and  {𝑢(𝑖), 𝑣(𝑖)} 

are from each other using a Euclidean metric. The distance between hand A and B is 

defined as 𝑑(𝐴, 𝐵) = ∑ 𝑑𝑓(𝐴, 𝐵)4
𝑓=1 . 

To verify whether an input hand image corresponds to the claimed user, the distances 

𝑑(𝐴, 𝐵𝑖) of the input hand 𝐴  to each one of the claimed user reference hands 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑇 



are worked out. The final score is 𝑠 = ∑ 𝑚𝑖𝑛 1≤𝑖≤𝑇{𝑑𝑓(𝐴, 𝐵𝑖)}4
𝑓=1 . If the score is lower than 

a given threshold, the input hand is accepted as belonging to the claimed user. 

D. Visible and SWIR Fusion 

This section describes the procedure used to combine the Visible and SWIR based hand 

shape biometric devices. Before combining them, the scores of each band are transformed 

to a distribution with mean of 0 and standard deviation of 1 with Z-score normalization, 

using the mean and standard deviation of the training sequence. 

Let  𝑠𝑣  and 𝑠𝑆𝑊𝐼𝑅  be the normalized scores obtained with the image acquired in the 

visible and SWIR bands respectively and 𝑠𝑐𝑜𝑚𝑏  the combined score. Several linear and 

non-linear methods have been evaluated to combine the biometric scores: 

1) The simple score sum (SS), 𝑠𝑐𝑜𝑚𝑏 = 𝑠𝑣 + 𝑠𝑆𝑊𝐼𝑅. 

2) The Minimum Score (MIS), 𝑠𝑐𝑜𝑚𝑏 = 𝑚𝑖𝑛{𝑠𝑣, 𝑠𝑆𝑊𝐼𝑅}. 

3) The Maximum Score (MAS), 𝑠𝑐𝑜𝑚𝑏 = 𝑚𝑎𝑥{𝑠𝑣, 𝑠𝑆𝑊𝐼𝑅}. 

4) The Matcher Weighting (FLD), 𝑠𝑐𝑜𝑚𝑏 = 𝑤1𝑠𝑣 + 𝑤2𝑠𝑆𝑊𝐼𝑅 = �̅�𝑇𝑠̅ , where �̅� =

{𝑠𝑣, 𝑠𝑆𝑊𝐼𝑅}𝑇 and the weight vector �̅� = {𝑤1, 𝑤2}𝑇 is the Fisher linear discriminant vector 

[24] obtained with the training subset of the database. 

5) The kernel Fisher discriminant vector (KFD), 𝑠𝑐𝑜𝑚𝑏 = 𝑤𝑇Φ(�̅�) where �̅� is a weight and 

Φ is a kernel function [25]. The experiments with the KFD have been carried out with the 

following functions [26]: 

a) KFDtanh, a hyperbolic tangent function: Φ(�̅�) = 𝑡𝑎𝑛ℎ(�̅�). 

b) KFDexp, an exponential function: Φ(�̅�) = 𝑒𝑥𝑝(�̅�). 

the weighting vector �̅� is obtained as the fisher linear discriminant of the Φ(�̅�) scores. 



6) Another non-linear combination is the score multiplication. As the scores have different 

signs, we transform the scores to positive numbers by means of an exponential function, 

which is the weighted multiplication combination (WMC): 𝑠𝑐𝑜𝑚𝑏 = 𝑒𝑥𝑝 (𝑤𝑇�̅�) [26]. 

IV. REDUCING SCHEME VULNERABILITY 

 

A. Spoof detection: physical principles  

A hand based biometric device could be easily physically spoofed if an adversary imitates a 

genuine hand to generate a fake sample and tries to overcome the identity verification 

stage. As the proposed hand biometric device acquires hand images in both visible (red: 

650nm, green: 520nm and blue: 470nm bands) and 1470nm bands, a spectroscopic measure 

using the available bands can be used to discriminate the skin from other materials and 

reduce such vulnerability. 

