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ABSTRACT
One of the most important object-oriented features of the
new revision of the Ada Programming Language is the intro-
duction of Abstract Interfaces to provide a form of multiple
inheritance. Ada 2005 Abstract Interface Types are akin to
Java interfaces, and as such support inheritance of specifica-
tion rather than inheritance of implementation. Ada 2005
interfaces apply as well to tasks and protected types, and
provide a classification mechanism for concurrent program-
ming that goes considerably beyond the capabilities of Java.

This paper summarizes the implementation in the GNAT
compiler of the various kinds of interfaces that relate to con-
current programming in Ada 2005 [1]. The implementation
is efficient, and involves mostly modifications to the com-
piler front-end, with virtually minimal impact on run-time
structures, beyond those that are in place to support reg-
ular interfaces. However, the implementation of interface
operations as triggers in selective waits and asynchronous
transfers of control proved to be surprisingly delicate and
requires additional predefined primitive operations.

Categories and Subject Descriptors: D.3.2 [Program-
ming Languages]: Language Classifications —Ada, D.3.3
[Language Constructs and Features]: classes and objects,
inheritance, polymorphism, abstract data types, concurrent
programming structures.

General Terms: Languages, Standardization, Reliability.

Keywords: Ada 2005, Interfaces, Synchronization, GNAT,
Compiler.

1. INTRODUCTION
During the design of Ada 95 [2] there was much debate

about whether the language should incorporate multiple in-
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heritance. The outcome of the debate was to support single
inheritance only. In recent years, a number of language de-
signs [3, 4] have adopted a compromise between full multiple
inheritance and strict single inheritance, which is to allow
multiple inheritance of specifications, but only single inher-
itance of implementations. Typically this is obtained by
means of “interface” types. An interface consists solely of a
set of operation specifications: an interface type has no data
components and no operation implementations. A type may
implement multiple interfaces (its progenitors), but can in-
herit code for primitive operations from only one parent type
[1, 6]. This model has much of the power of full-blown mul-
tiple inheritance, without most of the implementation and
semantic difficulties that are manifest in the object model
of C++ [5].

At compile time, an interface type is conceptually a special
kind of abstract tagged type and hence its handling does not
add special complexity to the compiler front-end (in fact,
most of the current compiler support for abstract tagged
types can be reused). Interface inheritance and dynamic
dispatching on interface operation requires additional data
structures that extend the single dispatch table model of
Ada 95. The GNAT compiler implements interface inheri-
tance by means of secondary dispatch tables (see citemsd05
for details). This model was chosen for its time efficiency,
and its compatibility with the run-time structures used by
G++, in order to simplify mixed-language object-oriented
programming.

However, protected and task types that implement inter-
faces require further work: extra code has to be generated
to support dispatching calls to protected and task entries
as well as protected subprograms, and to match the inter-
face specifications to the task and protected operations that
implement them. In this paper we describe the full imple-
mentation of task and protected interfaces in the GNAT
compiler.

The paper has the following structure: In Section 2 we
summarize the main features of Ada 2005 interfaces and
focus on those that relate to task and protected types. Sec-
tion 3 describes the compiler and run-time data-structures
related to synchronized types. Section 4 explains how these
structures are extended to support dynamic dispatching and
how their primitive operations relate to task and protected



operations. In addition it also describes the implementation
of dispatching calls through synchronized interfaces. Section
5 discusses the implementation of dispatching triggers in se-
lective waits and asynchronous transfer of control, which
turned out to be the most complex aspect of the implemen-
tation. Section 6 analyzes the cost of this new language
constructs. We close with a short discussion on the power
of this new language feature and the bibliography.

