
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/237322377

MPI based Parallel Method of Moments Approach for Microstrip Structures

Analysis

Article in WSEAS Transactions on Computers · October 2008

CITATIONS

0
READS

43

2 authors:

Some of the authors of this publication are also working on these related projects:

Direction and Dual band front-ends for multicopter light weight Drones (DDDrones) View project

UNDERWater radiocommunications for Optimized monitoring using multiReLay Devices (http://www.underworldproject.eu) View project

Francisco Cabrera Almeida

Universidad de Las Palmas de Gran Canaria

35 PUBLICATIONS 56 CITATIONS

SEE PROFILE

Eugenio Jimenez Yguacel

Universidad de Las Palmas de Gran Canaria

28 PUBLICATIONS 60 CITATIONS

SEE PROFILE

All content following this page was uploaded by Eugenio Jimenez Yguacel on 09 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/237322377_MPI_based_Parallel_Method_of_Moments_Approach_for_Microstrip_Structures_Analysis?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/237322377_MPI_based_Parallel_Method_of_Moments_Approach_for_Microstrip_Structures_Analysis?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Direction-and-Dual-band-front-ends-for-multicopter-light-weight-Drones-DDDrones?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/UNDERWater-radiocommunications-for-Optimized-monitoring-using-multiReLay-Devices-http-wwwunderworldprojecteu?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Cabrera_Almeida?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Cabrera_Almeida?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Cabrera_Almeida?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eugenio_Jimenez_Yguacel?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eugenio_Jimenez_Yguacel?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eugenio_Jimenez_Yguacel?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eugenio_Jimenez_Yguacel?enrichId=rgreq-4168e192e7e6342266212f57fe6d54ff-XXX&enrichSource=Y292ZXJQYWdlOzIzNzMyMjM3NztBUzozNTk3MzU2NDg4OTkwNzJAMTQ2Mjc3OTA3MDA1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

MPI based Parallel Method of Moments Approach for Microstrip
Structures Analysis

FRANCISCO CABRERA
Departamento de Señales y Comunicaciones
Universidad de Las Palmas de Gran Canaria

Campus de Tafira S/N, Las Palmas 35017
SPAIN

fcabrera@dsc.ulpgc.es

EUGENIO JIMENEZ
Departamento de Señales y Comunicaciones
Universidad de Las Palmas de Gran Canaria

Campus de Tafira S/N, Las Palmas 35017
SPAIN

ejimenez@dsc.ulpgc.es

Abstract: In this paper we will present a parallel Method of Moments (MoM for short) technique using the MPI
library. Here, the MoM is used to analyze microstrip structures. The main goals to achieve are efficient parallel
coefficient computation and efficient linear equation system solving. The efficiency and accuracy of the parallel-
processing MoM code is analyzed through several examples with two data distribution using ScaLAPACK library.

Key–Words: MoM, microstrip, parallel, MPI, ScaLAPACK

1 Introduction
The MoM [1] provides a numerical solution to linear
equation problems. The form of the linear equation
can be written as

F (g) = h (1)

in which F is a linear operator, h is known, and
g is to be determinated. Let g be expanded in a series
of functions g1, g2, g3 . . . in the domain of F

g ' c1g1 + c2g2 + · · ·+ cNgN =

N∑

n=1

cngn (2)

where the cn are constants. The fn are called ex-
pansion functions or basis functions. Substituting (2)
into (1) and using the linearity of F , one has

N∑

n=1

cnF (gn) = h (3)

If (3) represents an approximate equality, then the
difference between the exact and approximate equa-
tion is

R =

N∑

n=1

cnF (gn)− h (4)

which is called the residual R and has to be min-
imized. Now define a set of testing functions or
weighting functions, wm, in the range of F . Take
the inner product between R and wm and set all the
weighted residuals equal to zero.