Fig. 5 shows the measured skin reflectance at different wavelengths [15]. As can be 

seen, the spectrographic curve presents a minimum around 1470nm due to the vibrational 

absorption of the HO molecule present in the water content of the skin [17]. The minimum 

magnitude depends on the HO molecule concentration. Additionally, the skin reflectance 

contains a maximum around 650 nm (red color) and minima around 470 and 520nm (blue 

and green color) due mainly to oxyhemoglobin and deoxyhemoglobim [16]. The 

reflectance of Dark skin displays neither maxima nor minima because of the dominant 

absorption of the melanosome present in the darker skin [16].  

To measure the spectroscopic relationship among these maxima and minima, we use an 

extended version of the normalized difference skin index (𝑁𝐷𝑆𝐼 ) used for search and 

rescue [15] called by us Modified NDSI and defined as: 



𝑀𝑁𝐷𝑆𝐼(𝜆1, 𝜆2) =
𝐽(𝜆1) − 𝐽(𝜆2)

𝐽(𝜆1) + 𝐽(𝜆2)
 

where 𝐽(𝜆) are the intensities of the reflected radiation at wavelength  𝜆. As defined in [15], 

𝑁𝐷𝑆𝐼 = 𝑀𝑁𝐷𝑆𝐼(1100,1400) is the best choice of 𝜆1  and 𝜆2  for skin detection. In our 

case, and limited by the available bands, we use 𝑀𝑁𝐷𝑆𝐼(650,1470), 𝑀𝑁𝐷𝑆𝐼(520,1470), 

and 𝑀𝑁𝐷𝑆𝐼(470,1470).   

An expected value of these indices for skin can be estimated using the simple Kubelka 

and Munk model [16] which defines the reflected radiation as 𝐽(𝜆) = 𝑅(𝜆)𝐼(𝜆), where 𝐼(𝜆) 

is the intensity of the incident radiation and 𝑅(𝜆) the reflectance. Fig 5 shows the measured 

reflectance of the human skin and the radiation curve of the light bulb used. The index can 

be estimated for Caucasian skin as: 

𝑀𝑁𝐷𝑆𝐼(650,1470) ≈
0.62 ∙ 0.9 − 0.06 ∙ 1.85

0.62 ∙ 0.9 + 0.06 ∙ 1.85
= 0.67 

and 𝑀𝑁𝐷𝑆𝐼(520,1470) ≈ 𝑀𝑁𝐷𝑆𝐼(470,1470) ≈ 0.44 . For black skin the values are 

approximately equal to 0.23, -0.15 and -0.15 respectively. 

To circumvent the proposed spoof detector we need an imitated hand made of material 

with a similar concentration of HO molecules to skin and with a skin like color. 

 

Fig 5 Spectral reflectance of black and Caucasian skin [15] and radiation curve of the lamp used in the 

proposed hand biometric device 



 

B. Spoof detection procedure 

The spoof detection is based on comparing the skin tissue response in the visible and in the 

SWIR imaging. The correspondence between pixels of both band images is not linear 

because they have been recorded with cameras located in different positions. A procedure 

to correct such a projection distortion between them is to map the coordinates of both 

images with a second order polynomial [27]. The polynomial coefficients are obtained by 

minimizing the mean square error over the nine fingertips and valleys of each image as 

landmarks. Therefore, the spoof detector has been as follows: 

1. Let {𝑥𝑖 , 𝑦𝑖}𝑖=1
9 be the ordered tip and valley coordinates of the hand in the 𝐼𝑆𝑊𝐼𝑅(𝑥, 𝑦) 

image. 

2. Let  𝐼𝑟𝑟(𝑥, 𝑦) be the 𝐼𝑣𝑐(𝑥, 𝑦, 1) image reduced to 320x240 pixels and {𝑥𝑟𝑖, 𝑦𝑟𝑖}𝑖=1
9   the 

ordered tip and valley coordinates. 

