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Abstract. In this paper we propose a new method to automatically cor-
rect wide-angle lens distortion from the distorted lines generated by the
projection on the image of 3D straight lines. We have to deal with two
major problems: on the one hand, wide-angle lenses produce a strong
distortion, which makes the detection of distorted lines a particularly
di�cult task. On the other hand, the usual single parameter polynomial
lens distortion models is not able to manage such a strong distortion.
We propose an extension of the Hough transform by adding a distor-
tion parameter to detect the distorted lines, and division lens distortion
models to manage wide-angle lens distortion. We present some experi-
ments on synthetic and real images to show the ability of the proposed
approach to automatically correct this type of distortion. A comparison
with a state-of-the-art method is also included to show the benefits of
our method.

Keywords: lens distortion, wide-angle lens, Hough transform, line de-
tection

1 Introduction

Wide-angle lenses are specially suited for some computer vision tasks, such as
real-time tracking, surveillance, close range photogrammetry or even for simple
aesthetic purposes. The main advantage these lenses o↵er is that they provide
a wide view up to 180 degrees. However, the strong distortion produced by
these lenses may cause severe problems, not only visually, but also for further
processing in applications such as object detection, recognition and classification.

To model the lens distortion, we consider radial distortion models given by
the expression:
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where (x, y) is the original (distorted) point, (x̂, ŷ) is the corrected (undistorted)
point, (xc, yc) is the center of the camera distortion model, L(r) is the function
which defines the shape of the distortion model and r=

p
(x� xc)2 + (y � yc)2.
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According to the choice of function L(r), there exist two widely accepted types
of lens distortion models: the polynomial model and the division model.

The polynomial model, or simple radial distortion model [10], is formulated
as:

L(r) = 1 + k1r
2 + k2r

4 + ..., (2)

where the set k = (k1, ...., kNk)
T contains the distortion parameters estimated

from image measurements, usually by means of non-linear optimization tech-
niques. The two-parameter model is the usual approach, due to its simplicity
and accuracy [12], [1]. Alvarez, Gomez and Sendra [1] proposed an algebraic
method suitable for correcting significant radial distortion which is highly e�-
cient in terms of computational cost. An on-line demo of the implementation of
this algebraic method can be found in [2].

Camera calibration is a topic of interest in Computer Vision which, in order
to be e�cient, requires including the distortion into the camera model. Most
calibration techniques rely on the linear pinhole camera and use a calibration
pattern to establish a point-to-point correspondence between 2D and 3D points
(see a review on camera calibration in [14]). In this applications, the polynomial
model with only one distortion parameter, k1 (one-parameter model), achieves an
accuracy around 0.1 pixels in image space using lenses exhibiting large distortion
[7], [8]. However, [7] also indicates that for cases of strong radial distortion, the
one-parameter model is not recommended.

The division model has initially been proposed by [13], but it has received
special attention after the more recent research by Fitzgibbon [9]. It is formulated
as:

L(r) =
1

1 + k1r2 + k2r4 + ...
. (3)

The main advantage of the division model is the requirement of fewer terms
than the polynomial model for the case of severe distortion. Therefore, the divi-
sion model seems to be more adequate for wide-angle lenses (see a recent review
on distortion models for wide-angle lenses in [11]). Additionally, when using
only one distortion parameter, its inversion is simpler, since it requires finding
the roots of a second degree polynomial instead of a third degree polynomial. In
fact, a single parameter version of the division model is normally used.

For both models, L(r) can be estimated by considering that 3D lines in the
image must be projected onto 2D straight lines, and minimizing the distortion
error, which is given by the sum of the squares of the distances from the points
to the lines [7].