〈wm|R〉 = 0 (5)

Finally, substitute (4) into (5) to obtain

N∑

n=1

cn〈wm|F (gn)〉 = 〈wm|h〉 m = 1 · · ·N (6)

This set of equations can be written in matrix
form as

[Fmn] [cn] = [hm] (7)

in which Fmn, cn and hm can be written as

[Fmn] =




〈w1|F (g1)〉 · · · 〈w1|F (gN)〉
〈w2|F (g1)〉 · · · 〈w2|F (gN)〉

...
...

〈wN |F (g1)〉 · · · 〈wN |F (gN)〉


 (8)

[cn] =




c1
c2
...
cN


 [hm] =




〈w1|h〉
〈w2|h〉

...
〈wN |h〉


 (9)

If [F] is nonsingular, its inverse exists, and [c] is
given by

[cn] = [Fmn]−1 [hm] (10)

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1721 Issue 10, Volume 7, October 2008

2 MoM and microstrip geometries

In microstrip geometries, the Electric Field Integral
Equation (EFIE for short) can be written as

Ei(x, y) + jωµ0L
[
GEJ (x, y|x′, y′)JS(x′, y′)

]
= 0

(11)
Let x̂ and ŷ components of JS be expanded in a series
of basis functions Jxj and Jyj

JSx =

N∑

j=1

AxjJxj (x
′, y′) (12)

JSy =

N∑

j=1

AyjJyj (x
′, y′) (13)

Substituting (12) and (13) into (11), the discretized
EFIE is written as

Eix = −jωµ0

(N∑

j=1

AxjLExx
[
Jxj
]

+

N∑

j=1

AyjLExy
[
Jyj
])

(14)

Eiy = −jωµ0

(N∑

j=1

AxjLEyx
[
Jxj
]

+

N∑

j=1

AyjLEyy
[
Jyj
])

(15)

Basis functions Jxj and Jyj are chosen as the product
of two functions.

Jxj (x,
′ , y′) =Tj(x

′)Qj(y′) (16)

Jyj (x,
′ , y′) =Qj(x

′)Tj(y′) (17)

The longitudinal function Tj has a piecewise sin-
suoidal or triangular behaviour while the transversal
function Qj has a constant distribution.

Testing functions are chosen to be the same as ba-
sis functions (Galerkin method). Finally, after setting
all the weighted residuals equall to zero, one has

−jωµ0

(N∑

j=1

Axj
〈
LExx [Tj(x

′)Qj(y
′)]
∣∣Ti(x)Qi(y)

〉
+

N∑

j=1

Ayj
〈
LExy [Qj(x

′)Tj(y
′)]
∣∣Ti(x)Qi(y)

〉)
=

〈
Eix
∣∣Ti(x)Qi(y)

〉
i = 1 . . .N

(18)

−jωµ0

(N∑

j=1

Axj
〈
LEyx [Tj(x

′)Qj(y
′)]
∣∣Qi(x)Ti(y)

〉
+

N∑

j=1

Ayj
〈
LEyy [Qj(x

′)Tj(y
′)]
∣∣Qi(x)Ti(y)

〉)
=

〈
Eiy
∣∣Qi(x)Ti(y)

〉
i = 1 . . .N

(19)

Again, this set of equations can be written in
abreviated matrix form as

(
Zijxx Zijxy

Zijyx Zijyy

)

2N×2N

(
I ix

I iy

)

2N×1

=

(
V jx

V jy

)

2N×1

i = 1..N
j = 1..N

(20)

where each one of the elements of the Z matrix
in (20) can be written as a convolution integral

∫
dx′
∫
dx

∫
dy′
∫
Fj(x

′, y′)Fi(x, y)Gα(x− x′, y − y′)dy
(21)

where Fj and Fi are basis and testing functions
and Gα are components of the microstrip Green function
(Sommerfeld integrals). An in-house developed Sommer-
feld library [2] is used to compute these Gα functions.

