
  

  

Abstract—An electrostatic induction micromotor has been 
simulated and analyzed using the Finite Formulation. An 
approach based on a primal–dual barycentric discretization of 
the 2D space is presented, considering the potential in each 
node on the primal mesh as unknown. We have introduced the 
analytical solution of the mathematical model for a simple 
geometry of the micromotor. The Finite Formulation solution 
has been compared with the analytical and FEM solution for 
verification purposes. 

I. INTRODUCTION 
ll existing numerical methods for the solution of the 
field equation have, in one way or another, a 
differential formulation as their starting point. A 

discrete formulation is then obtained by means of the many 
discretization methods, such as Finite Difference Methods, 
Finite Element Method, Boundary Element Method, etc. 
As an alternative, most of the researchers reformulate field 
laws in finite form so that an algebraic system of equations is 
directly written to solve the field problem, avoiding the use 
of the discretization process applied to a differential 
equation. This approach is the Finite Formulation [1]–[3] 
and the corresponding numerical method is known as the 
Cell Method (CM) [4]–[6]. 
The present paper applies this method to the simulation and 
analysis of an electrostatic induction micromotor. 

Currently, the design and implementation of a micromotor 
using MEMS technology is a great challenge [7]–[9]. For 
this purpose, we have developed some tools based on Finite 
Formulation to simulate the electromagnetic fields and 
torque of an electrostatic induction micromotor. The 
proposed analytical equations are compared with the 
obtained solutions provided by Finite Formulation tools. To 
our knowledge, there are not publications dealing with CM 
for micromotors. A generic study of other electrostatic 
applications is presented in [10]. 

The study has been carried out in a simple linear electrical 
induction micromachine constituted by two parallel plates 
—rotor and stator— isolated by a dielectric [8]. The distance 
between plates is 6µm. Fig. 1 summarizes the operation 
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mode of the micromachine and Table 1 shows the 
nomenclature introduced. 

This study is focused in the linear micromachine due to 
the greater simplicity of its analytical equations. The linear 
micromachine is the unfolding of a rotating electric 
micromachine and this is the reason why the conclusions 
obtained for the linear micromachine are easily generalized 
to the rotating one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Linear electrical induction micromachine. 
 

II. DIFFERENTIAL FORMULATION 
The fundamental problem of a physical field can be stated 

as follows: first, we introduce the shape and the dimension 
of the field domain, second we study the spatial and 
temporal distribution of the field sources; third we present 
the nature of the material that fills the field domain, and 
finally we obtain the boundary condition that summarize the 
action of the external of the field domain [2]. 

To begin with, we present the following equations that are 
referenced in [11]-[13], and they have been taken as the base 
for this work. 

As initial assumption we use Gauss’s law: 
 

(1) 
 

The charge conservation law says: 
 

(2) 
 

As initial hypothesis we assume a quasi conservative 
electric field 

 
(3) 
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TABLE I 
NOMENCLATURE 

Symbol Name Units 
a Height of dielectric 2 m 
b Height of dielectric 1 m 
E Electric field V/m 
D Displacement current C/m2 
k Number of waves per metre - 
el  Element length m 
j Imaginary unity - 

fJ  Volumetric current density A/m2 

S Slip - 
et  Element depth m 

v Linear speed of mobile part m/s 
V Interelectrodic voltage V 
V0 Supply voltage V 
εa Electric permittivity of the dielectric F/m 
εeff Effective permittivity F/m 
φ Electric scalar potential V 
ρf Volumetric charge density C/m3 

ω Angular frequency of the signal  Hz 
σa Electric conductivity of the dielectric S/m 
σf Superficial charge density C/m2 

σeff Effective Conductivity S/m 
σS Superficial electric conductivity 1/Ω 
Φb Voltage in the interface V 

 
And the constitutive laws: 

 
(4) 

 
(5) 

 
From (2) and (4), we obtain 

 
(6) 

 
and from (1) and (5), we obtain 

 
(7) 

 
In the same way we can eliminate E from (7) and because 

 
(8) 

 
we obtain 

 
(9) 

 
When the micromotor stars, then v=0, so 

 
(10) 

 
The previous equation is expressed in the time domain. In 

sinusoidal stationary regimen, the operator       is equal to jω 
and it is expressed in the following form 

 

 
(11) 

 
where    is an electric scalar potential complex 

distribution. Simplifying the time dependent term, we obtain 
the following equation (12). This is the field equation for the 
micromotor in the differential formulation 

 
(12) 

 
In this equation, the scalar potential     is the unknown 

variable. Equation (12) shows that differential formulation 
imposes derivability conditions on field functions that are 
restrictive from the physical point of view. 

This is a Poisson equation and requires that the domain 
contains a homogeneous material and that the potential 
admits second order partial derivatives. Alternatively, if the 
domain is composed of different materials, it must be 
subdivided into subdomains, which contain a homogeneous 
material. Then, the Poisson equation is applied to every 
subdomain and on the separation surfaces a jump condition 
must be satisfied. In other case, a Finite Formulation, based 
on global variables accepts material discontinuities. 

III. ANALYTICAL EQUATIONS 
From the basic physical principles that govern the 

micromotor behaviour, we determined an analytical equation 
for a planar elemental model [12]. It is very important to 
know the potential in the interface for verification purposes, 
and to calculate the torque through the electrostatic field and 
the induced charge in the mobile part of the micromachine. 
To accomplish this task we apply the charge conservation 
law in the interface. 