3.  The {𝑥𝑖 , 𝑦𝑖}𝑖=1
9  coordinates are mapped onto {𝑥𝑟𝑖, 𝑦𝑟𝑖}𝑖=1

9 with a two dimensional least 

squares polynomial as follows: 

(
𝑥𝑟𝑖

𝑦𝑟𝑖
) = 𝑄 ∙ (1  𝑥𝑖    𝑥𝑖

2   𝑦𝑖   𝑦𝑖𝑥𝑖     𝑦𝑖𝑥𝑖
2   𝑦𝑖

2   𝑦𝑖
2𝑥𝑖    𝑦𝑖

2𝑥𝑖
2 )𝑇 

where 𝑄 is the 2 column by 9 row matrix that minimizes the mean square error. This is 

obtained via the pseudoinverse (pinv) as: 

𝑄 = (
𝑥𝑟1   𝑥𝑟2    …   𝑥𝑟9

𝑦𝑟1   𝑦𝑟2    …   𝑦𝑟9
) ∙ 𝑝𝑖𝑛𝑣 (

1  𝑥1   𝑥1
2   𝑦1   𝑦1𝑥1    𝑦1𝑥1

2   𝑦1
2   𝑦1

2𝑥1   𝑦1
2𝑥1

2

… . . .
1  𝑥9  𝑥9

2  𝑦9  𝑦9𝑥9  𝑦9𝑥9
2   𝑦9

2   𝑦9
2𝑥9   𝑦9

2𝑥9
2

)

𝑇

 

4. As the user identity is characterized by the finger widths or finger shape, we work out 

the 𝑀𝑁𝐷𝑆𝐼(650,1470) values for each pixel inside the finger area as:  



𝐷𝑟(𝑥, 𝑦) =
𝐼𝑟𝑟(𝑥, 𝑦) − 𝐼1470(𝑥𝑟 , 𝑦𝑟)

𝐼𝑟𝑟(𝑥, 𝑦) + 𝐼1470(𝑥𝑟 , 𝑦𝑟)
   ∀ {𝑥, 𝑦} ∈ 𝑖𝑛𝑠𝑖𝑑𝑒 𝑓𝑖𝑛𝑔𝑒𝑟 𝑎𝑟𝑒𝑎 

where {𝑥𝑟, 𝑦𝑟} are the coordinates of  {𝑥, 𝑦} mapped by the Q matrix. The number of pixels 

inside the four finger areas range from 4000 to 1000 approximately, in our database. 

5. The spoof detection score 𝑠𝑟 is obtained calculating the 10th percentile of the 𝐷𝑟(𝑥, 𝑦) 

distribution. This percentile is chosen because any other measure such as mean or mode 

of 𝐷𝑟(𝑥, 𝑦) can be spoofed if the forger changes just a part of the finger, e.g. by adding 

silicone on the tip to make it longer, or on one side to make it wider. A lower percentile 

makes the system too sensitive to noise, i.e. salt and pepper noise.  

6. The steps 4 and 5 are repeated for reduced images 𝐼𝑣𝑐(𝑥, 𝑦, 2) and 𝐼𝑣𝑐(𝑥, 𝑦, 3) to obtain 

𝑠𝑔 and 𝑠𝑏 respectively.  

7. The spoof detection is performed with a linear discriminator based on Rosenblatt’s 

perceptron [24] the coefficients of which are obtained by minimizing the square error 

over the training sequence, that is to say, the input sample is considered skin if 𝑠𝑠𝑝𝑜𝑜𝑓 =

𝑤0 + 𝑤1𝑠𝑏 + 𝑤2𝑠𝑔 + 𝑤3𝑠𝑟>0, otherwise is considered an imitation. 

V. SWIR HAND BIOMETRIC EVALUATION 

 

A. Hands Database  

 

Our hands database consists of 10 times 2 acquisitions (visible, and 1470nm bands) from 

100 people. The 2000 images were taken from the users’ right hand. Most of the users are 

between 23 to 40 years old. Approximately half of the database volunteers are male. 

Additionally, we have another set of 30 people by 10 repetitions called the negative 

training database. 



As our imitated hand database, we have made 62 imitated hands of different materials. 

We have chosen classical synthetic materials such as silicone or gelatine not because of 

their malleability for imitate fingers [13][28] but because they contain HO molecules in 

their composition which absorbs the 1470nm radiation, as do genuine hands. Additionally 

we have made hands with natural materials such as leaves or fruits in which the water 

content is similar to the human body. We acquired 5 images of each imitated hand per 

session. For synthetic materials, we took just one session and for natural material we took 

several sessions during which the samples experienced a natural drying procedure which 

results in a loss of water content. This can be useful for measuring the time validity of the 

natural samples. The rest of materials evaluated, such as the clay, paper, etc. with different 

colours and textures, were chosen just to check for any possible anomalies in our results. 