3 Parallel MoM technique
In many MoM problems, the matrix fill time is the domi-
nant factor, as each matrix element typically involves the
computing of a numerical integral of a complex function.
Usually a 2N fold numerical quadrature of a complex
function has to be computed, beingN the geometry dimen-
sion (vgN = 1 for wires,N = 2 for planar geometries and
N = 3 for 3-D geometries). This type of problem is typ-
ically easy to parallelize as the computation of any matrix
element is completely indepedent of the value of any other
matrix element.

As structures become electrically large [3], the matrix
factorization begins to dominate the overall solution time.
The memory and computation requirements for these large
structures can become daunting as grow as O[N 3] being
N the number of unknowns

In a fully parallelized MoM, the F matrix is never
stored into the memory of any processor but blocks of
it. Therefore, filling and factorizacion steps are closely
linked.

3.1 Parallelized scheme
Now we are going to distribute the computation and the
factorization of the Z matrix among a set of nproc proces-
sors. There is a main processor which collects the geome-
try data input, distributes the work and collects and stores

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1722 Issue 10, Volume 7, October 2008

It collects geometry data and

distributes them among the processors.

It computes one block of the Z matrix

and makes a partial LU factorization

and substitution.

It collects and stores final data.

Each of the processors ….

Mass Storage

They get geometry data, compute one block of the Z matrix, make a partial

LU factorization and substitution and send the data to main processor.

Processor 3
 Processor nproc-1
Processor 1
 Processor 2
 Processor 4
 …….

ij

yy

ij

yx

ij

xy

ij

xx

Z
Z

Z
Z
(
)

Processor 0

Figure 1: Work distribution among processors.

final data. Each of the processors, including the main one,
computes and factorizes one block of the Z matrix. This is
shown in figure 1.

3.2 The MPI paradigm
One of the most successful parallel computational models
is the message-passing model [4, 5, 6]. This model posits
a set of processors that have only local memory but are
able to communicate with other processes by sending and
receiving messages. MPI [7, 8],which stands for Message
Passing Interface, is an attempt to collect the best features
of the message-passing systems that have been developed
over the years, improve them when appropriate, and stan-
dardize them.

It is a library not a language. It specifies the names,
calling sequences and results from functions to be called
from Fortran/C/C++ programs. MPI is an specification
not a particular implementation. A correct MPI program
should be able to run on all MPI implementations without
change [9, 10]. A minimal message interface between two
processes should be built using two primitives: send and
receive.

For the sender, the things that must be specified are
the data to be communicated and the destination process to
which the data is to be sent. The minimal way to describe
data is to specify a starting address and a length (in bytes)
and a destination field (usually an integer).

On the receiver’s side, the minimum arguments are
the address and length where received data is going to be
placed and a variable to be filled in with the identity of the
sender.

Although this minimum interface could be ade-
quate for some applications, one key notion is missing;

matching. A process must be able to control which
messages it receives. This is the type or tag of the
message. Finally it is useful for the receiver spec-
ify a maximum message size (the actual length) for
a given tag. Therefore, our minimal message in-
terface has become: send(address, length,
destination, tag) and receive(address,
length, source, tag, actlen) That basic
interface is implemented in MPI using MPI send and
MPI receive

3.3 Matrix filling
The way the Z matrix is filled depends on the way it is
factorized. In order to fill the matrix, we need to analyse
the microstrip structure. This structure is split in several
patches, which is divided into four subdomains, with four
vertices (figure 2).

l
1i
 l
2i

Sub
4
 Sub
3

Sub
2

w
2i

w
1i

v
1

v
4
 v
3

v
2

Sub
1

Subdomain

Vertix
 Patch

Figure 2: Microstrip structure discretization.

In this scheme, each processor computes a block of
the Z matrix. Those blocks are chosen so for a given pair
of indexes (i, j) the four parameters Z ijxx, Zijxy, Zijyx and
Zijyy are computed in the same processor and there are no

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1723 Issue 10, Volume 7, October 2008

communication among processors.
In figure 3 pseudocode to fill the matrix is shown.

