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Julio Esclaŕın† Luis Mazorra† Luis Alvarez†

A final version of this paper has been published in [26] and can be found in
http://epubs.siam.org/doi/abs/10.1137/151006044

Abstract

In this paper, we study lens distortion for still images considering two well-known distortion models: the two-
parameter polynomial model and the two-parameter division model. We study the invertibility of these models
and we mathematically characterize the conditions for the distortion parameters under which the distortion
model defines a one-to-one transformation. This ensures that the inverse transformation is well-defined and the
distortion-free image can be properly computed, which provides robustness to the distortion models. A new
automatic method to correct the radial distortion is proposed and a comparative analysis for this method is
extensively performed using the polynomial and the division models. With the aim of obtaining an accurate
estimation of the model, we propose an optimization scheme which iteratively improves the parameters to
achieve a better matching between the distorted lines and the edge points.The proposed method estimates two-
parameter radial distortion models by detecting the longest distorted lines within the image. This is done by
applying the Hough transform extended with a radial distortion parameter. Next, a two-parameter model is
estimated using an iterative non-linear optimization scheme. This scheme aims at minimizing the distance from
the edge points to their associated lines by adjusting the two distortion parameters as well as the coordinates
of the center of distortion. We present some experiments on real images with significant distortion to show the
ability of the proposed approach to correct the radial distortion. A visual and quantitative comparison between
both automatic two-parameter model estimations indicates that the division model is more efficient for those
images showing strong distortion.

1 Introduction

[26] Radial distortion is a quite frequent type of distortion which causes barrel distortion at short focal lengths
and pincushion distortion at long focal lengths. This phenomenon is mainly due to the imperfection of the lens
and the misalignment of the optical system, and is embedded in the well-known pinhole camera model by means
of a distortion model [11]. In [13], the authors review the most used radial distortion models and illustrate how
important a precise correction is in order to assist the automated diagnosis of celiac disease from endoscopic
images with strong barrel distortion. In [29], a more comprehensive review of state-of-the-art radial distortion
models is discussed. An important contribution of this extended review lies on the proposal of a self-consistency
and universality validation of radial distortion correction in order to allow a fair (unbiased) comparison among
models. Self-consistency is evaluated by the residual error when the distortion generated with a certain model is
corrected by the best parameters for such model. Universality is measured by the residual error when a model is
used to correct the distortions generated by a family of other models.

The general equation of a lens distortion model is given by the equation(
x̂− xc

ŷ − yc

)
= L(r)

(
x− xc

y − yc

)
, (1)

where (xc, yc) represents the distortion center, (x, y) is a point in the image domain, (x̂, ŷ) is the transformed point,
r = ∥(x, y)− (xc, yc)∥, and L(r) represents the shape of the distortion model. Two types of radial lens distortion
models are the most frequently applied in computer vision due to their excellent trade-off between accuracy and
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easy calculation: the polynomial model and the division model. The polynomial model (or simple radial distortion
model [18]), using two parameters, is formulated as

L(r) = 1 + k1r
2 + k2r

4. (2)

Two-parameter models have been used in the literature due to their simplicity and accuracy ([3], [20]). In
[3], an algebraic method is proposed which is suitable for correcting significant radial distortion as well as highly
efficient in terms of computational cost. An on-line demo of the implementation of this algebraic method can be
found in [4].

The division model was initially proposed in [23], but has received special attention after the research by
Fitzgibbon [12]. In the case of two parameters, it is formulated as

L(r) =
1

1 + k1r2 + k2r4
. (3)

The main advantage of the division model is the requirement of fewer terms than the polynomial model to cope
with images showing severe distortion. Therefore, the division model seems to be more adequate for wide-angle
lenses (see a recent review on distortion models for wide-angle lenses in [19]).

For both models, L(r) can be estimated by considering that 3D lines in the image must be projected onto 2D
straight lines, and minimizing the distortion error, which is given by the sum of the squares of the distances from
the points to the lines [10]. In [5], [6] and [28], the user must identify some known straight lines, which makes
these methods robust, independent of camera parameters, and no calibration pattern is required. However, these
methods are slow for the case of dealing with a large set of images.

New automatic methods without user intervention have recently emerged. In [7], an automatic method to
estimate radial distortion models working on a single image without human intervention is discussed. This approach
applies Fitzgibbon’s one-parameter division model to estimate the distortion from a set of automatically detected
non-overlapping circular arcs within the image.

In [16], a new automatic approach to correct lens distortion is discussed, which differs considerably from
the standard approach, thus being a truly new methodology, not only for lens distortion but also for camera
calibration. The proposed method is non-parametric, non-iterative and model-free. Even the calibration pattern
used is completely different from standard models: it consists of a highly textured planar pattern obtained by
printing a textured image on a flat object. Then, by taking two photographs of this pattern in a fixed lens
configuration, a tracking of the distorted points is obtained and the points are classified applying the SIFT (Scale-
invariant feature transform) method. Wrong SIFT matches (outliers) are disregarded through an iterative algorithm
which matches points using retroprojection of the points by estimating a homography by RANSAC algorithm and
rejecting all points not compatible with this homography. From that, a distortion field is built and then, its inverse
is applied for image correction. Results are compared with the classical results from [21] achieving a precision,
in terms of the RMS (Root Mean Squared) error, slightly outperforming the state of the art global calibration
methods obtained by Lavest (RMS of 0.08 pixels).