Once a lens distortion model has been selected, we must decide how to apply
it. Some methods rely on the human-supervised identification of some known
straight lines in one or more images [3], [4], [15]. As a consequence of the human
intervention, these methods are robust, independent of the camera parameters,
and require no calibration patterns. However, for the same reason, these methods
are slow and tedious for the case of dealing with large sets of images.
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New approaches have recently appeared to eliminate human intervention.
In [6] and [5], an automatic radial estimation method is discussed. This method
works on a single image and no human intervention or special calibration pattern
are required. The method applies the one-parameter Fitzgibbon’s division model
to estimate the distortion from a set of automatically detected non-overlapping
circular arcs within the image. The main limitation of the method is that each
circular arc has to be a collection of contiguous points in the image and, therefore,
the method fails if there are no such arcs.

In this paper, we propose a new unsupervised method which makes use of
the one-parameter division model to correct, from a single image, the radial dis-
tortion caused by a wide-angle lens. We first automatically detect the distorted
lines within the image by adapting the usual Hough transform to our problem.
The adaptation consists in embedding the radial distortion parameter into the
Hough parametric space to tackle the detection of the longest arcs (distorted
lines) within the image. From the improved Hough transform, we obtain a col-
lection of distorted lines and an initial value for the distortion parameter k1.
Next, we optimize this parameter by minimizing the distance of the corrected
line points to straight lines.

2 A Hough Space Including a Division Lens Distortion

Parameter

In order to correct the distortion, we need to estimate the magnitude and sign
of the distortion parameter and, to this aim, we can rely on the information
provided by line primitives. Line primitives are searched in the edge image which
is computed using any edge detector. One of the most commonly used techniques
to extract lines in an edge image is the Hough transform, which searches for the
most reliable candidates within a certain space. This space is usually a two-
dimensional space which considers the possible values for the orientation and
the distance to the origin of the candidate lines. Each edge point votes for those
lines which could contain this point, and the lines which receive the highest
scores are considered the most reliable ones.

However, this technique does not consider the influence of the distortion in
the alignment of the edge points, in such a way that straight lines are split into
di↵erent segments due to the e↵ect of the distortion. For this reason, we propose
to include a new dimension in the Hough space, namely the distortion parameter.
For practical reasons, instead of considering the distortion parameter value itself
in the Hough space, we make use of the percentage of correction obtained with
that value, which is given by:

p = (r̃max � rmax)/rmax, (4)

where rmax is the distance from the center of distortion to the furthest point
in the original image, and r̃max is the same distance, but after applying the
distortion model. This way, the parameter p is easier to interpret than the dis-
tortion parameter itself. Another advantage of using p as an extra parameter in
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(a) Synthetic image (b) Real image

Fig. 1. Values of the maximum in the voting space with respect to the percentage of
correction for the images in (a) the synthetic image in Fig. 2 and (b) the real image in
Fig. 3 using the modified Hough transform and division lens distortion model

the Hough space is that it does not depend on the image resolution. When we
use single parameter division models the relation between parameter p and k1
is straightforward and it is given by the expression :

k1 =
�p

(1 + p)r2max

. (5)

To reduce the number of points which vote and the number of lines that
each edge point votes for, we first estimate the magnitude and orientation of
the edge for every edge point. Only those points where the magnitude of the
gradient is higher than a certain threshold are considered. Afterward, we select,
for every value of p and every edge point, those lines which, after being corrected
according to the distortion model associated to this value of p, are close enough
to the point and present an orientation which is similar to the orientation of the
edge in that point. Furthermore, the vote of a point for a line depends on how
close they are, and is given by v = 1/(1 + d), where d is the distance from the
point to the line.

In the Hough space, the di↵erent lines may have di↵erent orientations and
distances to the origin. Nevertheless, they should all have the same value of
the distortion parameter (i.e. the same value of p), since it is a single value for
the whole image. This means that we must not search for the best candidates
individually, but for the value of p which concentrates the largest number of
significant lines.

Figure 1 illustrates how the maximum of the voting score varies within the
Hough space according to the percentage of correction determined by the dis-
tortion parameter.