The couples between patches is computed as the integrals
showed in (21) and the number of the couple is shown in
[11].

do i = 1, . . . , N/2
do j = 1, . . . , N/2
Get dimensions patch(i)
Get dimensions patch(j)
Zxx(i,j) = couple(1)+couple(4)
Zxy(i,j) = couple(2)
Zyx(i,j) = couple(3)
Zyy(i,j) = couple(5)+couple(6)

end do
end do

Figure 3: Pseudocode for parallel matrix fill.

3.4 Matrix factorization
Each processor partially factorizes (LU) the same block
that this processor has filled previously. Obviously, while
factorizing the matrix, processors need to share informa-
tion among them.

The programmer always tries to minimize communi-
cations between processors and to equalize the load among
them. We have studied several ways to factorize the ma-
trix and each one of those ways is linked to a matrix filling
scheme. In this paper we are going to show two schemes:
the cyclic one-dimensional data distribution and the cyclic
two-dimensional data distribution.

P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3

Figure 4: Cyclic one-dimensional data distribution. 4
processors, 3 cycles.

The one-dimensional data distribution can be in rows
or in columns. Our selection has been in column (figure
4) to minimize the communication between processors. In
this distribution, one processor has to wait for the previous
processors. With the cyclic distribution, each processor
works only with a data block and the wait time is mini-
mized. In figure 5 pseudocode for cycling one-dimensional
parallel factorization is shown.

do c = 1, . . . , ncycles
do l = 1, . . . , id(proc, c)
Update columns proc = l
LU(l) factorization
V (l) factorization

end do
do k = 1, . . . , ncol(id(proc, c))
LU(k) factorization
V (k) factorization
Send column(k) to
the rest of id(proc, c)

end do
Send V data to id(proc + 1, c)
do l = id(proc+ 1, c), . . . , nproc

Update columns proc = l
LU(k) factorization
V (k) factorization

end do
end do

Figure 5: Pseudocode for cyclic one-dimensional par-
allel LU factorization.

However, this distribution is not efficient when the
matrix is very large. To equalize the load among proces-
sors, they work in a cyclic way as it is shown in figure 4.
Due to data dependencies in LU factorization, there are
processors that have to wait for other processors to finish.
That idle time can be minimized if each processor works
with a relatively small matrix block.

P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3

P
4
 P
5
 P
6
 P
7
 P
4
 P
5
 P
6
 P
7
 P
4
 P
5
 P
6
 P
7

P
8
 P
9
 P
10
 P
11
 P
8
 P
9
 P
10
 P
11
 P
8
 P
9
 P
10
 P
11

P
12
 P
13
 P
14
 P
15
 P
12
 P
13
 P
14
 P
15
 P
12
 P
13
 P
14
 P
15

P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3

P
4
 P
5
 P
6
 P
7
 P
4
 P
5
 P
6
 P
7
 P
4
 P
5
 P
6
 P
7

P
8
 P
9
 P
10
 P
11
 P
8
 P
9
 P
10
 P
11
 P
8
 P
9
 P
10
 P
11

P
12
 P
13
 P
14
 P
15
 P
12
 P
13
 P
14
 P
15
 P
12
 P
13
 P
14
 P
15

P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3
 P
0
 P
1
 P
2
 P
3

P
4
 P
5
 P
6
 P
7
 P
4
 P
5
 P
6
 P
7
 P
4
 P
5
 P
6
 P
7

P
8
 P
9
 P
10
 P
11
 P
8
 P
9
 P
10
 P
11
 P
8
 P
9
 P
10
 P
11

P
12
 P
13
 P
14
 P
15
 P
12
 P
13
 P
14
 P
15
 P
12
 P
13
 P
14
 P
15

Figure 6: Cyclic two-dimensional data distribution.
16 processors, 3 cycles.

To maximize per processor performance, there is an
optimum block size which depends on the matrix size and
processors’s cache memory. A block size smaller than
optimum means more communications and less compu-
tations. A block size greater than optimum means more
out-of-core computations and less speed.

