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ABSTRACT
The GNAT Development Team is directly involved with the
Ada 2005 effort, both participating in the Ada Rapporteur
Group (ARG), and implementing and testing the new fea-
tures proposed for the language revision. In this paper we
summarize the Ada 2005 issues already implemented in the
development version of GNAT, and give a brief overview
of the implementation of the more complex ones. We find
that the proposed language enhancements fit well into the
existing compiler structure, and present no major implemen-
tation hurdles.

Categories and Subject Descriptors: D.3.0 [Program-
ming Languages]: General—Ada, D.3.3 [Language Cons-
tructs and Features]: abstract data types, classes and ob-
jects, packages, data types and structures.

General Terms: Languages, Standardization, Reliability.

Keywords: Ada 2005, Compiler, Front-end, GNAT.

1. INTRODUCTION
As part of the ongoing standardization activities for Ada,

the language is reviewed periodically to see if corrections
and/or new features are warranted. Such a review is cur-
rently in progress. A revision in the form of official amend-
ments to the Ada 95 standard is scheduled for release for
2005, and has thus come to be known informally as “Ada
2005.” This process is carried out under the auspices of the
International Organization for Standardization (ISO), more
specifically by the Ada Rapporteur Group (ARG), a tech-
nical committee from ISO’s Working Group for Ada (WG9)
that includes Ada compiler implementors, users, and other
language experts.

Over the years since the previous standard, the ARG and
WG9 have been working on two major documents: Corri-
gendum 2000 [18], that completes the definition of Ada 95,
and it is currently implemented by most Ada compilers, and
Corrigendum 200Y, a working document that contains the
new Ada 2005 issues. New issues are brought to the ARG
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by users, implementors, and language designers. Each Ada
Issue (AI) is given a unique code (i.e. AI-231) and classi-
fied as: a) Confirmation, the ARM is correct and clear, b)
Ramification, the ARM is correct but obscure, c) No action,
irrelevant or too far afield, d) Binding interpretation, the
text of the ARM is incorrect and must be modified, and fi-
nally e) Amendment, which means “new language feature”.
This is the set of AI’s that is of greatest interest to users
and implementors, as it defines the “new look” and greater
expressiveness of the next version of the language.

The GNAT development team participates actively in the
activities of the ARG, and has been prototyping the imple-
mentation of the most substantial AI’s, to make sure that
they do not present major implementation hurdles or up-
heavals in the architecture of the compiler. As of this writ-
ing, the GNAT development team has implemented the fol-
lowing approved Corrigendum 200Y amendments:

• Visibility issues: Limited with clauses (AI-217), sub-
programs within private units (AI-220), and private
with clauses (AI-262).

• Access-type issues: Generalized use of anonymous
access types (AI-230), access to constant parameters
and null-excluding access subtypes (AI-231), resolu-
tion of ’Access (AI-235), and anonymous access to sub-
program types (AI-254).

• Aggregates issues: Aggregates for limited types (AI-
287).

• Abstract-subprogram issues: Abstract non-dispat-
ching operations (AI-310).

• Real-time and high-integrity issues: New pragma
and additional restriction identifiers for real-time sys-
tems (AI-305), and Ravenscar profile for high-integrity
systems (AI-249).

• Object Oriented Programming issues: abstract
interfaces to provide multiple inheritance (AI-251), and
the object.operation notation (AI-252).

• Interfacing with other languages: unchecked
unions, that is to say variant records with no run-time
discriminant (AI-216).

This paper is structured in two parts. In the first part
(Section 2) we summarize the Ada 2005 issues already im-
plemented in GNAT. In the second part (Section 3) we give
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an overview of the most interesting details of the GNAT im-
plementation of these issues. We close with remarks on the
amendment process and the remaining path to Ada 2005.

2. PART I: SUMMARY OF ADA 2005
ISSUES

In this tutorial section we review briefly the semantics of
the important AI’s that have been implemented in GNAT.
A more complete discussion of the full set of AI’s can be
found in [17].

2.1 Visibility Issues

2.1.1 Limited with clause (AI-217)
Ada 95 allows mutually recursive types to be declared only

if they are all declared within the same library unit, which is
clearly undesirable for software engineering purposes. This
is probably the most glaring source of frustration for pro-
grammers who are used to the free use of incomplete refer-
ences in Java and C++. Ada 2005 allows mutual recursion
among types declared in separate packages by means of a
new kind of with-clause: the limited with clause [7]. For
example, the following Ada 2005 packages provide two mu-
tually recursive types that have components that are refer-
ences to each other:

limited with Q;
package P is
type Acc_T2 is access Q.T2;
type T1 is record

Ref : Acc_T2;
...

end record;
end P;

limited with P;
package Q is
type Acc_T1 is access P.T1;
type T2 is record

Ref : Acc_T1;
...

end record;
end Q;

There are two key features in this new construct: 1) It
introduces no semantic dependence on the named packages
(and hence no elaboration dependence, thus leaving the com-
piler to choose the order of elaboration), and 2) It provides
visibility of only the names of the packages and the packages
nested within them, and an incomplete view of all types in
the packages and nested packages (such incomplete views
imply the usual restrictions on incomplete types). Thus,
cyclic chains of with-clauses are allowed, so long as the chain
is broken by at least one limited-with-clause, and no elabo-
ration circularities are created.