2. INTERFACES IN ADA 2005
The characteristics of an Ada 2005 interface type are in-

troduced by means of an interface type declaration and a
set of subprogram declarations [6]. The interface type has
no data components, and its primitive operations are either
abstract or null. A type that implements an interface must
provide non-abstract versions of all the abstract operations
of its progenitor(s) —this term is used in the Ada 2005 ter-
minology to refer to the interfaces implemented by a tagged
type [1].

package Pkg1 is
type I1 is interface; -- 1
procedure P (A : I1) is abstract;
procedure Q (X : I1) is null;

type I2 is interface and I1; -- 2
procedure R (X : I2) is abstract;

type Root is tagged record ... -- 3

type DT1 is new Root and I2 with ... -- 4
-- DT1 must provide implementations
-- for P and R
...

type DT2 is new DT1 with ... -- 5
-- Inherits all the primitives and
-- interfaces of the ancestor
...

end Pkg1;

The interface I1 defined at –1– has two subprograms: the
abstract subprogram P and the null subprogram Q (null pro-
cedures are described in AI-348 [9]; they behave as if their
body consists solely of a null statement). The interface I2
defined at –2– has the same operations as I1, plus opera-
tion R. At –3– we define the root of a derivation class. At
–4– DT1 extends the root type, with the added commitment
of implementing (all the abstract subprograms of) interface
I2. Finally, at –5– type DT2 extends DT1, inheriting all the
primitive operations and interfaces of its ancestor.

The power of multiple inheritance is realized by the abil-
ity to dispatch calls through interface subprograms, using
a controlling argument of a class-wide interface type. In
addition, languages that provide interfaces [3, 4] provide a
run-time mechanism to determine whether a given object
implements a particular interface. Accordingly Ada 2005
extends the membership operation to interfaces, and allows
the programmer to write the predicate O in I’Class. Let
us look at an example that uses the types declared in the
previous fragment, and displays both of these features:

procedure Dispatch_Call (Obj : I1’Class) is
begin

if Obj in I2’Class then -- 1
R (I2’Class (Obj)); -- 2

else

P (Obj); -- 3
end if;

I1’Write (Stream, Obj) -- 4
end Dispatch_Call;

The type of the formal Obj covers all the types that im-
plement the interface I1, and hence at –3– the subprogram
can safely dispatch the call to P . However, because I2 is an
extension of I1, an object implementing I1 might also im-
plement I2. Therefore at –1– we use the membership test
to check at run-time whether the object also implements I2,
and then call subprogram R instead of P (applying a con-
version to the descendant interface type I2). Finally, at –4–
we see that, in addition to user-defined primitives, we can
also dispatch calls to predefined operations (that is, ’Size,
’Alignment, ’Read, ’Write, ’Input, ’Output, Adjust, Finalize,
and the equality operator.

Ada 2005 provides an additional classification mechanism
for interfaces. An interface can be declared to be a limited
interface, a synchronized interface, a protected interface, or
a task interface [8]. Each one of these imposes constraints
on the types that can implement such an interface.

• A task interface can only be implemented by a task
type or a single task.

• A protected interface can only be implemented by a
protected type or a single protected object.

• A synchronized interface can be implemented by either
tasks or protected types or objects.

• A limited interface can be implemented by tasks types
or objects, protected types or objects, or by limited
tagged types.

The combination of the interface mechanism with concur-
rency means that it is possible, for example, to build a sys-
tem with distinct server tasks that provide similar services
through different implementations, and to create heteroge-
neous pools of such tasks. Using synchronized interfaces one
can build a system where some coordination actions are im-
plemented by means of active threads (tasks) while others
are implemented by means of passive monitors (protected
types).

In order to combine semantically interfaces with concur-
rency, we must specify how interface operations are imple-
mented by means of task and protected operations. In par-
ticular, we must describe how tasks and protected entries
can be said to implement an interface operation. Once this
mapping is established, we can treat calls to interface opera-
tions as dispatching operations that execute entry calls. (the
mapping of protected subprograms and task subprograms
onto interface operations is more intuitive and requires less
discussion). Using the Ada 2005 object.operation notation
[7] we can extend our previous examples as follows:

package Pkg2 is
type I1 is limited interface; -- 1
procedure P (Obj : in out I1) is abstract;
procedure Q (Obj : access I1) is null;

type I2 is synchronized interface and I1; -- 2
procedure R (Obj : in out I2;

Data : in Integer) is abstract;



type I3 is task interface and I2; -- 3
procedure S (Obj : in out I3) is abstract;

type I4 is protected interface; -- 4
procedure T (Obj : in out I4) is abstract;

task type Tsk is new I3 with -- 5
entry P;
entry R (Data : in Integer);
...