Once we have searched for the best value of p within the three-dimensional
Hough space, we refine it to obtain a more accurate approximation. To this
aim, by using standard optimization techniques (gradient descent method) we
minimize the following error function:
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(a) (b)

(c) (d)

Fig. 2. Lens distortion correction for a test image: (a) lines detected using the Bukhari-
Dailey method, (b) lines detected using the proposed method, (c) undistorted image us-
ing the Bukhari-Dailey method, and (d) undistorted image using the proposed method.

E (p) =
NlX

j

Np(j)X

i

dist (xji, linej)
2 (6)

Nl is the number of lines, Np(j) is the number of points of the jth line and xji

are the points associated to linej . This error measures how distant the points are
from their respective lines, so that the lower this value, the better the matching.

3 Experimental Results

We have tested our model in some images showing wide-angle lens distortion
and we have compared the results with those obtained using the Bukhari-Dailey
method [5]. We have used the code avaliable on F. Bukhari’s web page1.

1 http://www.cs.ait.ac.th/vgl/faisal/downloads.html
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(a) (b)

(c) (d)

Fig. 3. Lens distortion correction for a real image: (a) lines detected using the Bukhari-
Dailey method, (b) lines detected using the proposed method, (c) undistorted image us-
ing the Bukhari-Dailey method, and (d) undistorted image using the proposed method

Figure 2 (1024 ⇥ 683 pixels) presents the results for a synthetic image. It
consists of a calibration pattern in which the radial distortion has been simu-
lated using a division model. The magnitude of such distortion is 20% (p = 0.2).
Figure 2(a) shows the arcs detected using the Bukhari-Dailey method, whereas
the lines detected using the proposed method (modified Hough transform and
division model) are shown in Fig. 2(b). We have represented each line using a
di↵erent color to identify them. In both cases, from the detected arcs or distorted
lines, the distortion is estimated and the images are corrected. Figure 2(c) illus-
trates the result using the Bukhari-Dailey method, whereas Fig. 2(d) presents
the corrected image using the proposed method. As observed, the Bukhari-Dailey
method splits those lines where points are not contiguous, while the proposed
method is able to identify a single line from di↵erent disconnected segments (see,
for instance, how the edges of the squares in the same row or column are not
associated using the Bukhari-Dailey method, but are properly linked using our
method). Since longer lines provide more useful information than shorter ones,
this results in a better distortion estimation for the proposed method.
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Table 1. Number of lines, number of points, CPU time and percentage of correction
for Fig. 2 and 3 using the Bukhari-Dailey method and the proposed method

Figure Measure Bukhari-Dailey Our method

Figure 2 (synthetic image)

No. of arcs 306 24
No. of points 11,255 9,033
CPU time (sec.) 79.611 7.844
% correction 0 19.9555

Figure 3 (real image)

No. of arcs 22 22
No. of points 2,894 3,651
CPU time (sec.) 57.41 3.209
% correction 63.3116 49.9186

Figure 3 (640⇥ 425 pixels)2 illustrates the same experiment on a real image
with a strong distortion. Figure 3(a) shows the arcs detected using the Bukhari-
Dailey method. As observed, when di↵erent segments of the same line are visible,
this method is not able to associate them (see for instance the lower green line,
which is not continued on the right side of the image), but the proposed method
associates them into the same line (see Fig. 3(b)). For this case, the corrected
image using the proposed method is also better than that obtained by means of
the Bukhari-Dailey method (compare Fig. 3(c) and Fig. 3(d)).

Table 1 shows some quantitative results. If we analyze the results for the
calibration pattern, we can observe two important advantages of our method.
First, the number of lines which have been identified is 24, which is exactly
the number of lines within the image. Nevertheless, the Bukhari-Dailey method
extracts a higher number of lines, since each one of them has been split in many
segments. Second, the percentage of correction obtained with our method is very
close to the real value (20%). In this case the Bukhari-Dailey method does not
provide a good result (0% of correction), probably because the obtained segments
are too small to properly estimate the distortion model. Concerning the total
amount of points of the arcs obtained by both methods, the Bukhari-Dailey
method obtains more points (11,255 points in all) than our method (9,033 points)
probably due to the spurious arcs extracted by the Bukhari-Dailey method.