2.1.2 Subprograms within private compilation units
(AI-220)

This issue, classified as Binding Interpretation, fixes a gap
found in Ada 95 related to a with clause that denotes a de-
scendant of a private package. Consider the following sce-
nario:

package A is
...

end A;
private package A.B is
...

end A.B;

package A.B.C is
...

end A.B.C;

with A.B.C; -- Not legal in Ada 2005
procedure A.X is
begin
...

end A.X;

Because the library subprogram A.X has no separate dec-
laration, in Ada 95 it is unclear whether the with clause of
descendant C of its private sibling A.B is allowed or not (see
the current wording of [18], Section 10.1.2(8)). In Ada 2005
this is clearly considered illegal because a public declaration
must never depend on a private unit [13].

2.1.3 Private with clause (AI-262)
Ada 95 provides private packages to organize the imple-

mentation of a subsystem, but unfortunately these packages
cannot be referenced in the private part of a public package.
This forces the programmer to move declarations to the pri-
vate part of some common ancestor, which complicates the
organization of the subsystem. For example, in the follow-
ing code, because at position –4– the programmer needs to
make use of Internal Type (declared at –2–) Ada 95 forces
the programmer to move this declaration to the private part
of their common parent (that is, at position –1–).

package Parent is
...

private
... -- 1

end Parent;

private package Parent.Private_Child is
type Internal_Type is ... -- 2
...

end Parent.Private_Child;

private -- Ada2005
with Parent.Private_Child; -- 3

package Parent.Public_Child is
...

private
-- Need to use Internal_Type
... -- 4

end Parent.Public_Child;

Ada 2005 extends the with-clause with the optional qual-
ifier “private” [10]. A library unit mentioned in a private
with-clause cannot be referenced in the public part of a
compilation unit; it and its contents are only available in
the private part of the compilation unit. Following with our
example, in Ada 2005 we can leave the declaration of the
type in the private package and add a private with-clause
(see –3–).

Private with-clauses can be combined with limited with-
clauses to give full support to mutually recursive types (lim-
ited private with clause).
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2.2 Access-Type Issues

2.2.1 Generalized use of anonymous access types
(AI-230)

The strict and safe type model of Ada forces the program-
mer to add numerous explicit conversions when manipulat-
ing related access types. However, modern object oriented
languages make good use of the fact that types that are ref-
erences to a derived tagged type T can safely be implicitly
converted to types that are references to some ancestor of
T. Consider the following Ada 95 example, which declares
a root tagged type, two derived types, and an access to any
descendant of the root tagged type. Note the number of
explicit conversions that are forced on the programmer be-
cause of Ada 95 rules.

-- Ada 95 example

type Root is tagged record . . .
type D1 is new Root with . . .
type D2 is new Root with . . .

type Root_Ref is access all Root’Class;

Table : array (1 .. 2) of Root_Ref
:= (Root_Ref (new D1), -- Explicit conversion

Root_Ref (new D2)); -- Explicit conversion

type My_Rec is record
Component : Root_Ref := Root_Ref (new D1);

-- Explicit conversion
end record;

Ada 2005 extends the usage of the “access definition” syn-
tactic category (see [18], Section 3.10(6)). In addition to
formal parameters and discriminants of limited types, this
category is now permitted in 1) component definitions, 2)
discriminants of non-limited types, and 3) object renaming
declarations. The type associated is an anonymous access
type, which permits implicit conversions from other access
types with appropriately compatible designated subtypes
(as defined by the ARM, Section 4.6(13-17)). As an ex-
ample, the previous code can be written as follows in Ada
2005:

-- Ada 2005 example

type Root is tagged record . . .
type D1 is new Root with . . .
type D2 is new Root with . . .

Table : array (1 .. 2) of access Root’Class
:= (new D1, new D2); -- Implicit conversions

type My_Rec is record
Component : access Root’Class := new D1;

-- Implicit conversion
end record;

In addition, this new Ada 2005 issue [6] also helps min-
imize the “named access type proliferation.” This occurs
when, for one reason or another, an access type is not de-
fined close to the point of declaration of the designated type,
and thus users of the designated type end up declaring their
own access types, creating yet more need for unnecessary
conversions.

2.2.2 Access to constant parameters and null-
excluding access subtypes (AI-231)

Ada 95 does not give support to anonymous access types
that reference constant objects (neither in subprogram for-
mals nor in discriminants). However, there are several cir-
cumstances where they are appropriate. For example: 1) As
a controlling parameter of an operation that does not modify
the designated object; 2) As a way to force pass-by-reference
when interfacing with a foreign language, when the external
operation does not update the designated object, and 3) As
a way to provide read-only access via a discriminant.