In [17], a similar approach (a model-free method) is proposed and compared with [16] to show that using a
higher order polynomial (degree 7 to 11) to model the distortion provides better results. An energy function which
measures the distance from the undistorted points to their associated lines similar to the one in [3] is defined and
optimized using the Levenberg-Marquardt algorithm in an iterative way. To refine the solution, the algorithm
first estimates a 3-order polynomial, this solution is used to initialize a 4-order polynomial, and this process
continues until minimizing an 11-order polynomial. Additionally, it is worth mentioning that the method uses a
real plumb line pattern calibration: a harp built with good quality strings which have been tightly stretched to
ensure straightness. A detailed study about calibration harp reliability in the context of high-precision camera
distortion measurements has been presented in [27].

The extension of the classical Hough transform including a distortion model has become a usual approach for
automatic methods. These methods enrich the standard Hough space by including a set of distortion parameters,
which allows a better recognition of the existing straight lines. Basically, the difference between the models lies in
the implementation or in the radial distortion model which is applied.

In [8], the authors propose an automatic method for radial lens distortion correction using an adapted Hough
transform including the radial distortion parameter to automatically detect straight lines within the image. The
one-parameter radial model is used and an exhaustive search is performed testing each distortion parameter in a
discretized set within the range (kmin, kmax) and selecting the one that provides the best fitting (i.e., which maxi-
mizes the straightness of the candidate lines obtained from the corrected points). The method works automatically
but better results are obtained using a semi-automatic version which includes the manual selection of a ROI (region
of interest) containing some known straight lines.

A fully automatic distortion correction method, which also embeds the radial distortion parameter into the
Hough transform to better detect straight lines, is presented in Lee et al. [22]. It is applied to endoscopic images
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captured with a wide-angle zoomable lens. In this case, the division model with one parameter is used to deal with
the strong distortion caused by the wide-angle lens. The method is adapted to also include the effects related to
the variation of the focal length due to zooming operations. The method is intended for real time applications once
mapped to a GPU computing platform. The distortion parameter is estimated by optimizing the Hough entropy
in the image gradient space.

Based on [1, 2], we propose a new automatic method to correct the radial distortion in still images. As main
differences with [1, 2], in this paper we consider both polynomial and division models, and estimate two distortion
parameters, instead of just one-parameter division models. Furthermore, a new efficient iterative algorithm is used
to get optimal distortion parameters as well as the center of distortion (in [2], the center of distortion is assumed
to be the center of the image). We show that, by using the optimization scheme, more lines (and longer) are
extracted, which implies a better final undistorted image.

Another contribution of this work is that we mathematically characterize the conditions for the distortion
parameters under which the distortion model defines a one-to-one transformation. This ensures that the inverse
transformation required to undistort the image is well-defined for the two-parameter models, and the distortion-free
image can properly be computed which provides robustness to the distortion models.

Although we only discuss two-parameter models, the proposed optimization method can be applied to estimate
models with more distortion parameters. However, in the case of models using more that two distortion parameters,
the mathematical study of the invertibility of the distortion should be explored. In this paper, the conditions to
guarantee the inversion of the models have been obtained only for the case of dealing with two parameters.

This paper is organized as follows: In Section 2, we study the invertibility of the lens distortion model. In
Section 3, we present the iterative optimization method proposed to obtain the two distortion parameters and
the center of distortion. In Section 4, we present a large variety of experiments to illustrate the performance of
the proposed method, including a comparison between division and polynomial models. Finally, in Section 5, we
present our main conclusions.

2 Invertibility of lens distortion models

A two-parameter radial lens distortion model defines a transformation on the image domain. In this section, we
study the invertibility of such transformation according to the values of the distortion parameters k1, k2. Since we
deal with radial transformations, the invertibility of lens distortion models is equivalent to the invertibility of the
associated radial transformation

r̂(r, k1, k2) = r · L(r, k1, k2), (4)

which determines the way the distance r from a point to the distortion center is modified when the lens distortion
model is applied. The domain of definition of r̂(r, k1, k2) with respect to r is the interval [0, r1], where r1 is defined
by

r1 = max{∥(x, y)− (xc, yc)∥ : (x, y) ∈ Image Domain}. (5)

In the next theorems, we present some results concerning the invertibitiy of r̂(r, k1, k2) according to the distortion
parameters k1, k2 for the polynomial and division model.

Theorem 1 (Invertibility of polynomial distortion models) For any k1, k2 ∈ R, the function

r̂(r, k1, k2) = r(1 + k1r
2 + k2r

4) (6)

is a one-to-one function with respect to r in the interval [0, r1] if and only if k1, k2 satisfy{
9r41k

2
1 − 20r41k2 < 0 if r21k1 < −2

3

5r41k2 + 3r21k1 + 1 > 0 if r21k1 ≥ − 2
3 .