The evaluated materials and their colours are listed in Table I. The table also shows the 

𝑠𝑠𝑝𝑜𝑜𝑓 scores obtained with each material (35 for plastic, 35 for paper, 5 for picture, and so 

on) and the Mahalanobis distance between these and the 980 𝑠𝑠𝑝𝑜𝑜𝑓 scores obtained using 

the Caucasian hands. Images of several imitated hands can be seen in Fig 6. 

 

 
 

 

Fig 6.  Some examples of images acquired at 1470nm 𝐼1470(𝑥𝑟 , 𝑦𝑟) and in red 𝐼𝑟𝑟(𝑥, 𝑦) bands. Upper row: red 

band; Lower row: 1470nm band. From left to right: genuine hand, clay, cork, plaster, black plastic and 

silicone imitated hands.  

 



TABLE I. HAND IMITATION MATERIALS USED FOR SPOOF DETECTOR TEST 

 

Imitated hands Observations Images Δ𝑀
2 

S
y
n
th

e
ti
c
 m

a
te

ri
a
ls

 
Plastic Seven colors1 35 25.00 

Paper Seven colors1 35 20.42 

Paper Hand picture scanned at 600 dpi 5 18.34 

Cardboard Seven colors1 35 20.56 

Play-doh Seven colors1 35 22.34 

Clay Brown 5 22.32 

Wood Beech, cherry, riga, pine and wood cement 25 19.32 

Cork White color 5 31.73 

Plaster White color 5 10.63 

Metal Gray stainless steel 5 15.31 

Leather Brown color 5 16.67 

Clothes Red, brown and beige gloves 15 14.09 

Wax Natural and mixed with red tempera powder 10 10.34 

Latex Glove 5 6.86 

Rubber Brown color 5 10.84 

Glue Wood glue 5 3.22 

Chewing 
gum 

Red and pink color 10 3.44 

Gelatin Made with red and pink powder 10 2.05 

Silicone  5 2.82 

N
a
tu

ra
l 
m

a
te

ri
a
ls

 

Tree leaves Eucalyptus, orange & laurel trees 15 1.85 

Tree leaves As above, dried during a week 15 2.91 

Tree leaves As above, dried during a fortnight 15 3.65 

Fruit Orange, banana, red apple 15 1.23 

Fruit As above, dried during one day 15 1.92 

Fruit As above, dried during two days 15 2.04 

Natural latex 
Harvested from common fig and Euphorbia 
Canariensis 

10 1.34 

Natural latex As above, dried during a week 10 1.97 

Natural Resin Harvested from Pine 5 1.72 

Natural Resin As above, dried during a week 5 2.45 

Ham Fresh 5 1.05 

Ham As above, dried during a day 5 1.78 

Genuine hands 
Caucasian (50 male and 48 female) 980 0 

Black (2 female) 20 0.45 

Negative Training 
database 

Caucasian (15 male and 15 female) 300 0.12 

1White, yellow, orange, pink, red, brown and violet color 
2 Mahalanobis distance between each material and hand tissue. 
 

 

B. Evaluation methodology 

 

The evaluation of the security of the hand shape biometric device proposed has been 

conducted on the basis of the guidance provided in [29] and [30]. It has been performed in 

two steps, each evaluating one of the two hypotheses we set out above in section 1A. 



To evaluate the first hypothesis, we make measurements of the statistical error rates in 

order to establish as reliable a figure as possible for the verification and identification 

performance of the device. The statistical measures provided for verification are the False 

Accept Rate (FAR) and the False Reject Rate (FRR) along with the Detection Error Trade 

(DET) curve and Equal Error Rate (EER) value. For identification we provide the 

Cumulative Match Curve (CMC). 

In the case of global shape hand based verifiers, four randomly chosen hand images are 

used as user reference images. In the case of the geometrical based hand verifier, the LS-

SVM of each user is trained with the same four reference hand images as positive samples. 