For this purpose, Ada 2005 permits the programmer to
specify anonymous access-to-constant objects [3]. In ad-
dition, Ada 2005 also allows the programmer to specify
whether the null value is allowed in anonymous access types.
Ada 95 disallows “null” for access parameters and access dis-
criminants, and that behavior is not desirable in all cases,
specially when interfacing with a foreign language.

function LowerCase
(Name : not null access constant String)
return String;

This new construct can be combined with AI-230, and
thus can also be used in the declaration of array and record
components.

2.2.3 Resolution of ’Access (AI-235)
In Ada 95 the expected type of ’Access and ’Uncheck-

ed Access must be “a single access type”. This means that
the type has to be determinable from context using only the
fact that it is an access type (cf. [18], Section 3.10.2(2a)).
Therefore, if the prefix of ’Access is overloaded, the pro-
grammer is forced to add extra code to help the compiler to
resolve the call. For example:

package P is
procedure Proc (X : access Integer);
procedure Proc (X : access Float);

end P;

with P;
procedure AI_235 is
Value : aliased Integer := 10;

type Int_Ptr is access all Integer; -- Ada 95
begin
P.Proc (Int_Ptr’(Value’Access)); -- Ada 95
P.Proc (Value’Access); -- Ada 2005

end;

In Ada 95 the last call is surprisingly illegal: it is ambigu-
ous because the prefix of the access attribute is not used to
resolve the call, and the context does not impose a single ac-
cess type. To work around the problem in Ada 95, a named
access type Int Ptr must be introduced. However, this is
not quite equivalent to the use of an anonymous access, be-
cause accessibility rules types are different for anonymous
and named access types. (The use of the qualified expres-
sion changes the accessibility check for the Access attribute
from the anonymous type to the named type.) Thus, the
user will have to declare an access type in the scope of each
call, or will have to change to using ’Unchecked Access.

Code like this is common in interfacing with other lan-
guages where in-out parameters are not allowed (for exam-
ple, C). Ada 2005 fixes the problem [12] and allows the use of
the prefix of the ’Access and ’Unchecked Access attributes
to resolve the access reference.
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2.2.4 Anonymous access to subprogram types
(AI-254)

Ada 2005 introduces anonymous access-to-subprogram
types [5] to simplify the use of access to subprograms, and in
particular to allow an access to a subprogram at any acces-
sibility level to be passed as an actual parameter to another
subprogram. Consider the following classical example of an
integration function:

function Integrate
(Fn : access function (X: Float) return Float;
Lo : Float;
Hi : Float);

The actual subprogram corresponding to an anonymous
access to subprogram parameter must be an access value
designating a subprogram which is subtype conformant to
the formal profile. We want to be able to call Integrate from
within any scope, using subprograms declared at any other
level. Thus we might have:

function Double (X: Float) return Float is ...

-- Use a local function
... := Integrate (Double’Access, 2.0, 3.0);

-- Use one of the functions available in the
-- package Ada.Numerics.Elementary_Functions
... := Integrate (Sqrt’Access, 3.0, 6.0);

Ada 95 named access types would prevent such uses be-
cause of accessibility considerations.

The only operations permitted on a formal access to sub-
program parameter are a) to call it, b) to pass it as an
actual parameter to another subprogram call, and c) to re-
name it. This simple semantics avoids many implementa-
tion problems. Default parameters are permitted for access
to subprogram parameters with the usual semantics for pa-
rameters of mode in. Protected subprograms are also sup-
ported, but in this case the access definition must include
the word protected. Anonymous access to subprograms
can also be combined with AI-230 and AI-231. For example
we can write:

type T_Table is array (1 .. 2) of not null
access function (X : Float) return Float;

Table : T_Table := (Double’Access, Sqrt’Access);

2.3 Aggregates Issues

2.3.1 Aggregates for limited types (AI-287)
One important benefit of Ada over other programming

languages is that it allows the programmer to initialize all
the components of a composite object in a single statement.
This feature is especially important in case of type exten-
sions, where the initialization of some components is inher-
ited from an ancestor. Limited types constitute an orthogo-
nal feature that allow programmers to express the idea that
“copying values of this type does not make sense”. Both
language features are highly desirable for reliable code, but
cannot be combined in Ada 95 because one cannot write ag-
gregates for limited types. It is clear that initialization does
not imply copying, and therefore that it should be possible to
use an aggregate construct to describe the full initialization
of an object of a limited type, while prohibiting assignments
that do imply copying.

Ada 2005 combines both issues in an orthogonal way, al-
lowing programmers to get the benefits of both [4]. The box
notation (“<>”) is now used to denote the default initial-
ization for a component of an aggregate, that is to say an
invocation of the initialization procedure for the component
type. If this corresponds to a limited component, this spec-
ifies a value that could not otherwise be written. Consider
the following example that represents the implementation of
some abstract data type.

package ADT is
type Data is limited private;
type T_Data_Ptr is access Data;

function New_Data (Value : ... )
return T_Data_Ptr;

private
type Data is limited record

Info : ... ;
Lock : ... ; -- 1 (a protected type)
More_Info : ... ; -- 2

end Data;
end ADT;

