
Dynamic Ceiling Priorities in GNAT
Implementation Report

Javier Miranda
Applied Microelectronics Research Institute (IUMA)
Universidad de Las Palmas de Gran Canaria, Spain

jmiranda@iuma.ulpgc.es

Edmond Schonberg
Courant Institute of Mathematical Sciences

New York University, USA
schonberg@cs.nyu.edu

Miguel Masmano, Jorge Real, Alfons Crespo
Universidad Politécnica de Valencia, Spain
fmmasmano,jorge,alfons@disca.upv.esg

Abstract

This document presents the required modifications to the
GNAT compiler to support dynamic ceiling priorities in pro-
tected objects [1]. In a nutshell, dynamic ceilings for pro-
tected objects can be implemented in a simple and efficient
manner in the GNAT compiler and run-time.

1 Introduction

In Ada, the ceiling priority of a protected object (PO)
is static and thus can only be assigned once, by means of
pragma Priority, at PO creation time. By contrast, task
priorities are dynamic. The ability to dynamically modify
ceiling priorities is especially useful in multi-moded sys-
tems, systems scheduled with dynamic priorities, and dy-
namically adapting library units containing POs.

For multi-moded systems, a common workaround is to
use the so called ”ceiling of ceilings”, i.e. the highest ceil-
ing that PO will have across all operating modes. Unfor-
tunately, this approach may have a considerable impact on
blocking times: by using the ceiling of ceilings, a task run-
ning in a particular mode can be blocked by another task
due to the ceiling priority of a PO being higher in another
operating mode. It can be the case that the priority assign-
ment for that particular mode would produce a lower ceiling
for the PO, thus resulting in a null blocking time for some
tasks.

Two new attributes are proposed in [1, 5] to assign or
read the current PO’s ceiling priority: ’Set Ceiling and
’Get Ceiling, respectively. These attributes can only be
used from within the PO. More precisely:

� ’Set Ceiling can only be called from within a protected
procedure or entry of the affected PO.

� ’Get Ceiling can be called from within any protected
operation of the affected PO and it can also be used in
barrier expressions at entries of the affected PO.

The prefix for both attributes can denote a protected type
or a protected object. The thread currently executing the
protected operation must be executing, at most, at the cur-
rent ceiling priority of the PO. Otherwise, Program Error is
raised in the caller, as is the rule in Ada 95 for accessing a
PO (ARM D.5-11). In other words, the ceiling change must
follow the ceiling locking protocol. This approach elimi-
nates the need for an additional lock on the PO.

The attribute ’Get Ceiling can be used in a barrier ex-
pression of an entry of the affected PO. This feature can be
very useful for the application to avoid violating the ceil-
ing by tasks queued in protected entries while the ceiling
change occurs. Nevertheless, ’Get Ceiling is not a guar-
antee itself: an incorrect program may use ’Get Ceiling in
a barrier and still produce the error. For instance, if the
task has a priority 10 and the barrier of a protected entry is
”when PO’Get Ceiling < 5”, then the ceiling violation will
eventually occur [1].

The change of the ceiling by means of ’Set Ceiling does
not take place until the end of the enclosing protected op-
eration. This avoids the awkward situation that might oc-
cur when lowering the ceiling if the change was immediate.
The implementation can easily conform to this semantics
by using two variables for the ceiling: the one to become
and the one still in effect. Set Ceiling just assigns the first
one. At the end of a protected procedure that modifies the
ceiling, the new ceiling overwrites the old one. From that

1



moment on, tasks calling a protected operation on the PO
will see the new ceiling. According to this semantics, a call
to ’Get Ceiling after a call to ’Set Ceiling within the same
protected operation will still return the old ceiling.

The rest of this paper is structured as follows: Section 2
presents the required modifications to the GNAT front-end;
Section 3 presents the required modifications to the GNAT
run-time. We close with some conclusions.