end T1;
procedure S (Obj : in out Tsk); -- 6
-- Q inherited as a null procedure -- 7

end Pkg2;

At –1– we define a limited interface with an abstract prim-
itive and a null primitive. At –2– we define a synchronized
interface that is a derivation if I1. At –3– we define a task
interface that is a derivation of the synchronized interface I2.
The general rule is that we can compose two or more inter-
faces provided that we do not mix task and protected inter-
faces and the resulting interface must be not earlier than any
of the ancestor interfaces in the following hierarchy: limited,
synchronized, and task/protected. Unlike tagged types, we
cannot derive a task or protected type from another task or
protected type. So the derivation hierarchy can only be one
level deep once we declare actual task or protected types.

At –5– we define a task type that implements the task in-
terface I3 and all its ancestor interfaces (we can also declare
a single task or protected object that implements interfaces
[10]). Therefore task type Tsk must implement all of the
abstract primitives of the interfaces concerned. This can be
done in two ways, either by declaring an entry or protected
operation in the specification of the task or protected type
(see the entry declarations at –5–) or by declaring a primitive
subprogram in the same declarative part (see –6–). In accor-
dance with the Ada 2005 rules concerning object.operation
notation, an entry matches a primitive operation of a pro-
genitor interface if it has the same signature, excluding the
first (controlling) argument, which is implicitly the task type
itself. Finally, at –7– we note that a null primitive operation
can be inherited or overridden as usual. Having declared a
number of types implementing a given interface we can dis-
patch to the various operations in the usual way.

To simplify the presentation, we use the term synchronized
interface in the rest of this paper. It will be clear that the
details that follow apply with little change to the other kinds
of interfaces that deal with synchronized types.

3. SYNCHRONIZED TYPES AND
CORRESPONDING RECORDS

At first sight the transformation of tasks and protected
types into tagged entities would seem to require large changes
to the run-time environment, and therefore a major up-
heaval in the architecture of the system. Fortunately, it
turns out that (with one significant exception) all changes
are concentrated in the front-end of the compiler, and that
once the general dispatching structures for interfaces are im-
plemented, very few changes to run-time structures are re-
quired. This proves once again the old adage that every
problem in Computer Science can be solved with one addi-
tional level of indirection.

The GNAT compiler associates with each synchronized
type a corresponding record type. At run-time, every task

or protected object is represented by an instance of its cor-
responding record. In the case of a protected type, the cor-
responding record holds the private data (as defined in the
protected definition) and the required lock structure. In the
case of a task, the corresponding record holds principally
a pointer to the TCB and other related dynamic informa-
tion. To implement interfaces and dynamic dispatching, the
first step is to make the corresponding records into tagged
types, and to add where necessary wrappers that map the
primitive operations of these tagged records into the cor-
responding task entries and protected operations. The re-
sulting implementation is efficient, and adds at most the
cost of one or two indirect calls to a synchronized operation.
The semantic complications arise from the matching of the
interface operations to task and protected operations, the
creation of the proper wrapper functions, and the inevitable
visibility problems that arise with the introduction of ad-
ditional overloaded names. At run-time, an interface oper-
ation dispatches through the dispatch table(s) of the cor-
responding record. The corresponding primitive operation
end up invoking the desired entry or protected operation.

The corresponding record type (CRT) plays therefore a
central role between object-oriented features and synchro-
nization features. The CRT has primitive operations that
implement the interface operations. The bodies of these
primitive operations are simply wrappers for the actual task
or protected operations. The compile-time expansion con-
sists principally in the construction of these primitive oper-
ations of the CRT. To understand the details, we must first
discuss the way protected and task operations are translated
in the absence of interfaces. We refer to this process as ex-
pansion, because it can be described fairly accurately as a
source transformation that is target- independent. In what
follows, the result of specific expansion actions is written in
quasi-Ada, even though in the compiler it corresponds to a
tree transformation..

4. EXPANSION OF SYNCHRONIZED
PRIMITIVE OPERATIONS

The following sections describe the expansion of subpro-
grams and entries that are primitive operations of synchro-
nized interfaces. We also describe the basic run-time sup-
port required to give support to interfaces (for further infor-
mation see [12]).