In this package, the concurrent access to the abstract data
type is protected by means of a lock implemented by means
of some protected type (that is, a limited type). In Ada 95 it
is not possible to write an aggregate for Data, so a value of
the type must be constructed by providing individual values
to the non-limited components by means of a set of individ-
ual assignments. For example:

-- Ada 95 version
function New_Data (Value : ... )
return T_Data_Ptr

is
Aux : T_Data_Ptr := new Data;

begin
Aux.Info := ...;
-- Lock is silently default-initialized
return Aux;

end New_Data;

This code is error prone because the compiler can not
detect whether some components were left uninitialized (i.e.
components at –2–). In Ada 2005 the constructor can be
written as follows:

-- Ada 2005 version
function New_Data (Value : ... )
return T_Data_Ptr is

begin
return new Data’

(Info => Value,
Lock => <>, -- 3
others => <>); -- 4

end New_Data;

The box at –3– specifies the default initialization of the
limited component, and the box at –4– request the default
initialization of all the other components. Note that the
“others =><>” notation is allowed even when the associ-
ated components are not of the same type. Its meaning is
as follows: if a component has a default expression in the
record type, the expression is used; otherwise, the normal
default initialization for its type is used.
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2.4 Abstract-subprogram Issues

2.4.1 Abstract non-dispatching operations (AI-310)
In Ada 95, declaring an abstract override for an inher-

ited operation has the effect of “undefining” this operation.
However, such an operation is still visible, and participates
in overload resolution, leading to unexpected anomalies. For
example, consider the following code:

package P is
type U is new Float;
function "*" (L, R : U) return U

is abstract; -- 1
function Image (L : U) return String;

type D_U is new U;
function "*" (L, R : U) return D_U; -- 2
-- Implicit Image function declared here.

end P;

use P;
X : U := 1.0;
S : String := Image (X * X); -- 3

As explained above, the intent of –1– is to make the op-
eration unavailable. This forces descendants of the type to
declare their own non-abstract version of the operation. (see
–2–). Althougth the call at –3– seems to be unambiguous,
in Ada 95 the declaration at –1– is still considered a pos-
sible interpretation for overload resolution, making the call
to the overloaded Image function ambiguous. In Ada 2005
a non-dispatching abstract operation is not a candidate in-
terpretation in an overloaded call, so that the call at –3– is
unambiguous [2].

2.5 Real-Time and High-Integrity Issues

2.5.1 New pragma and additional restriction identi-
fiers for real-time systems (AI-305)

Ada 2005 introduces new restriction identifiers to define
runtime behaviors for highly efficient tasking runtime sys-
tems [8]: No Calendar, forbids any semantic dependence
on package Ada.Calendar; No Dynamic Attachment,
does not allow calls to any of the operations defined in pack-
age Ada.Interrupts; No Protected Type Allocators, for-
bids allocators for protected types or types containing pro-
tected type components; No Relative Delay, does not al-
low delay-relative statements; No Requeue Statements,
forbids the use of requeue statements; No Select State-
ments, no select statements are allowed; No Task Attrib-
utes Package, forbids any semantic dependence on pack-
age Ada.Task Attributes; No Local Protected Objects,
protected objects shall be declared only at library level;
No Task Termination, all tasks are non-terminating; and
finally Simple Barriers, the entry barrier shall be either
a static Boolean expression or a Boolean component of the
enclosing protected object.

In addition, a new dynamic restriction-parameter-identifier
is defined to specify the maximum number of calls that can
be queued on an entry, and a new pragma to force the com-
piler to detect potentially blocking operations within a pro-
tected operation (pragma Detect Blocking). The pres-
ence of all the above restrictions allows the compiler to gen-
erate simpler code and a smaller footprint runtime.

2.5.2 Ravenscar profile for high-integrity systems
(AI-249)

Ada 2005 defines a pragma-based mechanism to allow ap-
plications to request use of the Ravenscar Profile semantics.
Ravenscar defines a set of execution-time restrictions suit-
able for use in High-Integrity and Safety-Critical applica-
tions. The Ada 2005 Ravenscar Profile is equivalent to the
following set of pragmas [11]:

pragma Task_Dispatching_Policy
(FIFO_Within_Priorities);

pragma Locking_Policy
(Ceiling_Locking);

pragma Detect_Blocking;

pragma Restrictions
(Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);

2.6 Object Oriented Programming Issues

2.6.1 Object.Operation notation (AI-252)
It is well known that the Ada 95 syntax for object oriented

programming differs from the syntax provided by other pro-
gramming languages: the code must identify (explicitly or
implicitly) the package in which the operation is defined,
in addition to the primary “controlling” object to which
the operation is to be applied. Identifying both the pack-
age and the object is to some extent redundant, makes
object-oriented programming in Ada 95 wordier than nec-
essary, and encourages heavy use of potentially confusing
use-clauses. For example, let us consider the following code:

package P is
type T is tagged record
Component : Integer;

end record;
function F (X : T) return Integer;
function Self (X : T’Class) return T’Class;

end P;

with P;
-- use P; can simplify the notation below.
procedure Test_Ada95 is
type Ptr_Obj is access all P.T’Class;
Obj : P.T;
Ptr : Ptr_Obj := new P.T;

O_1 : P.TP’Class := P.Self (Obj);
O_2 : Integer := P.F (P.Self (Obj));
O_3 : Integer := P.Self (Obj).Component;
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O_4 : Integer := P.F (P.Self (Ptr.All));
begin
null;

end Test_Ada95;

Of course, the expanded names for F and Self can be re-
placed with direct names if the context includes a use clause
for P. However, if the operation is inherited, the use clause
must be on the package that declares the type of the object,
not the original operation. It is plain that once the type
of the dispatching argument is known, the location of the
operation is known as well, and the burden of specifying its
package of origin can be removed.