Two training case scenarios are considered: 

 Case 1, the negative samples were the reference samples of the other users: 99x4=396. 

 Case 2, the negative samples were the 300 samples of the negative training database. 

This second case attempts to ascertain more realistic results because it did not use 

information about the imposter users in the training models and could be used as a fair 

comparison with the global shape hand verifier. 

To evaluate the devices, we use the remaining 100x6 samples of the database not used 

for training. The EER values given are the average and variance of the results obtained by 

repeating the experiment 10 times.. As a result, we have 𝑁𝑔 = 100𝑥6𝑥10 = 6000 scores 

for genuine users and 𝑁𝑓 = 100𝑥99𝑥6𝑥10 = 594000 scores for impostors.  

Turning to the evaluation methodology for the second hypothesis, we assess whether the 

biometric system will accept an artifact as a valid biometric sample.  The evaluation is 

conducted by supposing that the spoof detector has not been trained with the evaluated 

material. Therefore we divide the materials in two disjointed subsets 𝑀1 and 𝑀2 containing 



half of the synthetic and half of the natural materials. The performance measures are 

obtained by concatenating the results of training with subset 𝑀1 and testing with 𝑀2 plus 

training with subset 𝑀2and testing with 𝑀1. As for the skin class we have trained with two 

acquisitions of the 100 hand database users and tested with another two acquisitions. The 

black hand samples are used one for training and the other one for testing. 

The aggregated results are given as FAR and FRR curves. The FAR and FRR curves do 

not adequately represent the performance if a sample material is able to deceive repeatedly 

the spoof detector [13]. In order to gain a better idea of the discriminative ability of the 

spoof detector, the Mahalanobis distance [24] between the score distributions of hands and 

different materials is given in Table I. A high Mahalanobis distance means a strong 

difference between genuine hands and materials used for imitations. 

C. Biometric verifiers experimental results 

To establish a baseline, the biometric verifiers developed in both bands have been evaluated 

separately. Table II shows the EER obtained from the experiments. As to global shape 

features, it can be seen that the results with ICA2 are very similar to those obtained in [22] 

and a little better than those obtained with alignment. Contrary to what we expected, the 

geometrical features work better than global shape features. Although is not the aim of this 

paper to compare them, this improvement is attributed to the classifier used.  In our 

experiments, using a KNN classifier [24], the geometrical features performs at an EER 

around 4.5%, using SVM light [31] the EER decrease to 1.5% and using the above LS-

SVM the error is below 0.6%. We have not been able to obtain these improvements by 

applying the SVM classifier to alignment or to ICA2 features. 



Returning to the visible vs. 1470nm performance comparison, it can be seen that the 

best results are obtained with the SWIR band in all the cases, despite its lower resolution 

than in the visible images. This improvement could be attributed to the fact that the image 

acquisition based on hand radiation absorption gives a more precise hand contour, without 

the possible contour bias due to hand shade that appears in the visible band images.  

TABLE II. EERS (%) OF THE BIOMETRIC VERIFIERS IN VISIBLE AND SWIR BANDS 

Camera band 
Global shape features Geometrical features 

Alignment ICA2 Case 1 Case 2 

Visible 3.33±0.40 3.36±0.95 0.15±0.01 0.55±0.04 

SWIR 2.85±0.83 1.93±0.90  0.13±0.01 0.47±0.03 

 

D. Combining scores from visible and SWIR bands 

This section checks whether the hypothesis that the score combination of the visible and 

SWIR based hand shape biometric devices we have evaluated improves the system 

performance. Fig 7 represents the visible-SWIR joint distribution of the genuine and 

impostor scores for the geometrical features. It is easy to see that the genuine and imposter 

distribution are easier to separate taking into account the scores of both bands together than 

by raking each band on its own. 