(7)

Moreover, if k1, k2 satisfy (7), for any r′ ∈ (0, r̂(r1, k1, k2)], there exists a unique r ∈ (0, r1] such that r̂(r, k1, k2) =
r′, given by a root of the polynomial

P (r) = k2r
5 + k1r

3 + r − r′ = 0. (8)

Proof: The derivative of r̂(r, k1, k2) with respect to r is given by

∂r̂(r, k1, k2)

∂r
= 1 + 3k1r

2 + 5k2r
4. (9)
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We observe that the above derivative is positive in r = 0. Thus, the function r̂(r, k1, k2) will be one-to-one in
the interval [0, r1] iff r̂(r, k1, k2) is an increasing function with respect to r in the interval [0, r1]. This is equivalent
to the fact that the above derivative is positive in the interval [0, r1] and, therefore, its roots must be outside the
interval [0, r1]. Formally, the potential positive real roots of the polynomial in (9) are given by

√
−3k1±

√
9k2

1−20k2

10k2
if k2 ̸= 0, 9k21 − 20k2 ≥ 0 and

−3k1±
√

9k2
1−20k2

10k2
≥ 0√

− 1
3k1

if k2 = 0 and k1 < 0.
(10)

Next, we consider the case r1 = 1 and we study the regions in the k1, k2 parameter space where all the real
roots of (9) are outside the interval [0, 1]. To find such regions we will consider the following level curves in the
k1, k2 space 

k2 = 0

9k21 − 20k2 = 0

−3k1±
√

9k2
1−20k2

10k2
= 1.

(11)

We observe that the last equation is equivalent to

9k21 − 20k2 = (10k2 + 3k1)
2,

and a straightforward computation yields that this equation is equivalent to

5k2 + 3k1 + 1 = 0.

In figure 1, we illustrate these level curves. The pink area represents the regions where all real roots of the
polynomial (9) are outside the interval [0, 1] and, therefore, the function r → r̂(r, k1, k2) is one-to-one in the
interval [0, 1]. We observe that, in case r1 = 1, this area corresponds to the one given by the expression (7), which
proves the statement of the theorem for the case r1 = 1. For the general case r1 ̸= 1, we first observe that the
function r → r̂(r, k1, k2) is one-to-one in the interval [0, r1] if and only if the function r̃ → r̂(r1r̃, k1, k2) is one-to-one
in the interval [0, 1]. On the other hand, taking into account (6), we obtain

r̂(r1r̃, k1, k2) = r1 · r̂(r̃, k1r21, k2r41),

and, therefore, by applying the result obtained for the case r1 = 1 to the function r̃ → r̂(r̃, k1r
2
1, k2r

4
1), we obtain

(7). Moreover, if the function r → r̂(r, k1, k2) is one-to-one, using (6) we obtain that the inverse function can be
computed using the roots of the polynomial P (r) given by (8), which concludes the proof of the theorem.

Theorem 2 (Invertibility of division distortion models) For any k1, k2 ∈ R, the function

r̂(r, k1, k2) =
r

1 + k1r2 + k2r4
(12)

is a one-to-one function with respect to r in the interval [0, r1] if and only if k1r
2
1 > −2 and−1− r21k1 < r41k2 <

1−r21k1

3 if −2 < r21k1 < 2

−1− r21k1 < r41k2 < − r41k
2
1

12 if r21k1 ≥ 2.
(13)

Moreover, if k1, k2 satisfy (13), for any r′ ∈ (0, r̂(r1, k1, k2)], there exists a unique r ∈ (0, r1] such that
r̂(r, k1, k2) = r′ and it is given by a root of the polynomial

P (r) = r′k2r
4 + r′k1r

2 − r + r′ = 0. (14)

Proof: We follow the same technique used in theorem 2 adapted to the division model. The derivative of r̂(r, k1, k2)
with respect to r is given by

∂r̂(r, k1, k2)

∂r
=

1− k1r
2 − 3k2r

4

(1 + k1r2 + k2r4)2
. (15)

In this case, we have to consider the roots of the numerator and denominator of the above expression and we
obtain
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Figure 1: Polynomial model: level curves used to study the regions where all roots of the derivative function (9)
are outside the interval [0, 1]. The pink area represents the regions where all roots are outside [0, 1].



√
−k1±

√
k2
1−4k2

2k2
if k2 ̸= 0, k21 − 4k2 ≥ 0 and

−k1±
√

k2
1−4k2

2k2
≥ 0√

−k1±
√

k2
1+12k2

6k2
if k2 ̸= 0, k21 + 12k2 ≥ 0 and

−k1±
√

k2
1+12k2

6k2
≥ 0√

± 1
k1

if k2 = 0 and k1 ̸= 0.

(16)

Next, we initially assume that r1 = 1 and we consider the following level curves in the k1, k2 space separating
the different regions with respect to the roots

k2 = 0

k21 − 4k2 = 0

−k1±
√

k2
1−4k2

2k2
= 1 → k1 + k2 + 1 = 0

k21 + 12k2 = 0

−k1±
√

k2
1+12k2

6k2
= 1 → k1 + 3k2 − 1 = 0.