Ada 2005 incorporates the Object.Operation notation [9]
as an alternative syntax to allow an object-oriented pro-
gramming model that is based on applying operations to
objects, rather than selecting operations from a package and
then applying them to parameters. If we rewrite the above
procedure with the new notation we have the following code:

with P; -- No need for a use clause!
procedure Test_Ada2005 is
type Ptr_Obj is access all P.T’Class;
Obj : P.T;
Ptr : Ptr_Obj := new P.T;

O_1 : P.TP’Class := Obj.Self;
O_2 : Integer := Obj.Self.F;
O_3 : Integer := Obj.Self.Component;
O_4 : Integer := Ptr.Self.F;

-- Implicit dereference!
begin
null;

end Test_Ada2005;

This notation also provides some additional functionality.
For example, consider:

package P is
type T is tagged record ...
procedure Init (X : access T);

end P;

with P;
package Q is
type T_Ptr is access all P.T; -- 1

end Q;

with Q;
procedure Test_Ada2005 is
Ptr : Q.T_Ptr;

begin
Ptr.Init; -- 2: package P is not in the

-- context
end Test_Ada2005;

Package P declares the tagged type T with its primitive
operation Init; package Q declares an access to T . Although
the test subprogram has only a with clause on this latter
package, by means of the new Object.Operation notation
it can call the primitive operation defined in P , while the
package itself is not directly visible.

2.6.2 Abstract Interfaces to provide multiple inheri-
tance (AI-251)

During the design of Ada 95 there was much debate on
whether the language should incorporate multiple inheri-
tance. The outcome of the debate was to support single-
inheritance only. In recent years, a number of language

designs [15, 16] have adopted a compromise between full
multiple inheritance and strict single inheritance, which is
to allow multiple inheritance of specifications but only sin-
gle inheritance of implementations. Typically this is ob-
tained by means of “interface” types. An interface consists
solely of a set of operation specifications: the interface type
has no data components and no operation implementations.
The specifications may be either abstract or null by default.
A type may implement multiple interfaces, but can inherit
code from only one parent type [1]. This model has been
found to have much of the power of multiple inheritance,
without most of the implementation and semantic difficul-
ties. For example:

type I1 is interface; -- 1
procedure P (A : I1) is abstract;
procedure Q (X : I1) is null;

type I2 is interface I1; -- 2
procedure R (X : I2) is abstract;

type Root is tagged record ... -- 3
type DT1 is new Root and I2 with ... -- 4
-- DT1 must provide implementations for P and R
...

type DT2 is new DT1 with ... -- 5
-- Inherits all the primitives and interfaces
-- of the ancestor

The interface I1 defined at –1– has two subprograms: the
abstract subprogram P and the null subprogram Q (a null
procedure is introduced by AI-348 and behaves as if it has a
body consisting solely of a null statement.) The interface I2
defined at –2– has the same operations of I1 plus operation
R. At –3– we define the root of a derivation class. At –4–
DT1 extends the root type, with the added commitment of
implementing all the subprograms of interface I2. Finally,
at –5– we extend DT1, thus inheriting all the primitive op-
erations and interfaces of the ancestor.

The power of multiple inheritance consists in the ability
to dispatch calls through interface subprograms, when the
controlling argument is of a classwide interface type. In
addition, languages providing interfaces [15, 16] also have a
mechanism to determine at run-time whether a given object
implements a particular interface. Ada 2005 extends the
membership operation to interfaces, so that one can write O
in I’Class. Let us see an example that uses both features:

procedure Dispatch_Call (O : I1’Class) is
begin

if O in I2’Class then -- 1: Membership test
R (O); -- 2: Dispatching call

else
P (O); -- 3: Dispatching call

end if;
end Dispatch_Call;

I1’Class’Write (...) -- 4: Dispatching call
-- to predefined op

The formal O covers all the objects that implement the
interface I1, and hence at –3– the subprogram can safely
dispatch the call to P . However, because I2 is an exten-
sion of I1, an object implementing I1 may also implement
I2. Hence, at –1– we use the membership test to check at
run-time if the object also implements I2 and then call sub-
program R instead of P . Finally, at –4– we see that, in ad-
dition to user defined primitives, we can also dispatch calls
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to predefined operations (that is, ’Size, ’Alignment, ’Read,
’Write, ’Input, ’Output, ’Assign, ’Adjust, ’Finalize, and the
operator “=”).