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1724 Issue 10, Volume 7, October 2008

In figure 7 pseudocode to run in each processor is
shown. In this figure ncyclescol is the number of cycles
per column (3 in figure 6), proccol/fil is the position of a
processor in a row or a column (it varies between 1 and
4 in figure 6) and id(proccol/row, cyclecol/row) identifies
the position in the matrix of processor proccol/row in cycle
number cyclecol/row.

do ccol = 1, . . . , ncyclescol
crow = 1
do l = 1, . . . , id(proccol, ccol)
Update rows(id(procrow, crow))
Get pivots(id(l, ccol))
LU(l) factorization
V (l) factorization

end do
if (id(procrow, ccol) ≤ id(proccol, ccol)) then
do k = 1, . . . , ncol(id(proccol, ccol))
Swap rows(id(procrow, crow))
LU(k) factorization
V (k) factorization
Send column(k) to
the rest of id(procrow, ccol)

end do
Send V data to id(proccol + 1, ccol)

end if
if (id(procrow, ccol) = id(proccol, ccol)) then
crow=crow+1

if (ccol = ncicloscol) then
if (id(procrow, ccol) > id(proccol, ccol)) then
do l = id(proc + 1, ccol), . . . , nproccol
Swap rows (id(procrow, crow))

end do
else
do l = id(procrow + 1, ccol), . . . , nproccol
Update rows(id(procrow, crow))
Get pivots(id(l, ccol))
LU(l) factorization
V (l) factorization

end do
end if

end do

Figure 7: Pseudocode for cyclic bidimensional paral-
lel LU factorization.

3.4.1 ScaLAPACK, BLAS and linear algebra
software.

This pseudocode only works if ncyclescol = ncyclesrow
and the number of processors is a perfect square (as in
example shown in figure 6). Dealing with a non perfect
square number of processors complicates the code quite a
lot. Instead of re-coding the algorithm, we looked for ma-
ture well established code that was able help us.

ScaLAPACK [12, 13](Scalable Linear Algebra Pack-
age) is an optimized library of linear algebra subroutines
that run in cluster environments. Its main components are:

• A low level BLAS (Basic Linear Algebra Subpro-
gram) optimized for single processor.

• A communication library for BLAS subroutines
BLACS (Basic Linear Algebra Communication Sub-
program) that uses some message passing model
(MPI or PVM).

• A parallel version of BLAS library PBLAS (Paral-
lel Basic Linear Algebra Subprogram) that uses the
aforementioned libraries.

In figure 8, the hierarchy of these libraries are shown.
ScaLAPACK uses a two-dimensional cyclic data distribu-
tion that helped us to easily map our matrix data distribu-
tion to ScaLAPACK’s one.

������� ��������	

��
� ���

�
� ���

�
� ���������������	

��������������
�������� ���

� � ��� � � �����
�
�! "�
�#$�

%�&('�)�*

+ * &$,()�*

Figure 8: Library Scalapack Hierarchy.

4 Results
In this section, we investigate the efficiency of the pro-
posed parallel processing. The evaluation was carried out
on the GIC cluster ”Maxwell”. The cluster details are as
follows:

• Number of processors: 23 Intel Pentium IV Prescott
2.8 GHz, 1GB RAM

• Network: 100 Mb/s

• Operating system: Linux 2.6 kernel series, Bproc
based cluster

• Tools: GNU tools (gcc, g77,...)

• MPI: LAM-MPI

• BLAS: ATLAS

In figure 9 the Maxwell cluster is shown in the front
and rear view. This cluster is situated in 2 frames.

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1725 Issue 10, Volume 7, October 2008

(a) Front panel (b) Rear panel

Figure 9: Cluster Maxwell.

4.1 Parallel processing efficiency metrics
The efficiency of parallel-processing code depends not
only on how we develop the code, but also on the computer
hardware and networking equipment. We employ the con-
ventional definition of scalability or speedup of the parallel
processing code as

Sp =
Ts
Tp

(22)

where Ts is the simulation time when the entire problem is
simulated using a single processor, and Tp is the simulation
time in the p-processors parallel processing. During the
simulations, we had to define a new figure of merit that we
called parallel speedup. It is used when the entire problem
does not fit in one single processor. It is defined as

PSp =
T1c

Tp
(23)

where T1c is the simulation time using p processors but the
data distribution has only one cycle per row and column
(the worst case).