(17)

In figure 2, we show these level curves. The pink area represents the regions where all real roots of the
polynomials in (15) are outside the interval [0, 1] and, therefore, the function r → r̂(r, k1, k2) is one-to-one in the
interval [0, 1]. For the general case r1 ̸= 1, as in the previous theorem, we prove (13) by reducing the problem to
the case r1 = 1 using a change of variable. Using (12), we obtain that the inverse function can be computed using
the roots of the polynomial P (r) given by (8), which concludes the proof of the theorem.

The results showed in the above theorems allow us to easily check if a given parameter configuration k1, k2
defines a one-to-one lens distortion transformation and the inverse transformation is well-defined. Otherwise, the
lens distortion transformation generates singularities and we cannot properly compute the distortion-free image
because the inverse of the lens distortion transformation is required.
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Figure 2: Division model : level curves used to study the regions where all roots of the polynomials in (15) are
outside the interval [0, 1]. The pink area represents the regions where all roots are outside [0, 1].

3 Lens distortion estimation and correction

In this section, we present the approach we use to estimate the lens distortion model and correct the distortion.
First, we extract an initial collection of distorted lines using a one-parameter model. Afterward, with the same
collection of primitives, a two-parameter model is estimated by minimizing an energy function given by the distance
from the corrected points to their associated lines. In this stage, we perform a normalization of the distortion
parameters so that the method is independent of the image resolution. Then, an iterative optimization method
is applied to obtain a better collection of lines and, therefore, improve the two-parameter model. Finally, the
distortion model which has been calculated is used to correct the distortion of the images. Figure 3 illustrates the
different stages for the estimation and correction of the distortion. Next, we will present a more detailed description
of the different steps of the proposed method.

3.1 Initial estimation of the collection of lines and a single parameter division model

Different strategies to find aligned structures in an image are possible. In [9], a parameterless method to detect
segments which guarantees that no more than one segment on the average will be wrongly detected (false positive)
is discussed. This work is based on the Helmholtz principle, which states that any observed geometric structure
(in an image) is perceptually meaningful if the expectation of its occurrences is small in a random image. This
approach has been extended in [15, 14], where the authors introduce the LSD (Line Segment Detector) method.
This method detects segments in an image in a very fast and effective way. In this paper, as we deal with distorted
lines, we use an extension of the Hough transform which allows extracting aligned structures distorted by a one-
parameter distortion model. The traditional Hough transform consists in searching for certain shapes which can
be expressed in a parameterized way and determining which values of the parameters are the most reliable ones,
according to a voting scheme given by the number of edge points which fit into the shapes. The higher the number
of votes, the more significant the shape. In the case of straight lines, this can easily be implemented by considering
only two parameters, namely the orientation and the distance to the origin. When perfect straight lines are present
in the scene, the votes are agglutinated around the right values. However, the lens distortion curves the projected
lines, so that long lines cannot be extracted by this method because they are not projected on the camera plane
as straight lines. This can be tackled by introducing a new parameter in the Hough searching space. This new
parameter is the radial distortion parameter. Therefore, a line in this space is described by a triplet (d, α, k1)
representing the distance to the origin, line orientation and radial distortion.

An extension of the Hough transform which includes a single radial distortion parameter to extract lines in
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images with radial distortion has been applied in several works with the purpose of correcting the distortion. In the
work by Alemán-Flores et al. [2], this is first done and then a polynomial model with two parameters is used. The
same approach is applied in [1], but, in this case, a one-parameter division model is applied to correct the distortion.
We refer the reader to these papers for details. At this stage, it is assumed that the distortion which affects all
lines within the image is given by a one-parameter model. Hence, a single value for the distortion parameter is
estimated for the whole image. In this sense, due to the fact that a single parameter is considered in the first step
of the proposed method, [1] can be regarded as the initial step, but applying the corresponding model (polynomial
or division).

We also assume that the distortion center is the image center, which is usually a good approximation. The
selection of the longest lines is performed through the usual voting scheme related to the standard Hough transform:
first, we extract the edge points and estimate the edge point orientations. The proposed technique would work
with any method which provides this information, but in our case, we are using our own implementation of the
Canny edge detector. Secondly, for each value of the distortion parameter k1 in the Hough space, we correct the
edge point coordinates and orientation using the lens distortion model associated to k1. Each edge point votes for
the set of lines in the Hough space with a similar orientation to the edge point orientation. Moreover, the vote of
a point for a line depends on how close they are, and is given by v = 1/(1 + dk1), where dk1 is the distance from
the point to the line. Next, from the voting score matrix, we select the n most voted lines for each possible value
of the radial distortion parameter.

In order to select a value for the distortion parameter, we search for the value which best corrects the lines,
i.e. which provides the longest lines after correction. To compare the possible values, we consider the n longest
lines which can be extracted using each value and we add the scores of these lines (as explained above, this score
depends on the number of points associated to that line and the distance from the points to the line). This measure
for the reliability of each value of the distortion parameter favors the values for which the longest lines have been
detected. The reliability measure vi for the ith value of the first distortion parameter is

vi =

n∑
j=1

sij , (18)

where sij is the total score of the jth line of the ith value.
As a summary, this stage provides a first approximation of a one-parameter distortion model, the collection of

the longest lines within the image associated to such model (we denote by Nl the number of lines) and, for each
line j, we associate the collection of edge points {xji = (xji, yji)}i=1,..,N(j) which vote for the line. It is important
to remark that this simple model is not optimized as our interest lies only in extracting an initial set of lines. In
the following sections, from this set of lines, we use a two-parameter model, and an optimization for the distortion
parameters and the center of distortion is discussed.