2 GNAT Front-end Modifications

In order to support dynamic ceiling priorities (described
in [1]), the following modifications must be done to the
GNAT-3.15p compiler:

1. Addition of a new compilation flag (-gnat+C). This
flag enables the use of dynamic ceiling priorities for
protected objects and, at the same time, permits us to
check that the modifications done to the compiler are
correct. For this purpose, after all the modifications de-
scribed in this report were implemented, all the front-
end sources were compiled with the modified GNAT
front-end, and the resulting compiler was checked to
be correct. The addition of the new flag follows the
steps described in [3], Section 3.1 (cf. GNAT files
switch-c.adb and opt.ads).

2. Addition of new identifiers, i.e. names known to the
compiler: Get Ceiling and Set Ceiling. The addition
of these identifiers follows the steps described in [4],
Section 2 (cf. GNAT files s-names.ads, s-names-adb,
and a-snames.h).

3. Semantic analysis of the new attributes (cf. GNAT file
sem attr.adb). The semantic analyzer must ensure that
the new attributes are called from within a protected
operation of the affected protected object. In addition,
Set Ceiling can not be called from within a protected
function, and Get Ceiling can be used in the barrier
expressions of entries of the affected protected object.

NOTE: Although [1] also proposes the addition of a
new pragma to mark the protected objects with dy-
namic ceiling priorities, we have found that this is
not really a requirement. In our implementation the
semantic analyzer automatically marks the protected
types that use the new attributes, and thus no additional
cost is added to POs that do not use the new attributes.

4. Expansion of the new attributes (cf. GNAT file
exp attr.adb). Get Ceiling is expanded into a call to
a run-time function that returns the current ceiling of
the protected object. Set Ceiling is expanded into a
call to a run-time procedure that sets the new ceiling
of the protected object. The change of the ceiling does

not take place until the end of the enclosing protected
operation (as described later). In order to allow the
front-end to call these new run-time subprograms, they
are registered in the GNAT file rtsfind.ads, which pro-
vides name links between the compiler and run-time
subprograms.

3 GNAT Run-Time Modifications

The GNAT implementation of protected objects consid-
ers two special cases: (1) PO without entries, and (2) PO
with entries. Although this is important for the GNAT com-
piler (to give support to critical systems with special restric-
tions), it does not add special complexity to our implemen-
tation: the routines must just be added in two run-time pack-
ages (cf. GNAT files s-taprob.ad[sb] and s-tpoben.ad[sb]).
In the following sections we present the basic functionality
of the new run-time subprograms, and the required modifi-
cations for each case.

3.1 New Run-Time Data

Following the proposal discussed in [1], a new field was
added to the GNAT data type associated to the protected
object:

type Protection is record
...
New_Ceiling : System.Any_Priority;

end record;

Obviously, the run-time routine responsible for the pro-
tected object initialization was also modified to set the ini-
tial value of New Ceiling to the initial ceiling of the pro-
tected object.

3.2 New Run-Time Subprograms

The new run-time subprograms basically follow the im-
plementation proposed in [1]. Their body is as follows:

function Get_Ceiling (Object : Protection)
return Any_Priority is

begin
return Object.Ceiling;

end Get_Ceiling;

procedure Set_Ceiling (Object : Protection_Access;
Priority : Any_Priority) is

begin
Object.New_Ceiling := Priority;

end Set_Ceiling;

procedure Adjust_Ceiling (Object : Protection_Access) is
begin

Set_Prio_Ceiling (Object.L, Object.New_Ceiling);
Object.Ceiling := Object.New_Ceiling;

end Adjust_Ceiling;

The service Set Prio Ceiling is not available in the cur-
rent versions of GNAT. Its implementation should call the



corresponding POSIX service to update the ceiling of the
PO’s lock. Note that a bare-machine implementation of the
run-time system could avoid this call only by relying on
priorities and the ceiling locking policy to achieve mutually
exclusive access to the PO.

In the following sections we discuss how and where the
front-end generates calls to Adjust Ceiling, which is the
critical point at which the new ceiling is set and the new
value becomes visible to other tasks accessing the object.

Readers with a deep knowledge of the GNAT run-time
system will detect that the code fragments in next subsec-
tions have minor differences with respect to the real code
generated by the compiler. We have adapted the code ex-
panded by GNAT to the Ada syntax to ease its reading
without the need of special linguistic support outside of the
scope of standard Ada.