2.7 Interfacing with other languages

2.7.1 Unchecked unions: Variant records with no
run-time discriminant (AI-216)

In Ada discriminated types carry explicit discriminant
components, and the values of these components can be
queried at runtime to verify the legality of an operation.
By contrast, C unions are free unions, and carry no runtime
indication of the intended type of their current contents. In
order to interface to C programs, it is important to provide
some means of mapping C unions into Ada. Ada 2005 in-
troduce the pragma Unchecked Union for this purpose. If
this pragma applies to a discriminated record type, the run-
time representation of this type does not carry the value of
the discriminant [14]. This makes it possible to map the C
declaration:

struct T_Data {
char *name;
union {

float f1;
int f2;

};
};

. . . into the following Ada 2005 type:

type T_Data (Discr : Boolean) is
Name : Interfaces.C.Strings.Char_Ptr;
case Discr is

when False =>
F1 : Float;

when True =>
F2 : Integer;

end case;
end record;
pragma Unchecked_Union (T_Data);

It is clear that the use of such types can lead to erroneous
execution, because discriminant checks cannot in general be
applied. However, in order to preserve as much type safety
as possible, AI-216 introduces the notion of inferrable dis-
criminant: the discriminant of an object may be inferred
from its declaration, or from some default initialization, even
if not present in the run-time representation of the object,
and the inferred value can be used to verify the legality
of some operations on such types, thus providing some ad-
ditional type safety that is completely absent from the C
model. This provides safer semantics than the C union, at
considerable implementation expense, as we describe below.

3. PART II: GNAT IMPLEMENTATION
In this section we give an overview of most interesting de-

tails of the implementation of the above described Ada 2005
issues in GNAT. As usual, full details can be found in the
sources of GNAT itself.

3.1 Visibility Issues

3.1.1 Limited with clause (AI-217)
The Ada Reference Manual (Section 10.1.4(1)) defines the

notion of an “environment declarative-part” that at compile-
time contains all the library-items of interest. Under this

model, the order of the library-items is such that there are
no forward semantic dependences: with-clauses introduce
semantic dependences that control the order, and the new
limited with-clauses adds no semantic dependence but forces
the implicit declaration of a “limited view” of a package that
only includes names of packages (and nested packages) and
incomplete types.

To implement this model, GNAT builds both views: the
non-limited view and the limited view that includes only
the information described above. Visibility analysis uses
one of these views, depending on the with-clause in effect.
For code-generation purposes, entities in the limited-view
reference their counterparts in the non-limited view. The
following example shows the limited and non-limited view
of a package specification:

Limited View
------------
package Q is
type T_1; -- Incomplete type declaration
package Local is
-- Incomplete tagged type declaration
type T_2 is tagged;

end Local;
end Q;

Non-limited View:
-----------------
package Q is
type T_1 (D : Integer) is record

...
end record;
package Local is
type T_2 is tagged record

...
end record;

end Local;
end Q;

The common usage is to use limited with clauses in pack-
age specifications to declare mutually recursive structures,
and to have normal with-clauses in the corresponding pack-
age bodies. For example:

limited with Q; -- 1
package P is
type Acc_T2 is access Q.T2;
...

end P;

with Q; -- 2
package body P is
Obj : Acc_T2 := new Q.T2; -- 3
...

end P;

The compilation of the package specification for P requires
the limited view of Q (see –1–). However, the compilation
of the package body installs the non-limited view of Q (see
–2–) which is then used to generated the code that creates
the object at –3–.

This implementation model is straightforward in source-
based compilers such as GNAT (it may be problematic for
library-based compilers). For example, the compilation of
the package specification builds and installs the limited view
of Q, but does not generate any object code; the compila-
tion of the package body installs the entities of its withed
packages (the context clauses found at –2–) and then loads
and compiles the package specification (just before compil-
ing the body of the package), and thus the context clauses of
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its specification are re-analyzed. As a consequence, at –1–
the semantic analyzer finds Q fully analyzed and its full-view
installed. Because the full-view supersedes the limited-view
the semantics just discards the installation of the limited
view, thus giving the right interpretation to the limited with-
clause.

This implementation is based on the earlier “with type”
feature available in GNAT from version 3.12a onwards.

3.1.2 Subprogramswithing private compilation units
(AI-220)

GNAT is one of the compilers that implemented the rule
related with this issue as it was originally intented in Ada 95
(not as it was written in the Reference Manual), and thus
no further modification was required.

3.1.3 Private with clause (AI-262)
In case of private with-clauses found in the specification of

a library-level package GNAT installs the context clauses in
two stages: 1) Non-private with-clauses are installed before
compiling the public part of the package, and 2) Private
with-clauses are installed just before compiling the private
part of the package. In case of library subprograms the
private with clauses are installed after the specification of
the subprogram has been analyzed (as documented in AI-
262.).

Private with-clauses combine well with limited with-clauses.
In case of limited-private-with clauses, GNAT builds the in-
complete view of the named compilation units as described
in Section 3.1.1 and installs it as described in the previous
paragraph.