In figure 4, we show a graphic example of applying this step to an image of a calibration pattern. On the left,
the image used for the voting process is depicted. On the center column, we show the voting matrix for each value
of k1, with a highlighted region, which is enlarged on the right. The votes are shown using a gray scale inside each
matrix. The darker the color, the higher the score. As observed, for the value of k1 which reaches the highest
voting score, the votes are concentrated around the values corresponding to the lines instead of being dispersed.

3.2 Parameter normalization

In order to normalize the parameters k1 and k2, so that the method is independent of the image resolution, and
avoid working with too small values, we introduce the parameters p1 and p2 instead. The value of p1 represents
the percentage of correction of the furthest point in the image from the center of distortion, and p2 represents the
same percentage of correction, but for the midpoint between the center of distortion and the furthest point. This
way, the parameters are easier to interpret and do not depend on the image resolution. In what follows, we will
denote as r1 the distance from the center of distortion to the furthest point in the image domain given by (5), and
as r2 half of this distance.

Polynomial model

According to the equations for the polynomial distortion model, the values described above are related as follows

(1 + p1)r1 = r1(1 + k1r
2
1 + k2r

4
1), (19)

(1 + p2)r2 = r2(1 + k1r
2
2 + k2r

4
2),

and simplifying
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p1 = k1r
2
1 + k2r

4
1, (20)

p2 = k1r
2
2 + k2r

4
2.

Using the relation r1 = 2r2, we can rewrite the equations as

p1 = k14r
2
2 + k216r

4
2, (21)

p2 = k1r
2
2 + k2r

4
2.

According to this, we have the system[
4r22 16r42
r22 r42

] [
k1
k2

]
=

[
p1
p2

]
, (22)

which provides the following values for k1 and k2

k1 =
p1 − 16p2
−12r22

, k2 =
4p2 − p1
−12r42

. (23)

Therefore, using the expressions above, we can replace k1, k2 by p1, p2 as distortion parameters.

Division model

In the case of the two-parameter division distortion model, the relation between the parameters changes according
to the division model:

(1 + p1)r1 =
r1

1 + k1r21 + k2r41
, (24)

(1 + p2)r2 =
r2

1 + k1r22 + k2r42
,

and, therefore

p1 =
1

1 + k1r21 + k2r41
− 1, (25)

p2 =
1

1 + k1r22 + k2r42
− 1.

For computing k1 and k2, we have a similar system as above[
r21 r41
r22 r42

] [
k1
k2

]
=

[
−p1

1+p1−p2

1+p2

]
. (26)

Solving this system, and considering the relation r1 = 2r2, we obtain

k1 =

−p1

1+p1
+ 16p2

1+p2

−12r22
, k2 =

−4p2

1+p2
+ p1

1+p1

−12r42
. (27)

3.3 Two-parameter lens distortion estimation for a given collection of distorted lines

We denote by u the tuple (p1, p2, xc, yc), which defines the distortion model, and by x̂
u

ji = (x̂u
ji, ŷ

u
ji) the distortion

corrected points obtained using equation (1) with the model given by u. For a given u and a given line j, the
equation of the associated straight line given by cos(αu

j )x + sin(αu
j )y + duj = 0 is defined by the pair (αu

j , d
u
j )

obtained by minimizing

D(α, d) =

N(j)∑
i=1

(
cos(α)x̂u

ji + sin(α)ŷuji + d
)2

. (28)

This well-known minimization problem has a simple close-form solution (see for instance [11] for more details).
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The optimization of the lens distortion model is performed by minimizing the average of the square distance
from the corrected primitive points to their associated lines, so that, using the notation introduced above, this
optimization consists in minimizing the following energy

E(u) =

∑Nl
j=1

∑N(j)
i=1

(
cos(αu

j )x̂
u
ji + sin(αu

j )ŷ
u
ji + duj

)2∑Nl
j=1 N(j)

. (29)

The initial value for p1 is given by the final value obtained in the previous stage, whereas the initial value for
p2 is 0. The center of distortion is initialized at the geometric center of the image. To minimize energy (29), we
propose an iterative scheme which is a combination of the gradient descent and Newton-Raphson methods. The
gradient descent method is based on the following iterative scheme

un+1 = un − λ∇E(un), (30)

where λ > 0. It is well-known that if ∇E(un) ̸= 0 and λ is small enough, then E(un) < E(un+1). Newton-Raphson
method is based on the Taylor expansion of E(u) given by

E(u) = E(un) + (∇E(un))
T (u− un) + (u− un)

T∇2E(un)(u− un) + . . . (31)

Since we want to minimize this energy, we derive the previous expression and make it equal to 0

∇E(u) ≈ ∇E(un) +∇2E(un)(u− un) = 0. (32)