3.2.1 PO without entries

For each protected operation Op, the GNAT compiler gen-
erates two subprograms OpP and OpN. OpP simply takes
the object lock, and invokes OpN. OpN contains the user
code. If a call is an internal call, i.e. a call from within an
operation of the same object, the call invokes OpN directly.
If the call is external, it is implemented as a call to OpP. In
addition, one additional parameter is added by the compiler
to the parameters profile of the protected subprograms: the
object itself, designated object in the sources. For example:

procedure procN (_object: in out poV; ... );
procedure procP (_object: in out poV; ... );

In order to see the point at which the call to Ad-
just Ceiling must be done, let us see the code of the P sub-
program in detail.

procedure procP (_object : in out poV; ... ) is

procedure Clean is
begin

GNARL.Adjust_Ceiling (_object._object’access);
GNARL.Unlock (_object._object’access);
GNARL.Abort_Undefer;

end Clean;

begin
GNARL.Abort_Defer;
GNARL.Lock_Write (_object._object’access);
procN (_object; ... );
Clean;

exception
when others =>

declare
E : Exception_Occurrence;

begin
GNARL.Save_Occurrence

(E, GNARL.Get_Current_Exception);
Clean;
GNARL.Reraise (E);

end;
end procP;

As the reader can see, this case is straightforward; be-
cause the protected object has no entries, we just need to

set the new ceiling of the protected object inside the Clean
subprogram (which is called at the end of the protected sub-
program execution, whether the operation completes suc-
cessfully or abnormally). Therefore we modified the cor-
responding expander package (GNAT file exp ch7.adb) to
generate this call. Obviously, because protected functions
cannot modify the ceiling of the protected object, the call
to Adjust Ceiling is not generated in the Clean subprogram
associated with protected functions.

3.2.2 PO with entries

Two cases must be considered here: protected procedures
and protected entries. Since GNAT follows the proxy model
for the implementation of protected objects (cf. [2], Chap-
ter 5), after the code of a protected entry or protected proce-
dure is executed, the run-time subprogram Service Entries
is called to service calls queued on entries of the PO. The
desired semantics defined by the IRTAW are to postpone
the effective ceiling change until the end of the protected
action, not just the protected operation. Therefore, the eval-
uation of guards and the execution of entry bodies with open
barriers are performed at the old ceiling priority.

1 - Protected Procedures

1: procedure procP (_object : in out poV; ... ) is
2:
3: procedure Clean is
4: begin
5: GNARL.Service_Entries (_object._object’access);
6: GNARL.Adjust_Ceiling (_object._object’access);
7: GNARL.Unlock (_object._object’access);
8: GNARL.Abort_Undefer;
9: end Clean;

10:
11 begin
12: GNARL.Abort_Defer;
13: GNARL.Lock_Write (_object._object’access);
14: procN (_object; ... );
15: Clean;
16: exception
17: when others =>
18: declare
19: E : Exception_Occurrence;
20: begin
21: GNARL.Save_Occurrence
22: (E, GNARL.Get_Current_Exception);
23: Clean;
24: GNARL.Reraise (E);
25: end;
26: end procP;

This case is similar to the case of a protected object with-
out entries. The main difference can be found in line 5 (the
call to the Service Entries routine). In this case, the call
to Adjust Ceiling must be added ”after” the call to Ser-
vice Entries because, according to [1], the pending calls
and the barriers must be evaluated with the old active pri-
ority. The run-time subprogram Service Entries needs not
be modified since, according to [1], the ceiling change does
not take effect until the end of the protected action, which
in the proxy model includes servicing queued tasks whose



barriers have opened as the effect of executing the protected
subprogram.