An alternative measurement to the speedup is the ef-
ficiency concept. The efficiency measures the degree of
use of the system. This expression can be written with the
similar parameters that were described at (22).

Ep =
Sp
p

(24)

4.2 Simulated Microstrip Structures
The analyzed structures are 2D microstrip structures such
as a meander line, a patch antenna and a 3dB Hybrid.
Speedup, Efficiency, optimum size block, topology grid
and kiviat graph are shown in this section.

The meander lines have several utilities in microstrip
technologies. Many meander lines can be used to make a
delay time using zigzag trace to match the timing between
two or more signals [14]. Other meander lines are used

as pass-band filters or antennas which resonant frequency
depends on the separation of the lines and the number of
zigzag lines.

d

L

1

L
3

W

1

2
 L
2

ε
r

Figure 10: Meander line.

The dimensions of the meander line (figure 10) are the
following: (lengths)L1 = 18.58 mm,L2 = 20.44 mm,L3 =
5.08 mm, (width)W = 1.86 mm, height of the substrate d =
0.833 mm and dielectric constant εr = 3.26. This structure
has been simulated with several meshes from 200 patches
to 6400 patches (Table 1).

Mesh 1 Mesh 2 Mesh 3
Patches 200 800 6400

Subdomains 388 1550 12400
Vertices 600 2398 19176

Excitations 4 4 8
Ports 2 2 2

Table 1: Meander Meshs.

5 10 15 20
Number of Processors

0,8

0,85

0,9

0,95

1

E
ff

ic
ie

nc
y

0,8

0,85

0,9

0,95

1

M=200
M=400
M=800
M=1600
M=3200
M=6400

Figure 11: Efficiency of the matrix filling.

The matrix filling is tested with the meander line. The

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1726 Issue 10, Volume 7, October 2008

number of processors has been increased from 1 to 23. The
theoretical efficiency is 1. It is shown in figure 11 the effi-
ciency of the matrix filling. The theoretical efficiency is 1.
When the number of patches is increasing, the efficiency
is close to 1. In figure 12, it is shown the speedup. The
theoretical slope is P.

5 10 15 20
Number of processors

5

10

15

20

25

Sp
ee

du
p

M=200
M=400
M=800
M=1600
M=3200
M=6400
P

Figure 12: Speedup of the matrix filling.

Other simulated structure is a patch microstrip an-
tenna [15]. A patch antenna consists of a metal patch con-
structed on a dielectric substrate over a ground plane. This
kind of antennas are popular because they are easy to fab-
ricate and modify.

d

L

1

W

1

L

2

L
3

W

3

W

2

1

ε
r

Figure 13: Patch Antenna.

This structure is made up of a patch square, a quarter
wavelength transformer to match the antenna to 50 ohm
and a microstrip line with this impedance. The dimensions
of the antenna (figure 13) are: (lengths) L1 = 50 mm, L2

= 30 mm, L3 = 56.2 mm, (widths) W1 = 37.5 mm, W2 =
0.45 mm, W3 = 3.31 mm, height of the substrate d = 1.57
mm and dielectric constant εr = 3.86. The meshs of this
structure are collected in table 2.

The size of block in the matrix factorization and the
topology grid are tested with this structure. In figure 14,

Mesh 1 Mesh 2 Mesh 3
Patches 6400 12800 22500

Subdomains 8986 17912 31590
Vertices 15788 31472 55504

Excitations 4 4 8
Ports 1 1 1

Table 2: Patch Antenna Meshs.

speedup is shown vs block size and for three processor
grids (16 processors). The square arrangement is clearly
better than the other two.