 

Fig 7. visible-SWIR joint distribution of the genuine and impostor scores for the geometrical features and 

training case 2. 
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Table III shows the results of combining both bands at the score level for the different 

fusion methods evaluated. As can be seen, the combination improves significantly the 

scheme performance, the FLD and non-linear methods being the best strategies, providing 

similar results. We follow our discussion above about using the 𝑠𝑐𝑜𝑚𝑏 obtained with the 

FLD method and both experimental methodologies (case 1 and case 2) because this is the 

simplest one to calculate. The improvement using this combination is confirmed in Fig. 8 

which shows the DET curves. They compare the result of using 𝑠𝑣, 𝑠𝑆𝑊𝐼𝑅, and  𝑠𝑐𝑜𝑚𝑏 for the 

geometrical features (case 2 for a fair comparison with global shape methods), silhouette 

alignment and ICA2. For the case of identification, the CMC curves are provided in Fig 9. 

This improvement experimentally confirms that the combination of hand shape 

biometric devices operating in visible and SWIR band improves the performance. As the 

improvement remains when different features are used, we consider that it is due to the 

images acquired in each band being complementary, that is to say, the image in the SWIR 

band is robust to the noises and distortion that affects the visible image and vice versa. 

TABLE III 

EERS (%) RESULTS OBTAINED COMBINING VISIBLE AND SWIR BAND AT SCORE LEVEL 

Biometric Fusion Sum MIS MAS FLD KFDtanh KFDexp WMC 

Global shape 
features 

Alignment 2.39 2.74 2.67 2.36 2.37 2.34 2.36 

ICA2 1.79 2.74 1.77 1.68 1.68 1.70 1.69 

Geometrical 
features 

Case 1 0.014 0.15 0.015 0.004 0.004 0.005 0.004 

Case 2 0.32 0.51 0.32 0.25 0.25 0.25 0.25 
 

 
Fig 8. From left to right DET curves which compare the result of using 𝑠𝑣  (red dotted line), 𝑠1470(blue dashed-

dotted line) and  𝑠𝑐𝑜𝑚𝑏  (green continuous line) for the silhouette alignment, ICA2 and geometrical features  
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Fig 9. From left to right CMC curves which compare the result of using 𝑠𝑣  (dotted line), 𝑠1470(dashed line) 

and  𝑠𝑐𝑜𝑚𝑏  (continuous line) for the silhouette alignment, ICA2 and geometrical features 

 

E. Spoof detection assessment 

Fig. 10 shows the joint distribution of  𝑠𝑔 and 𝑠𝑟 for genuine and imitated hands. To make 

the illustration clearer, we have not drawn the 3D graphic. It can be seen that most of the 

scores lies around the above calculated Caucasian skin center. The skin scores distribution 

moves toward the black skin center with increasing skin melanosome level.  Referring to 

imitated hands, the nearest scores to the linear discriminator border belong to natural material. 

To illustrate further the spoof detector operating mode, Fig 11 shows the FAR and FRR 

curves of the scores 𝑠𝑠𝑝𝑜𝑜𝑓  obtained from genuine and imitated hands. As the linear 

discriminator that combines the red, green and blue scores has been designed for a 

threshold equal to zero, it can be seen that there are no errors when using this database. The 

nearest materials to the threshold are the natural ones while the nearest skin to the threshold 

is black skin.   

  

Fig 10 Joint-distribution of scores 𝑠𝑔 and 𝑠𝑟  for 

genuine and imitated hands. 

Fig 11 FAR and FRR curves of the scores 

obtained from genuine and imitated hands 
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The above aggregated results do not show the ability of the spoof detector to 

discriminate between the individual materials we used for imitation hands. To illustrate this 

ability, Table I show the Mahalanobis distance between the 𝑠𝑠𝑝𝑜𝑜𝑓 for the Caucasians hands 

and each material. The distance from the hands to the nearest material, which is the fresh 

ham, is greater than the distance between the hands themselves, including the black hands. 

The distance of the hands to the natural material increases when the natural samples are 

dried, confirming the importance of water contents on the spoofing material response. The 

nearest synthetic material is the gelatin. 