Therefore,
∇2E(un)(u− un) = −∇E(un), (33)

and the Newton-Raphson minimization scheme is given by

un+1 = un −∇2E(un)
−1∇E(un). (34)

Usually, Newton-Raphson is faster than the gradient descent method when the initial solution is not far from
a local minimum of the energy, but in case the initial solution is far from a local minimum energy, the method
can diverge and, moreover, there is no way to ensure that the energy decreases across the iterations. To avoid this
limitation of Newton-Raphson scheme, in 1944, Levenberg [24] introduced the idea of using a damping parameter
to combine gradient descent and Newton-Raphson schemes in the context of the well-known Levenberg-Marquardt
optimization algorithm. Using Levenberg’s approach we propose to use the following minimization scheme:

un+1 = un − (∇2E(un) + γId)−1∇E(un), (35)

where γ is the damping parameter used to control the convergence of the minimization as follows: γ is updated in
each iteration to ensure that E(un+1) < E(un). Usually, its value is higher when we are far from the solution and
decreases when we approach it. Hence, the damping parameter helps to avoid Newton-Raphson instabilities when
the initial solution is far from a local minimum of the energy.

The damping parameter γ is initialized to 10, and its evolution depends on the value obtained for the optimized
energy in each iteration. In order to ensure that the new computed energy is less than the previous one, the
value is multiplied/divided by 10, according to the increase/decrease of the energy. As the optimization process
consists in optimizing the tuple constituted by (p1, p2, xc, yc), the stop condition is that the difference between all
the optimized parameters and their previous values is less than a tolerance. In order to avoid a large number of
iterations, we include an extra condition, by establishing a limit of 100 iterations. In the worst case, when no
iteration minimizes the energy, the model will be equal to the input one, and the center of distortion will be the
geometric center of the image.

We remark that we look for local minima of the energy E(u) because, in general, the global minima of this
energy can be attained in singular configurations (especially when very few primitive points are used). To avoid such
singular solutions, we check whether the lens distortion transformation is one-to-one using the results of theorems
1 and 2 and, otherwise, we reject the proposed solution. We point out that, since we deal with an iterative scheme,
we cannot ensure that the method always converges to the best solution. However, as shown in the experiments,
the method behaves quite well in most situations.
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3.4 Iterative optimization of the two-parameter distortion model and the collection
of lines

In the previous section, we explained how the parameters for the polynomial and division models can be optimized
to minimize the distance from the edge points to the lines. During this process, we considered the same points
which were originally detected as line points. Only the parameters varied in order to obtain a better fitting between
the points and the line equations.

However, once the two-parameter model and the center of distortion have been optimized using the current
collection of lines and their associated points, the new model can be used to improve the lines using the Hough
voting strategy. The underlying idea is that the larger the collection of points associated to the primitive lines, the
better the model estimation. Indeed, by integrating the optimized distortion model into the Hough process, the
edge points vote for the lines after having been corrected with the optimized model, in such a way that those points
which were not initially associated to the lines because the matching was not satisfactory, can now be associated.
As a result of the voting process, we obtain an improved collection of lines with a greater number of associated
points. Then, since the collection of lines has been updated, we can optimize the two-parameter model again using
this new set of primitive lines. This optimization is carried out by minimizing the distance from the corrected
points to the new lines computed in each iteration. This iterative procedure stops if the global amount of points
associated to lines does not increase when we integrate the optimized model into the Hough process.

We use some images of Figure 5 to illustrate this optimization procedure. Figures 6(a), 7 and 8 show the lines
detected on a calibration pattern in images with different degrees of distortion. We have tested the polynomial
and the division models and, in both cases, we have first used a single distortion parameter to search within the
Hough space (Figures 6(a) and 7(a) correspond to the polynomial model, whereas Figure 8(a) correspond to the
division model). Afterward, we have introduced the second distortion parameter in the process and we have refined
the results by iteratively optimizing the energy E(u) and recalculating the set of points which are considered as
line points (see Figure 7(b) for the polynomial model with iterative optimization, and Figure 8(b) for the division
model with iterative optimization).

As observed, especially when the distortion is significant, the introduction of the iterative scheme to recalculate
the line points from the optimized parameters allows detecting new lines and significantly increases the number of
points of the detected lines. For instance, the four squares at the corners, which were not initially detected using
the polynomial model, are now detected with the same model (see Figure 7(b)). In the case of the division model,
the lines are longer, so that more reliable information is available to correct the distortion (see Figure 8(b)).

Some other results are shown in Figs. 9, 10, 11 and 12. As observed in Figs. 9 and 10, the division model is able
to extract longer lines, which are split when the polynomial model is applied (see, for instance, the top horizontal
lines). Furthermore, the iterative optimization allows extracting even very close parallel lines. In Figs. 11 and 12,
the introduction of the iterative optimization detects more line points and the use of the division model provides
longer lines, which are not split into different segments (see, for instance, the stairs at the bottom).

We point out that we stop the iterations when the total amount of points associated to the collection of distorted
lines does not increase through the iterations. In practice, only a few iterations are required to attain convergence.