32 64 128 256 512 1024 2048
Size of block

0

2

4

6

8

Sp
ee

dU
p

0

2

4

6

8 4x4
8x2
16x1

Parallel Processing Eficiency Analysis
Optimum block size. 6400x6400 matrix size

Figure 14: Optimum block size and speedup for three
processor grids.

In figure 15, parallel speedup vs block size is shown
for three matrix sizes and for a 5x4 processor topology
grid. The optimum block size is 128 for the three meshs.
The performances are very good when the size of the ma-
trix is very large.

32 64 128 256 512 1024 2048
Size of block

0

1

2

3

4

5

6

Pa
ra

lle
l S

pe
ed

U
p

0

1

2

3

4

5

6

M=6400
M=12800
M=22500

Figure 15: Optimum block size, 5x4 processor grid.

The next shape is the 3dB hybrid structure [16]. Hy-
brid couplers are the special case of a four-port directional
coupler that is designed for a 3-dB (equal) power split. Hy-

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1727 Issue 10, Volume 7, October 2008

(a) Communication Timeline (b) Kiviat graph

Figure 16: Trace Data, 16x1 processor.

brids come in two types, 90 degree or quadrature hybrids,
and 180 degree hybrids.

The dimensions of the hybrid (figure 17) are:
(lengths) L1 = 12.163 mm, L2 = 9.75 mm, L3 = 3.96 mm,
(width) W = 2.413 mm, height of the substrate d = 0.794
mm and dielectric constant εr = 2.2. The values of the
meshs are collected in table 3.

Figure 17: 3dB Hybrid.

In figure 18, it is obtained the same results than the
patch antenna. The optimum block size is 128 for a 4x4
processor topology grid.

The load balance with are tested with this structure.
Figure 16 shows the Kiviat graph and the communica-
tion line for a one-dimensional cyclic data distribution,
16x1 processor grid, and M=22500 (45000x45000 matrix
size). Figure 19 shows the Kiviat graph for a bidimen-
sional cyclic data distribution, 4x4 processor grid, and the

Mesh 1 Mesh 2 Mesh 3
Patches 6400 12800 22500

Subdomains 9888 19776 34762
Vertices 13952 27904 49050

Excitations 4 4 8
Ports 4 4 4

Table 3: Hybrid Meshs.

32 64 128 256 512 1024 2048
Size of block

0

1

2

3

4

Pa
ra

lle
l S

pe
ed

U
p

0

1

2

3

4

M=6400
M=12800
M=22500

Figure 18: Optimum block size, 4x4 processor grid.

same matrix size. The Kiviat graph shows the processor
load and a nearly circular shaped graph means the load is
balanced among processors.

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1728 Issue 10, Volume 7, October 2008

(a) Communication Timeline (b) Kiviat graph

Figure 19: Trace Data, 4x4 processor.

5 Conclusion
We have presented a parallel MoM analysis of microstrip
structures. Our main goal has been to improve the effi-
ciency of the process modifying two parameters: proces-
sors grid topology and optimum block size. Some code
has been in-house developed and later modified to suit
to the ScaLAPACK standard library with two schemes,
one dimensional cyclic data distribution and bidimensional
cyclic data distribution.

Three examples have been presented to demonstrate
the scalability of the problem with several block sizes. Fi-
nally, it has shown the best results have been obtained with
a square topology grid, the optimum block size and using
the second scheme.

Acknowledgment
This work has been partially supported by the R&D
Spanish National Projects TEC2007-67520-C02-02 and
TEC2005-07010-C02

References:

[1] Roger F. Harrington, “Matrix Methods for Field Prob-
lems”, Proc IEEE, vol. 55, no 2, pp. 136-149, Febru-
ary 1967

[2] Eugenio Jimenez, Francisco Cabrera, “Sommefeld: a
library for computing Sommerfeld integrals”, IEEE
Ant.and Prop. Symposium, Baltimore, pp. 966-969,
July 1996.