For the real image, both methods have identified the same number of lines,
but those obtained by our method are longer (3,651 points in all) and they have
not been split. Regarding the computational cost, in the experiments presented,
our method is about 10 times faster than the one proposed by Bukhari-Dailey.

4 Conclusions

In this paper we propose a new method to automatically correct wide-angle lens
distortion. The main novelty of the paper is the combination of an improved 3D
Hough space, which includes the distortion parameter to detect distorted lines,
and the division distortion model which is able to manage the strong distortion

2 US Air Force CC0 http://commons.wikimedia.org/wiki/File:Usno-amc.jpg
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produced by wide-angle lenses. We present some experiments which show that
the proposed method properly corrects the lens distortion in the case of wide-
angle lenses and outperforms the results obtained in [5] specially in the case
where the distorted lines are not contiguous arcs in the image.
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References

1. Alvarez, L., Gomez, L., Sendra, R.: An algebraic approach to lens distortion by
line rectification. Journal of Mathematical Imaging and Vision 39(1), 36–50 (2008)

2. Alvarez, L., Gomez, L., Sendra, R.: Algebraic lens distortion model estimation.
Image Processing On Line. http://www.ipol.im (2010)

3. Alvarez, L., Gomez, L., Sendra, R.: Accurate depth dependent lens distortion mod-
els: an application to planar view scenarios. Journal of Mathematical Imaging and
Vision 39(1), 75–85 (2011)

4. Brown, D.: Close-range camera calibration. Photogrammetric Engineering 37(8),
855–866 (1971)

5. Bukhari, F., Dailey, M.: Automatic radial distortion estimation from a single image.
Journal of Mathematical Imaging and Vision 45(1), 31–45 (2012)

6. Bukhari, F., Dailey, M.N.: Robust radial distortion from a single image. In: Bebis,
G., Boyle, R.D., Parvin, B., Koracin, D., Chung, R., Hammoud, R.I., Hussain, M.,
Tan, K.H., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC (2). Lecture
Notes in Computer Science, vol. 6454, pp. 11–20. Springer (2010)

7. Devernay, F., Faugeras, O.: Straight lines have to be straight. Machine Vision and
Applications 13(1), 14–24 (2001)

8. Faugeras, O., Toscani, G.: Structure from motion using the reconstruction and re-
projection technique. In: Proc. IEEE Workshop on Computer Vision (IEEE Com-
puter Society) pp. 345–348 (November-December 1987)

9. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and
lens distortion. In: Proc. IEEE International Conference on Computer Vision and
Pattern Recognition pp. 125–132 (2001)

10. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision. Cam-
bridge University Press (2004)

11. Hughes, C., Glavin, M., Jones, E., Denny, P.: Review of geometric distortion com-
pensation in fish-eye cameras. In: Signals and Systems Conference, 208. (ISSC
2008). IET Irish. pp. 162–167. Galway, Ireland (2008)

12. Kang, S.: Radial distortion snakes. In: Proc. IEICE Transactions on Information
and Systems pp. 1603–1611 (2000)

13. Lenz, R.: Linsenfehlerkorrigierte Eichung von Halbleiterkameras mit Standardob-
jektiven für hochgenaue 3D - Messungen in Echtzeit. In: Paulus, E. (ed.) Muster-
erkennung 1987, Informatik-Fachberichte, vol. 149, pp. 212–216. Springer Berlin
Heidelberg (1987)

14. Salvi, J., Armangu, X., Batlle, J.: A comparative review of camera calibrating
methods with accuracy evaluation. Pattern Recognition Letters 35(7), 1617–1635
(2002)

15. Wang, A., Qiu, T., Shao, L.: A simple method to radial distortion correction with
centre of distortion estimation. Journal of Mathematical Imaging and Vision 35(3),
165–172 (2009)

View publication stats

https://www.researchgate.net/publication/258432258