2 - Protected Entries The entry body is translated by the
GNAT compiler into a procedure [2]:

procedure Entry_Name
(Object : Address;
Parameters : Address;
Entry_Index : Protected_Entry_Index) is

...
begin

<Statement_Sequence>
GNARL.Complete_Entry_Body (_object._object);

exception
when others =>

GNARL.Exceptional_Complete_Entry_Body
(_object._object, GNARL.Get_GNAT_Exception);

end Entry_Name;

In this case we add the call to the new Adjust Ceiling
routine inside the Exceptional Complete Entry Body
subprogram (Complete Entry Body calls Exceptional -
Complete Entry Body with a null exception occurrence).

3.3 Exception Handling

If an exception occurs inside the protected operation that
changes the ceiling, the ceiling remains unchanged.

Queued tasks whose barriers become open as the effect
of executing the protected operation where ’Set Priority is
called, will not produce ceiling violations since the change
of the ceiling does not take effect until the end of the pro-
tected action, therefore these tasks with open barriers will
still execute at the old ceiling priority (this is immediate
in the proxy model implementation of protected objects,
but requires an additional ceiling check in the self-service
model).

A queued task whose barrier remains closed after the
protected action, could violate the ceiling when the bar-
rier gets open. This situation is already considered by the
language (ARM paragraph D.5(11) [6]) with respect to dy-
namic priorities for tasks. A ceiling violation may occur due
to dynamic priorities for tasks or, with dynamic ceilings,
due to the possibility of dynamically changing the ceiling.
The language allows to temporarily run the task with a low-
ered priority, or raise Program Error to the queued task, or
both, or neither.

4 Acknowledgements

This work has been partly funded by the Spanish Gov-
ernment’s Ministry of Science and Technology projects
number DPI2002-04432-C03-01 and TIC2001–1586–C03–
03. Thanks to Arnaud Charlet, Michael González and
Mario Aldea for their comments.

5 Conclusions

The conclusion from this work is clear: dynamic ceilings
can be efficiently implemented in the GNAT Ada compiler.
Nevertheless, it is important to note that implementations of
the run-time system on an underlying POSIX layer, need the
pthread mutex setprioceiling service. Moreover, we have
found that the POSIX standard does not specify whether a
task already owning the lock of a mutex is allowed to call
this service on that mutex. A clarification request has been
issued to the POSIX committee about this service.

Initially, a pragma was proposed to make this feature op-
tional for each protected type. The idea behind the proposal
was that the overhead of dynamic ceilings could affect the
performance of protected operations in general, even in the
case of a PO with static ceiling. But, because the semantic
analyzer can mark the protected types which use the new
attributes, the additional pragma is no longer required: if a
protected object does not use dynamic ceilings, then it im-
poses no additional run-time cost.

References

[1] Ada Issue AI-00327. Dynamic Ceiling Priorities.
http://www.ada-auth.org/ais.html, September 2003.

[2] J. Miranda. A Detailed Description of the GNU Ada
Run-Time. http://gnat.webhop.info and http://www.-
iuma.ulpgc.es/users/jmiranda, June 2002.

[3] J. Miranda, F. Guerra, E. Martel, J. Martin, and A. Gon-
zalez. How to Use GNAT to Efficiently Preprocess New
Ada Sentences. In J.Blieberger, A. Strohmeier (Eds):
Proceedings of 7th Reliable Software Technologies -
Ada-Europe 2002, Lecture Notes in Computer Science,
volume 2361, pages 179–192. Springer Verlag, June
2003.

[4] J. Miranda, F. Guerra, J. Martin, and A. Gonzalez. How
to Modify the GNAT Front-End to experiment with Ada
Extensions. In J. P. Rosen, A. Strohmeier (Eds): Pro-
ceedings of 8th Reliable Software Technologies - Ada-
Europe 2003, Toulouse, France, June 16-20, 2003. Lec-
ture Notes in Computer Science, volume 1622, pages
226–237. Springer Verlag, June 1999.

[5] J. Real, A. Crespo, A. Burns, and A. Wellings. Pro-
tected Ceiling Changes. Ada Letters, XXII(4):66–71,
2002.

[6] T. Taft and R. Duff and R. Brukardt and E. Ploedereder
(eds.). Consolidated Ada Reference Manual. Springer,
Lecture Notes on Computer Science, 2219, 2000.