3.2 Access-Type Issues

3.2.1 Generalized use of anonymous access types
(AI-230)

The required modifications to the GNAT compiler to im-
plement this AI were simple: the strictness of the GNAT se-
mantic analyzer was relaxed to allow the use of anonymous
access types in component definitions (thus covering array
types and record components), discriminants of non-limited
types, and object renaming declarations.

The accessibility level of the anonymous access type is de-
termined at the time the access-definition is elaborated. For
an access object that cannot be altered during its lifetime
(parameter of mode IN or discriminant of a limited type),
its level is determined by the accessibility level of its initial
value. For a component definition or a discriminant of a
non-limited type, the level is the same as that of the enclos-
ing composite type. For renamings the level is the same as
the level of the type of the renamed object. These language
rules are necessary to simplify implementation and to avoid
dangling references when an access object is updated while
being “viewed” at a deeper level than it truly is.

Finally, we also had to modify the compiler to incorporate
the following additional equality operators for the universal-
access type in package Standard:

function "=" (Left, Right : Universal_Access)
return Boolean;

function "/=" (Left, Right : Universal_Access)
return Boolean;

3.2.2 Access to constant parameters and null-
excluding access subtypes (AI-231)

The implementation of access to constant parameters was
immediate: the compiler just has to remember that the des-
ignated object is not allowed to be modified, and thus cannot
be used in the left-side of an expression, or as an actual for
an in-out parameter.

On the other hand, the GNAT implementation of null-
excluding access subtypes consists of four main parts: a)
Propagation of the null-excluding attribute to subtypes, ob-
jects and components depending on a null-excluding access-
type declaration, b) Addition of new checks to the front-end
to statically detect bad usages of null-excluding types (for
example, the assignment of the null value to a null-excluding
object), c) Generation of the null-exclusion run-time check
when required, and finally d) Relax the front-end to permit
the null value in anonymous access types (the default se-
mantics of Ada 95 never allows the null value in anonymous
access types).

The ability to specify an access subtype that excludes null
for both named and anonymous access types not only pro-
vides useful documentation but also higher efficiency. This
is especially true for actuals, by allowing the null check to be
moved to the point of the call, where it can be more likely
removed.

3.2.3 Resolution of ’Access (AI-235)
Few modifications were done in the GNAT front-end to

allow the use of the prefix of the ’Access (and ’Unchecked-
Access) attributes to resolve the access type.

3.2.4 Anonymous access to subprogram types
(AI-254)

In a compiler that uses static links to handle variables
global to a subprogram (like GNAT), an access to subpro-
gram value is generally represented by a pair of addresses
—the address of the subprogram’s code, and the static link.
However, given the Ada 2005 semantic rules, an anonymous
access to a subprogram can be represented solely by it code
address. This is desirable not only because it is efficient, but
also because it allows the representation to easily match C’s
typical representation of function pointers.

In addition, Ada 2005 rules ensure that accessibility checks
are never required for anonymous access to subprograms and
thus they do not need to carry an accessibility level with
them (in contrast to access-to-object parameters).

3.3 Limited Aggregates Issues
In implementation terms, the initialization of limited com-

ponents of aggregates required by AI-287 must be carried
out in their final destination —no copying can take place.
For this purpose, GNAT converts the aggregate into a set
of individual assignments. In case of limited components,
GNAT generates a call to the default initialization subpro-
gram associated with the limited type.

The implementation of this AI adds no special complexity
to the compiler: initializing in place is already required for
controlled objects by the ARM (see [18], Section 7.6(17.1/1)),
and the semantics of a box used in a component association
is essentially the same as for a subtype mark used as the
ancestor part of an extension aggregate. It should be men-
tioned that semantic analysis and expansion of aggregate is
an extremely complex portion of the front-end semantics,
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and the initialization of limited components adds infinitesi-
mally to this complexity.

3.4 Abstract Non-Dispatching Issue
The implementation of abstract non-dispatching opera-

tions (AI-310) required a minor modification to the name
resolution rules so that abstract non-dispatching subpro-
grams are discarded, when analyzing an overloaded call.

3.5 Real-Time and High-Integrity Issues
The addition of restrictions and profiles (AI-305 and AI-

249) add no special complexity to the compiler. If the new
restrictions are specified in the source, the front-end in-
creases its strictness and reduces the set of Ada features
allowed in the application.

3.6 Object Oriented Programming Issues

3.6.1 Object.Operation notation (AI-252)
The implementation of the basic functionality required

by this issue is simple: when the analysis of a selected com-
ponent Object.Operation (...) fails, instead of immediately
generating an error message, the front end rewrites it using
the standard functional Ada notation —that is, Operation
(Object, ...)— and repeats the analysis. The name of the op-
eration is rewritten as an expanded name, using the scope
of the object itself as a prefix. If analysis of the rewritten
notation generates no error, it is correct. The use of this
simple transformation also enforces the Ada 2005 semantic
rule that the operations made visible by means of the new
notation are hidden by components with the same identifier
as the operation.

package P is
type TP is tagged record

Data : Integer := 999;
end record;

function Data (X : TP) return Integer;
-- Returns some value different from 999

end P;

with P; use P;
procedure Test1_Ada2005 is
Obj : TP;
Value : Integer := Obj.Data;