4.1 Expansion of protected subprograms
GNAT treats protected subprograms rather differently from

non-protected ones. For each protected routine, the com-
piler generates two operations: a protected and an unpro-
tected version, that are invoked depending on the current
synchronized context [13].

The unprotected version is used in internal calls from one
protected subprogram to another within the same protected
object. Since in this case we are in the same synchronized
environment, there is no need to recapture the already seized
locks. The body of the unprotected version simply executes
the statements of the body of the original protected subpro-
gram.

The protected version on the other hand is used for ex-
ternal calls on the object. At the point of invocation the
subprogram first seizes the locks of the object, then per-
forms a call to the unprotected version, and finally releases



the locks on exit. As a result, an external call typically
results in several system calls for lock management.

If the protected type Prot implements a synchronized in-
terface SI, and the protected operation implements one of
the operations of SI, the compiler now generates a third
body, which is a primitive operation of the corresponding-
record of Prot. This primitive operation has the same sig-
nature as the interface operation; its body simply invokes
the protected version, given that interface dispatching calls
are always external calls (by definition it is not in general
possible to determine the target object of the call). To il-
lustrate, consider the following protected type:

type Synch_Interface is synchronized interface;
procedure Bar (Obj : in out Synch_Interface);

protected type Prot is new Synch_Interface with
procedure Bar;

end Prot;

protected body Prot is
procedure Bar is
begin

Put_Line ("Hello from Prot");
end Bar;

end Prot;

Here are the different versions of Bar generated by the
compiler during code expansion. The compiler generates
distinct internal names for these, to simplify debugging. The
encoding used below is self-explanatory.

1. Unprotected version.

procedure BarU
(_object : in out Prot_CRT) is

begin
Put_Line ("Hello from Prot");

end BarU;

2. Protected version.

procedure BarP
(_object : in out Prot_CRT) is

begin
<capture _object’s locks>
BarU (_object);
<release _object’s locks>

end BarP;

3. Primitive operation of the CRT.

procedure Bar
(_object : in out Prot_CRT) is

begin
BarP (_object);

end Bar;

Once the primitive operations (also called primitive wrap-
pers) are created, the compiler handles them like other prim-
itive operations of a tagged type, and creates slots for them
in the dispatch table of the CRT, at the appropriate posi-
tion.

4.2 Expansion of protected and task entries
Entries undergo a more complex transformation than pro-

tected subprograms, but the generation of the corresponding
primitive wrappers for their CRT is analogous. Consider the
following declaration and body:

task type Tsk is new Synch_Interface with
entry Bar;

end Tsk;

task body Tsk is
begin

accept Bar do
Put_Line ("Hello from Tsk");

end Bar;
end Tsk;

For entry Bar, GNAT generates the following wrapper:

procedure Bar
(_object : in out Tsk_CRT) is

begin
Tsk (_object).Bar; -- Object.Operation notation

end Bar;

Note that we perform a type conversion from the corre-
sponding record type to the original synchronized type. As
a consequence, the expansion of this call within the wrapper
results in the correct expansion of an entry call: parameter
transfer between stacks, context switching, etc.

4.3 Dispatching through synchronized inter-
faces

The data structures involved in dynamic dispatching are
identical for all types that implement interfaces. A primary
dispatch table holds pointers to all primitive operations of
the type. Secondary dispatch tables are created for each one
of the interfaces that the type implements. Each secondary
dispatch table holds pointers to the operations of the type
that implement the corresponding operations of the inter-
face. Full details can be found in [12].

type Regular_Interface is interface;
type Synch_Interface is synchronized interface;

These two types appear in the expanded tree as:

type Regular_Interface
is abstract tagged null record;

type Synch_Interface
is abstract tagged limited null record;

Note that the underlying representation of Synch Interface
is labeled as “limited”, which indicates that it can be imple-
mented by a limited type.

protected type Prot and Synch_Interface is ...
task type Tsk and Synch_Interface is ...

The corresponding record types are declared as:

type Prot_CRT is tagged limited record ...
type Tsk_CRT is tagged limited record ...