As an impostor can change his/her finger shape by adding a piece of silicone or another 

material to their fingers, we should assess the spoof detector robustness against finger 

modifications. The relevant experiment, the result of which can be seen in Fig. 12, consists 

of adding more and more silicone to a finger until the spoof detector rejects the sample. In 

this experiment, the material added is silicone with pink powder, which is one of the 

nearest synthetic materials to the hand tissue. The score 𝑠𝑠𝑝𝑜𝑜𝑓 has been obtained by adding 

from 1% to 30% silicone to the finger area. In the ranges 1% to 10% and 10% to 30% the 

increasing steps are approximately 1% and 5% respectively. As 𝑠𝑠𝑝𝑜𝑜𝑓 is the combination 

of each band score obtained at 10th percentile of MNDSI distributions, we have also varied 

this percentile from 2nd to 26th percentile. It can be seen that using the 2nd or 4th percentile, 

the image is always rejected as skin because of the noise or the non-perfect matching 

between the visible and SWIR images. At the 10th percentile, the modified finger can 

deceive the spoof detector until approximately 7% of the finger area has been added which 

is equivalent to adding half a centimeter to the finger length. This means that an 

impersonator with a smaller hand may try to add to each of his fingers up to 7% of its 



projected area in silicone to imitate someone else’s hand. To calculate this possibility, Fig. 

13 shows the distribution of the percentage area differences between different human 

subjects. In our database, the probability of two subjects having a four finger area 

difference below 7% is 4.26% although a false positive in the aliveness detection algorithm 

does not imply a false acceptance during verification procedure.   

  

Fig 12.  Score 𝑠𝑠𝑝𝑜𝑜𝑓 against percentage of area 

added to the finger and the percentile of the 

distribution used to work out the score. If 𝑠𝑠𝑝𝑜𝑜𝑓 > 0 

the decision is skin, otherwise spoof. 

Fig. 13 Distribution of the percentage area 

differences between different human subjects. 

F. Computational load 

In this section, Table IV show the estimated computational time for the feature extraction, 

matching and spoof detector stages using Matlab on a Pentium Dual-Core 1.66GHz with 

4Gb RAM. The geometrical feature extraction includes the fingertip and valley detection 

plus the measures of the 4 finger widths while the matching is the time taken by the 

LSSVM. In the case of alignment, the feature extraction consists of obtaining the fingertips 

and valleys while the matching uses the Hausdorf distance measure between fingers. For 

ICA2, the feature extraction consists of obtaining the shape feature vector and the matching 

is the calculation of the cosine similarity measure. As can be seen in Table IV, except for 

ICA2 feature extraction, the verification and spoof detector takes about 0.5 seconds. The 

spoof detector takes about 60% of the computing time.  
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TABLE IV: COMPUTATIONAL TIME (SECONDS)  

 geometrical alignment ICA2 

Feature extraction 0.233917 0.194861 5.21 

Matching 0.000768 0.026920 0.000045 

Spoof detector 0.329357 

Total time 0.564042 0.551133 5.530045 
 

 

Therefore, except in the case of ICA2, the hand based biometric identifier using one camera 

will take approximately half a second to accept or reject the user and a little bit more than a 

second using the proposed bimodal scheme. 

 

VI. CONCLUSIONS  

 

We have examined different strategies for combining visible and 1470nm band cameras for 

hand shape based biometric devices in order to increase the performance and the security of 

the biometric. The experiments have been designed to assess the two initial hypotheses: 

First, combining the visible and SWIR band scores will improve the overall performance of 

the hand shape biometric device because the images are acquired using different physical 

properties. Second, it is possible to design a reliable skin detector by comparing the pixel 

values of the hand image in the visible and 1470nm bands. 

The first hypothesis has been validated using different hand shape features based on 

geometrical and global shape models. In all the tested cases, the score combination 

improves the overall performance. Among the different score combination strategies, the 

linear score normalization with weighted linear fusion and with a priori estimation of the 

weight factor has shown to be the best. 

To validate the second hypothesis, we have proposed a combined score obtained from 

the 10th percentile of the Modified Normalized Difference Skin Index distributions for the 



red, green and blue bands. This has been tested with 100 people and 390 hand images of 62 

imitated hands made of different synthetic and natural materials.  

The result of the experiments show that, when working with hand shape biometric 

devices, to add a second camera working at 1470nm wavelength is a promising option for 

reliable spoof detection, especially when the same sensor is used to obtain the additional 

advantage of improving the overall scheme performance. 
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