-- Initialized to 999: analysis
-- succeeds without rewriting

begin
null;

end;

The implementation of class-wide calls requires some more
work, because the scope of the type of the object does not
necessarily designate the scope of the operation: it may be
declared in the scope of any of the ancestors. Consider the
following example:

package P is
type T is tagged ..
procedure Proc (X : T’Class); -- 1

end P;

with P;
package Q is
type DT is new P.T with ... -- 2
...

end Q;

with P, Q;
procedure Test2_Ada2005 is
...
Obj : Q.DT; -- 3

begin
Obj.Proc; -- 4

end;

At point –2– we define a descendant of tagged type P.T .
At point –1– we have defined a class wide subprogram appli-
cable to all descendants of P.T . At point –3– we define an
object of type Q.DT . The call at –4– (by means of the new
notation) is valid because the object is covered by –1–. The
implementation of this feature requires that the front-end
traverse the chain of derivations from the object type to the
root of the class, to locate the unique class-wide subprogram
that covers the call.

3.6.2 Abstract Interfaces to provide multiple inheri-
tance (AI-251)

At present we are working on a prototype implementa-
tion of this critical issue. The model uses a combination
of dispatch table for the primitive operations of the type,
and permutation maps that establish how a given interface
is satisfied by existing primitive operations. Although this
model supports the Ada 2005 semantics, we are currently
evaluating alternatives that may be more efficient at run-
time, such as using an array of tags, one that points to the
type dispatch table, and one that points to a separate dis-
patch table for each implemented interface. The trade-offs
between compiler complexity, run-time efficiency, and up-
wards compatibility are being analyzed. Ideally, we would
also like the chosen model to simplify interfacing to C++
classes (at least for the g++ compiler) but it is not clear
whether this last goal is achievable at reasonable cost.

3.7 Interfacing with other languages
A simple implementation of Unchecked Union has been

available in GNAT for several years. However, the notion
of inferrable discriminant, which is central to the seman-
tics of this AI, complicates the full implementation con-
siderably. Initialization, assignment, and equality are all
impacted by the possible presence of such discriminants:
temporaries must be created for them, and they must be
used selectively in the expansion of the above operations,
instead of the discriminant references that would otherwise
be generated. Instead of a simple mechanism to interface to
common C unions, this AI makes Unchecked Union types
into full-blown variant records with off-line discriminants:
it is unclear whether this level of complication is justified
by the gain in functionality. The implementation effort,
though manageable, was roughly four times larger than ex-
pected. This episode is a reminder that grafting small se-
mantic changes into a large compiler may have surprisingly
complex consequences. We hope to report a year from now
that there were very few other instances of such surprises on
the road to Ada 2005.

4. ACATS FOR ADA 2005
The Ada Conformity Assessment Test Suite (ACATS) is

the test suite used for Ada processor conformity testing. In
addition to the implementation of the new Ada 2005 issues,
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the GNAT development team has submitted 43 new tests to
the ARG that help to verify Ada 2005 compilers.

5. SUMMARY
Over the last year the GNAT development team has been

working on the implementation of the most important Ada
2005 issues. This paper summarizes the current status of
this effort. The following list summarizes the AI’s already
implemented in GNAT, classified by their ARG/WG9 pri-
ority:

• High Priority

– 217: Limited with clause

– 220: Subprograms within private compilation units

– 235: Resolution of ’Access

– 249: Ravenscar profile for high-integrity systems

– 251: Abstract interfaces to provide multiple in-
heritance

– 252: Object.Operation notation

– 254: Anonymous access to subprogram types

– 305: New pragma and additional restriction iden-
tifiers for RT-Systems

– 310: Abstract non-dispatching operations

• Medium Priority

– 216: Unchecked unions: variant records with no
run-time discriminant

– 230: Generalized use of anonymous access types

– 231: Access to constant parameters and null-ex-
cluding access subtypes

– 262: Access to private units in the private part

– 287: Limited aggregates

At the this point the architecture of GNAT has proven to
be flexible enough not to give support to the new Ada 2005
issues while maintaining full conformance for Ada 95.

The implementation of these new language features is
available to users of GNAT PRO, under a switch that con-
trols the acceptability of language extensions (note that these
extensions are not part of the current definition of the lan-
guage, and cannot be used by programs that intend to be
strictly Ada95-conformant). These features are also avail-
able in the GNAT compiler that is distributed under the
GNAT Academic Program (GAP), an AdaCore initiative
that has three major objectives: 1) Encourage and prolong
the use of Ada in Academia by providing quality-assured
software packages, amongst other material, that facilitate
Ada programming for students; 2) Create a collaborative
platform for the Ada academic community where they will
be able to find help and support in various areas (technology,
advocacy, teaching materials, etc.) and contribute their own
ideas, and 3) Create stronger links between academia and
the professional Ada community. We hope that the early
availablity of the Ada2005 features to the academic commu-
nity will stimulate experimentation with the new language,
and spread the use of Ada as a teaching and research vehicle.
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