3.5 Image distortion correction

First, we point out that the final lens distortion model obtained by the proposed method satisfies the conditions
of theorems 1 or 2 because we check such conditions in the different steps of the algorithm and any lens distortion
model which does not satisfy such conditions is rejected. Therefore, the obtained lens distortion model is a one-
to-one transformation and the inverse transformation can be computed (as explained in theorems 1 and 2). Using
such inverse transformation, we obtain the distortion-free image by computing the inverse distortion in the image
points to get the RGB color channels from the corresponding point in the original image.

4 Results

A detailed description of the algorithm is presented in the IPOL companion paper [25], including an online demo1.
In this paper, we will focus on the presentation and discussion of the experimental results. We have performed
experiments in a variety of real images presenting different amount of distortion (Figure 5). Images in figure 6
have been taken with a NIKON D90 camera with a NIKKOR DX 17-200 ZOOM lens presenting a small amount of
distortion. For the rest of the experiments, the images have been taken with a NIKON D90 camera with a TOKINA
DX 10-17 ZOOM lens presenting a significant amount of distortion. Images have been taken using different settings
of the lens focal distance (by changing the lens ZOOM), which provides a variety of degrees of distortion.

1http://dev.ipol.im/~asalgado/ipol_demo/workshop_ldm_pq2p_io/
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Figures 13–17 show the corrected images using the one-parameter polynomial and division models (first row) as
well as the iterative optimization technique with two-parameter models (second row). Figures 13 and 14 illustrate
the results of correcting the distortion with the different models on the calibration pattern shown above. Although
the results seem similar for 14(c) and 14(d), if we analyze the lines detected in 7(b) and 8(b), we can see that the
information provided by the division model is more complete. This is mainly noticeable in the left and top lines
belonging to the pattern frame. For the top line, although the two parts of the line are in the opposite sides of
the image, it is detected as a single line. Similarly, the process has been applied to the images described in the
previous section. The results are shown in Figures 15 and 16.

In Figure 15, we can observe that the introduction of the iterative optimization in the division model (15(d))
allows correcting the bottom line on the floor. The polynomial model cannot correct this distortion, even if the
iterative optimization is considered. This is due to the detected primitives. Therefore, if we look at figure 10(b),
the provided lines are significantly longer than in the other cases, especially at the top and bottom of the building.

In Figure 16, the benefits of introducing the iterative optimization are especially noticeable if we look at the
stairs. The one and two-parameter models without optimization are not capable to cope with this strong distortion
and the images are still distorted after correction. In this case, the division model provides much better results
when the iterative optimization is applied (16(d)). Considering the lines depicted on figure 12(b), we can observe
that the lines provided by the two-parameter division model with the iterative optimization are longer than with
the other configurations. This fact is especially remarkable on the lines of the stairs at the bottom of the image,
as well as those that belong to buildings at both sides of the chapel.
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Figure 3: Flowchart of the distortion correction process. In this case, primitives are given by the collection of
detected distorted lines and their corresponding associated points. The algorithm aims at maximizing the total
number of points associated to the collection of detected lines.
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Figure 4: Detail of the three-dimensional Hough space used for the voting process.
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(a) (b)

(c) (d)

(e)

Figure 5: Original images used in the experiments.
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(a)

(b)

Figure 6: Initial collection of lines detected with the improved Hough transform using the polynomial model for
(a) a calibration pattern and (b) a building.
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(a)

(b)

Figure 7: Collection of lines detected with the Hough transform using (a) the polynomial model and (b) the
polynomial model with iterative optimization.
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(a)

(b)

Figure 8: Collection of lines detected with the Hough transform using (a) the division model and (b) the division
model with iterative optimization.
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(a)

(b)

Figure 9: Collection of lines detected with the Hough transform using (a) the polynomial model and (b) the
polynomial model with iterative optimization.
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(a)

(b)

Figure 10: Collection of lines detected with the Hough transform using (a) the division model and (b) the division
model with iterative optimization.

19



(a)

(b)

Figure 11: Collection of lines detected with the Hough transform using (a) the polynomial model and (b) the
polynomial model with iterative optimization.
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(a)

(b)

Figure 12: Collection of lines detected with the Hough transform using (a) the division model and (b) the division
model with iterative optimization.
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Model N. Lines N. Points p1 p2 center E

Pol1p 27 10504 6.33% (536,357.5) 0.494157
Pol2pIO 27 10632 6.96% 2.79% (544.6,337.5) 0.101998
Div1p 30 10455 7.00% (536,357.5) 0.916431
Div2pIO 27 10634 6.86% 2.72% (544,337.6) 0.098361

Table 1: Number of lines and points, distortion parameters, distortion center and energy for the calibration pattern
in Figs. 6 and 13 using the one-parameter polynomial and division models (Pol1p and Div1p) and the two-parameter
models with iterative optimization (Pol2pIO and Div2pIO).

(a) (b)

(c) (d)

Figure 13: Corrected images using the following approaches: (a) one-parameter polynomial model, (b) one-
parameter division model, (c) two-parameter polynomial model with iterative optimization and (d) two-parameter
division model with iterative optimization.