The protected subprograms and entries of protected and
task types do not appear directly in the runtime structures
of these types. At the point when the types are elaborated
and the dispatch tables generated, GNAT collects the primi-
tive wrappers and the dispatching versions of protected sub-
programs that override some interface-level operation. The
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procedure Bar (_object : in out Prot_CRT)

Figure 1: Run-Time Data Structure

entries in the dispatch table are then set to contain their
addresses. Referring back to our previous example, Figure
1 contains the dispatch table of type Prot.

In the case of type Tsk, the dispatch table entry for Bar
will point to the primitive wrapper. In this fashion the exist-
ing interface machinery present in GNAT for regular tagged
types is reused without further modification.

declare
procedure Dispatch_On_Bar

(Any_Synch : in out Synch_Interface’Class) is
begin

Any_Synch.Bar; -- Dispatching call
end Any_Bar;

Obj_1 : Prot;
Obj_2 : Tsk;

begin
Obj_1.Dispatch_On_Bar;
Obj_2.Dispatch_On_Bar;

end;

Both of these dispatching calls will examine the dispatch
table slot for Bar and will invoke the subprogram designated
by the contents of the slot. In the case of Prot, it is the
dispatching version of the protected procedure. The call
will then invoke the protected version, which in terms will
seize the lock of Obj 1, call the unprotected version and
output “Hello from Prot”, and finally release the lock. The
dispatching call on Obj 2 will in turn find the generated
primitive wrapper, invoke it and output “Hello from Tsk”.

5. DISPATCHING IN SELECT
STATEMENTS

As a final extension of the interface machinery, AI-345
[5] allows dispatching interface operations to appear in en-
try call alternatives of asynchronous, conditional and timed
selects. This capability complicates the expansion of the
already intricate handling of these constructs. The compli-
cations come from the fact that in normal (non-dispatching)
cases, the expansion of the enclosing construct (selective
wait or ATC) depends on whether the target of the trig-
gering call is a task or protected object. If the call is to an
interface operation, the compiler cannot determine which
variety of expansion to use, and must make provisions to:

1. Determine at run-time whether the target object is a
protected type, a task type, or a tagged type.

2. Choose the remaining actions of the construct accord-
ing to the result of this determination. This means
that the expanded code must contain provisions for all
three possibilities.

Consider the following fragment:

select
Obj_1.Dispatch_On_Bar;
Put_Line ("Call dispatched");

or
delay 1.0;
Put_Line ("Timer expired");

end select;

The semantics are intuitive: if the call dispatches to a
conventional (non-protected) subprogram, it is accepted at
once, and the delay is ignored. Otherwise, the usual timed
entry call semantics apply.

In order to solve problem 1) we must extend the dispatch
table structures to include two new tables, located within
the Type Specific Data of synchronized types that implement
a limited interface. One table contains the operation kind
(which indicates whether a given entry corresponds to asub-
program, protected subprogram, protected entry, or task en-
try). The other table, which will not concern us further here,
captures the index of an entry (this is used to determine the
position of the queue for this entry in the CRT). Figure 2
contains an extended view of the dispatch table for Prot and
Figure 3 contains the dispatch table for Tsk.
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Type Specific Data

Top_Offset

    Primary
Dispatch Table

Bar’Address

procedure Bar (_object : in out Prot_CRT)

Table of Op kind

Table of Op indices

K_Prot_Proc

0

User
Data

T’Tag

Obj_1

Figure 2: Run-Time Data Structure: Prot
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Dispatch Table

Bar’Address

procedure Bar (_object : in out Tsk_CRT)

Table of Op kind

Table of Op indices

K_Task_Entry

1

User
Data

T’Tag

Obj_2

Figure 3: Run-Time Data Structure: Tsk

Four dispatching predefined primitive operations are used
to both determine the operation kind of a call and invoke a
library runtime operation if the call dispatches to an entry.
These four predefined operations are generated for every lim-
ited interface as abstract procedures and are implemented
by any type that implements the interface. In other words,
they are implicit intrinsic operations.