[3] Y. Zhang, T.K. Sarkar, H. Moon, A. De and M.C. Tay-
lor, “Solution of Large Complex Problems in Compu-

tational Electromagnetics using Higher Order Basis
in MOM with Parallel Solvers”, IEEE Ant. and Prop.
Symposium, Honolulu, HI, pp. 5620-5623, June 2007

[4] Izzatdin Aziz, Nazleeni Haron, Low Tan Jung, Wan
Rahaya Wan Dagang, “Parallelization of Prime Num-
ber Generation Using Message Passing”, WSEAS
Transactions on Computers, Issue 4, Vol 7, pp. 291-
303, April 2008

[5] D. Prabu, V. Vanamala, Anshu Garg, Sanjeeb Ku-
mar Deka, R. Sridharan, B.B. Prahlada Rao, N. Mo-
haram, “Development of 64-bit Message Passing In-
terface for Large Scale Computing System”, WSEAS
Transactions on Computer Research, Issue 2, Vol 2,
pp. 147-155 Feb. 2007

[6] Haroon-Ur-Rashid, Shi Feng, Ji Weixing, Qiao Bao-
jun, “TriBA - A Novel Scalable MPI based Architec-
ture for High Performance Distributed Parallel Com-
puting”, WSEAS Transactions on Computers, Issue
12, Vol 6, 1161-1167 Dec 2007

[7] http://www.mpi-forum.org

[8] W. Gropp, E. Lusk, and A. Skjellum, “Using MPI:
Portable Parallel Programming with the Message-
Pasing Interface, Second Edition”, Cambridge, MA,
MIT Press, 1999

[9] Wenhua Yu, Yongjun Liu, Tao Su, Neng-Tien Hu-
nag, Raj Mittra, “A robust parallel conformal finite-
difference time-domain processing package using the
MPI library”, “Antennas and Propagation Magazine,
IEEE”, Vol. 47, no. 3, pp. 39-59, June 2005

[10] C. Guiffaut and K. Mahdjoubi, “A Parallel FDTD Al-
gorithm Using the MPI Library”, Antennas and Prop-

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1729 Issue 10, Volume 7, October 2008

agation Magazine, IEEE, Vol. 43, no 2, pp 94-103,
April 2001

[11] Francisco Cabrera, Eugenio Jimenez, “Analysis of Ir-
regular Microstrip Structures using a Full Wave MoM
Scheme”, Millenium Conference on Antennas & Prop-
agation, Davos, Switzerland, pp 20, Mar 2000

[12] http://www.netlib.org/scalapack

[13] Y. Zhang, T.K. Sarkar,A. De, N. Yilmazer, S. Burint-
tramart, M. Taylor, “ A cross-platform parallel MoM
code with ScaLAPACK solver”, IEEE Ant. and Prop.
Symposium, Honolulu, HI, pp. 2797-2790, June 2007

[14] Barry J. Rubin, Bhupindra Singh “Study of Mean-
der Line Delay in Circuit Boards”, IEEE Trans. on
Microwave Theory and Techniques, Vol. 48, n. 9, pp
1452-1460, Sep. 2000

[15] L. Zhu, E. Yamashita, I. Joishi, “Generalized Model-
ing of Microstrip-Fed Patch Antennas Using an Equiv-
alent Delta Voltage Source Backed by a Perfect Elec-
tric Wall”, IEEE Antennas and Propagat. Society In-
ternational Symposium, Baltimore, pp. 1082-1085, Jul
1996.

[16] D. M. Sheen, S. M. Ali, M. D. Abouzahra, J. A.
Kong, “Application of the Three-Dimensional Finite
Diference Time-Domain Method to the Analysis of
Planar Microstrip Circuits”, IEEE Trans. Antennas
and Propagat., vol 38, pp. 849-857, Jul. 1990

WSEAS TRANSACTIONS on COMPUTERS FRANCISCO CABRERA,EUGENIO JIMENEZ

ISSN: 1109-2750 1730 Issue 10, Volume 7, October 2008

View publication statsView publication stats

https://www.researchgate.net/publication/237322377