Tables 1–5 show the number of lines and points, the parameters of the models, the distortion center, and the
final energy using the different approaches. The rows ”Pol1p” and ”Div1p”, represent the results obtained using
[2] and [1]. On the other hand, the rows ”Pol2p” and ”Div2p”, show the results using the proposed method. As
observed, when the iterative optimization is introduced, the number of detected points increases significantly in
both cases, the polynomial and the division models. It is also remarkable that the introduction of the proposed
technique allows minimizing the energy more than in the other configurations. As a consequence, this reduction of
the mean error means that the corrected points are closer to the straight lines than in the cases in which we use a
one-parameter model.

Figure 18 illustrates the variation of the number of points through the iterative optimization process using the
division model. The first value corresponds to the number of points obtained by means of the improved Hough
transform. As observed, from the first iteration of the optimization, we obtain a significantly greater number of
points. This is due to the minimization of the energy function, that provides an optimized two-parameter model.
This model allows obtaining points that were not considered when we used a one-parameter model.

In figure 19, we show the ability of the proposed method using a wide variety of images. We observe that the
method is able to deal with a strong distortion in different scenarios, obtaining satisfactory results.
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Model N. Lines N. Points p1 p2 center E

Pol1p 41 9822 4.09% (536,356.5) 2.48706
Pol2pIO 44 10293 3.12% 0.82% (536,356.5) 2.03084
Div1p 42 9619 -0.73% (536,356.5) 3.97142
Div2pIO 42 10344 3.17% 1.17% (536,356.5) 2.42632

Table 2: Number of lines and points, distortion parameters, distortion center and energy for the image in Figs. 6
and 17 using the one-parameter polynomial and division models (Pol1p and Div1p) and the two-parameter models
with iterative optimization (Pol2pIO and Div2pIO).

Model N. Lines N. Points p1 p2 center E

Pol1p 38 9536 65.01% (536,356) 1.4673
Pol2pIO 34 11051 95.45% 11.38% (525,361.9) 0.532611
Div1p 34 10846 98.72% (536,356) 1.53463
Div2pIO 34 11137 118.04% 13.22% (525.1,362.3) 0.261851

Table 3: Number of lines and points, distortion parameters, distortion center and energy for the calibration pattern
in Figs. 7, 8 and 14 using the one-parameter polynomial and division models (Pol1p and Div1p) and the two-
parameter models with iterative optimization (Pol2pIO and Div2pIO).

Model N. Lines N. Points p1 p2 center E

Pol1p 48 10405 73.24% (536,356) 2.63275
Pol2pIO 54 12577 121.02% 24.41% (528.1,361.9) 1.64061
Div1p 47 12990 262.80% (536,356) 2.99372
Div2pIO 48 14632 555.61% 21.41% (533,362.02) 1.00159

Table 4: Number of lines and points, distortion parameters, distortion center and energy for the image in Figs.
9, 10 and 15 using the one-parameter polynomial and division models (Pol1p and Div1p) and the two-parameter
models with iterative optimization (Pol2pIO and Div2pIO).

Model N. Lines N. Points p1 p2 center E

Pol1p 47 9550 52.62% (536,356) 2.53074
Pol2pIO 47 10212 64.28% 10.98% (571.6,363.2) 2.67954
Div1p 53 14209 321.66% (536,356) 3.98304
Div2pIO 45 15874 1732.70% 22.25% (510.2,353.6) 2.58055

Table 5: Number of lines and points, distortion parameters, distortion center and energy for the image in Figs.
11, 12 and 16 using the one-parameter polynomial and division models (Pol1p and Div1p) and the two-parameter
models with iterative optimization (Pol2pIO and Div2pIO).
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(a) (b)

(c) (d)

Figure 14: Corrected images using the following approaches: (a) one-parameter polynomial model, (b) one-
parameter division model, (c) two-parameter polynomial model with iterative optimization and (d) two-parameter
division model with iterative optimization.

5 Conclusion

In this paper we study in detail two-parameter radial models of camera lenses using polynomial and division
models and we propose an automatic method to estimate two-parameter radial distortion models. First we show
new mathematical results which characterize the conditions on the lens distortion parameters in order to ensure
that the lens distortion transformation is one-to-one and, therefore, the inverse transformation is well-defined and
we can properly compute the distortion-free image. Secondly, we present a new automatic method to correct
radial distortion based on an iterative optimization which aims at improving the collection of detected lines used
to estimate the lens distortion model. The method has been extensively validated on real images with different
degrees of distortion and the results are very promising. According to the experiments, we can conclude that
the proposed method is very robust and provides good results in a large variety of images. In the case of strong
distortion, a significant improvement in the results is obtained when we use two distortion parameters (instead of
just one) and, moreover, the division model performs better than the polynomial model. The main limitations
of the proposed method are, first, that the image must contain the projection of visible 3D straight lines, and
second, the distortion model must be invertible in the whole image. Therefore, it would not work on non-invertible
lens distortion model scenarios such as fish-eye images, where the image is included in a circle surrounded by
a black background. In the future, we intend to apply the proposed method to camera calibration, specially in
scenarios showing a significant lens distortion. We have built a lens distortion image database freely available at
http://www.ctim.es/WideLensImageDatabase/.
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