_disp_asynchronous_select
(Obj : <type>; -- object
S : Integer; -- prim. operation DT slot
P : System.Address; -- wrapped parameters
B : out Communication_Block;
F : out Boolean); -- call status flag

_disp_conditional_select
(Obj : <type>; -- object
S : Integer; -- prim. operation DT slot
P : System.Address; -- wrapped parameters
C : out Prim_Op_Kind; -- callable entity kind
F : out Boolean); -- call status flag

_disp_get_prim_op_kind
(Obj : <type>; -- object
S : Integer; -- prim. operation DT slot
C : out Prim_Op_Kind);-- callable entity kind

_disp_timed_select
(Obj : <type>; -- object
S : Integer; -- prim. operation DT slot
P : System.Address; -- wrapped parameters
D : Duration; -- delay time
X : Integer; -- delay mode
C : out Prim_Op_Kind; -- callable entity kind
F : out Boolean); -- call status flag

There is one operation per select kind, with asynchronous
select utilizing a helper routine. The body for disp timed-
select created for Prot reads as follows:

procedure _disp_timed_select
(Obj : <type>; -- object
S : Integer; -- prim. operation DT slot
P : System.Address; -- wrapped parameters
D : Duration; -- delay time
X : Integer; -- delay mode
C : out Prim_Op_Kind;-- callable entity kind
F : out Boolean) -- call status flag

is
I : Integer;

begin
C := Get_Prim_Op_Kind (Obj._tag, S); -- 1

if C = K_Procedure -- 2
or else C = K_Protected_Procedure
or else C = K_Task_Procedure

then
F := True;
return;

end if;

I := Get_Entry_Index (Obj._tag, S); -- 3

Timed_Protected_Entry_Call -- 4
(Obj._object’unchecked_access, I, P, D, X, F);

end _disp_timed_select;

1. The first step of the execution is to access the table
of primitive operation kinds to determine whether the
call dispatches to a procedure or to an entry.

2. If the call dispatches to any kind of procedure, treat it
as if an entry call has accepted and executed.

3. Otherwise it is known that the call dispatched to an
entry and it is safe to retrieve its index from the index
table.

4. Finally, perform a call to the appropriate runtime rou-
tine to execute a timed entry call.

Note that Get Prim Op Kind and Get Entry Index are
not dispatching calls, those are simply invocations of library
routines whose purpose is to examine the Type Specific Data
of Obj. A possible optimization is to merge the two calls or
to completely remove the invocation of Get Prim Op Kind
and use a preset index value to denote a procedure.

When a select statement is expanded, GNAT generates
a dispatching call to one of these subprograms instead of
directly performing the original dispatching call. Referring
back to our timed select example, its expansion is as follows:

declare
B : Boolean := False; -- 1
C : Prim_Op_Kind; -- 2
DX : Duration := ...; -- delay time
M : Integer := ...; -- delay mode
P : Parameters := (Param1 .. ParamN); -- 3
S : constant Integer := <DT_Pos>; -- 4

begin
_disp_timed_select -- 5

(Obj_1, S, P’address, DX, M, C, B);

if C = K_Protected_Entry -- 6
or else C = K_Task_Entry

then
Param1 := P.Param1;
...
ParamN := P.ParamN;

end if;

if B then -- 7
if C = K_Procedure

or else C = K_Protected_Procedure
or else C = K_Task_Procedure

then
Obj_1.Dispatch_On_Bar; -- 8

end if;

Put_Line ("Call dispatched"); -- 9
else

Put_Line ("Timer expired"); -- 10
end if;

end;

The parameters and body of the operation have the fol-
lowing function:

1. The boolean flag B is used to determine whether the
runtime entry call has been accepted.

2. The primitive operation kind to be retrieved from the
table in the type specific data of the actual type.

3. The parameters in the call are collected into a record
that is passed to the stack of the callee (in the case of
a task).

4. The position of the operation in the dispatch table is
retrieved.

5. Call to the appropriate dispatching select handler. This
call will retrieve the operation kind at location S. If it
is an entry, it will also retrieve its entry index and
execute it via a runtime library call.

6. If the dispatching select handler determines that the
call is to an entry, the out-mode parameters must be
copied back from the communication record and as-
signed to the original actuals.



7. This branch is executed if the entry call has been ac-
cepted or the dispatching select handler found a pro-
cedure.

8. Since the operation kind is now known, the original
dispatching call may be executed since it is certain that
it is a procedure and no runtime support is needed.

9. The triggering statements are executed only when the
entry call is accepted or the dispatching select handler
found a procedure.

10. The delay statements are executed only if the entry
call was not accepted.

Conditional selects are handled in a similar fashion to
timed selects, the only difference behind is that the prede-
fined primitive operation invokes a different runtime library
routine. Asynchronous selects are the most complicated of
the three and require an additional helper routine. The full
description of the mechanism can be found in exp ch9.adb
(sources available in the FSF repository [14]). The follow-
ing pseudo-code summarizes all the actions performed in a
dispatching ATC:

<invoke _disp_get_prim_op_kind and store the
operation kind in C>

if C is a protected entry then
<define a finalization _clean routine to cancel
the protected entry call>
<defer_abort>
<invoke _disp_asynchronous_select>
<copy the parameters of the call from the
wrapping record type to the actual parameters>

if the entry call is enqueued
<execute the abort statements>

<perform finalization via _clean>

if an abort signal exception occurs
<undefer abort>

if the entry call is not canceled
<execute the triggering statements>

elsif C is a task entry then
<define a finalization _clean routine to cancel
the task entry call>
<defer abort>
<invoke _disp_asynchronous_select>
<copy the parameters of the call from the
wrapping record type to the actual parameters>
<undefer abort>
<execute the abort statements>
<perform finalization via _clean>

if an abort signal exception occurs
<undefer abort>

if the entry call is not canceled
<execute the triggering statements>

else
<execute the original dispatching call since
it will dispatch to a procedure>
<execute the triggering statements>

end if

5.1 Other interface operations
The attribute ’Callable and ’Terminated, as well as the

operation Abort, are applicable to a task interface. Their

implementation is trivial, and requires no dispatching ma-
chinery: any type that implements such an interface must
be a task, and the attribute or operation will be directly
applicable to the access type that denotes the task at run-
time.

6. PERFORMANCE
Dispatching calls through abstract interface types are per-

formed in GNAT in constant time [12]. Dispatching select
constructs are dependent on the performance of the run-
time library. Regardless of that fact, the overhead involved
in running those routines is at least one and at most two dis-
patching calls. Asynchronous dispatching selects have a con-
stant cost of two dispatches: one to invoke disp get prim op-
kind and one to execute the original dispatch call or disp-
asynchronous select. The lower bound on performance of
conditional and timed dispatching selects is one dispatching
call. This case occurs whenever the call to disp conditional-
select or disp timed select dispatches to an entry. In this
situation the runtime library routine is invoked from within
those two routines. An upper bound of two dispatching calls
is observed whenever the call dispatches to a protected sub-
program. In this situation disp conditional select or disp-
timed select simply return after determining the primitive
operation kind of the call and execute the original dispatch-
ing call.

7. CONCLUSION
Interfaces are one of the most significant features of Ada

2005. The combination of inheritance, interfaces and syn-
chronization (an elusive goal of programming languages for
close to two decades) is clean and intuitive. It is gratifying
to find out that the implementation of this extended facility
is not overly complex, and that it can be integrated in the
architecture of an existing compiler.

Over the last year the GNAT development team has been
working on the implementation of the most important Ada
2005 issues [11]. This paper completes the description pre-
sented in [12], on the GNAT implementation of abstract in-
terface types. The implementation described above is avail-
able to users of GNAT PRO, under a switch that controls the
acceptability of language extensions (note that these exten-
sions are not part of the current definition of the language,
and cannot be used by programs that intend to be strictly
Ada95-conformant). This implementation is also available
in the GNAT compiler that is distributed under the GNAT
Academic Program (GAP) [15],

We hope that the early availability of the Ada 2005 fea-
tures to the academic community will stimulate experimen-
tation with the new language, and spread the use of Ada
as a teaching and research vehicle. We encourage users to
report their experiences with this early implementation of
the new language, in advance of its much-anticipated offi-
cial standard..
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