We start from Laplace equation 
 

(13) 
 

This equation has been particularized for the following 
boundary conditions — zero Volts for the inferior plate of 
the mobile part and V Volts for the fixed part. 

From the charge conservation law in the interface, we 
write: 

 
(14) 

 
Once we have developed the terms of these equations we 

obtain: 
 
 

(15) 
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(17) 

 
Equation (15) represents the analytical voltage in the 

interface of the micromotor and it will be the reference for 
our Finite Formulation. 

TABLE II 
PHYSICAL AND GEOMETRICAL PARAMETERS OF THE MICROMACHINE 

 
Symbol Name Value Unit 

L Length of the structure 44 e-6 m 

hm Height of the metallic plates 0.01 e-6 m 

a Height of dielectric 2 3 e-6 m 

b Height of dielectric 1 10 e-6 m 

k Number of waves per metre 2π/L m-1 

v Linear speed of mobile part 0 m/s 

f Temporal frequency of excitation 2.6 e6 Hz 

V0 Maximum value of excitation 200 V 

IV. FINITE FORMULATION FOR THE MICROMOTOR 
We begin using global variables for the Finite 

Formulation. The global variables refer to oriented 
geometrical elements like points, lines, surfaces, volumes, 
instant, and interval. 

According to Finite Formulation, global variables can be 
also classified into configuration, source, and energy 
variables [1]. The configuration variables describe the 
configuration of the field without the intervention of the 
material parameters. The source variables describe the 
source of the field without involving the material 
parameters. The energy variables are the product between a 
configuration and source variables. 

Cell Method requires the use of a pair of oriented cell 
complexes, one dual of the other, endowed with inner (i,j,k 
cell) and outer orientation (1,2,3,...,11 cell), respectively, as 
can be seen in Fig. 2. 

According to the Finite Formulation of the 
electromagnetism, a first principle [3] says that the 
configuration variables are naturally associated with space 
and time elements of a primal cell complex endowed with 
inner orientation, while the source variables are associated 
with space and time elements of a dual cell complex 
endowed with outer orientation. The second principle says 
that in every physical theory there are physical laws that link 
global variables referred to an oriented space-time element 
with others referred to its oriented boundary. 

The corresponding dual cell complexes, that we are going 
to follow are derived according to the barycentric 
subdivision [14], as can be seen in Fig. 2. 

A. Topological equation of the micromotor in discrete 
form 
The field equation of the micromotor can be enforced, on 

the cell complexes, in exact discrete form by using 
appropriated incidence matrices. They are called G, C and D 

and denote respectively the edges–node, faces–edges, and 
volumes–faces for the oriented primal cell complex. 

Let matrices G~ , C~  and D~  denote, respectively, the 
edges–node, faces–edges, and volumes–faces for the 
oriented dual cell complex. These matrices above may be 
viewed as discrete counterparts of the differential operator 
gradient, curl, and divergence, respectively, [5] and [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Dual barycentric subdivision. 
 
The following equations represent the counterparts of the 

differential Laws that we have seen in section II: 
 
Gauss Law:  

 
(18) 

 
where      is an electric flux vector associated to the dual 
faces and    an electric charge vector associated to the dual 
volumes. 

Faraday Law (for Quasi-Electrostatic conditions): 
 

(19) 
 
where V is an electric potential vector associated to the 
primal nodes and U an electric potential vector associated to 
the primal edges. 

Charge conservation: 
 

(20) 
 

where I is a current intensity vector associated to the dual 
faces. 

The duality between the oriented primal and dual space 
cell complexes, along with some common convection, lead, 
in general to the following relationships [16]: 
 

(21) 
 

B. Constitutive equation of the micromotor in discrete 
form 
The approximation of the method itself begins when the 

integral voltage and flux state variables, that are allocated on 

( ) ( )kbkε+kakε=ε baeff cothcoth

Q=ψD ~~~ ⋅
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two different cell complexes, are related to each other by the 
constitutive material equations. These equations are matrix 
equations. They contain the average information of the 
material and on the grid dimension [6], [10], [15] and [17]. 

Since the equations (18)-(20) are exact and contain only 
topological information, the discretization error is found to 
be located in the discrete constitutive material equations. 

In the micromotor, we have volumetric and superficial 
properties (volumetric conductivity and permittivity, 
superficial conductivity), that is why we considerate two 
classes of cell for the discrete constitutive material 
equations. One is volumen cell and the other face cell. This 
corresponds in 2D to face and edge cell, respectively. 

The constitutive equations for a simple primal-dual cell, 
see Fig. 3, are: 

 
(22) 

 
(23) 

 
where we have for the face element the following 

expressions: 
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The permittivity and conductivity tensors are 
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where U1, U2 and U3 are the voltage associated to the edges 
I1, I2 and I3 respectively (see Fig. 3), and 1

~ψ , 2
~ψ , 3

~ψ  and 

1
~I , 2

~I , 3
~I  are the electric flow and the electric intensity 

associated to the surfaces 1
~S , 2

~S  and 3
~S  respectively of 

the simple dual cell (see Fig. 3). 
     e

S
Mσ is the superficial conductivity matrix 

 
(26) 

 
     And eMσ  and eM ε are the volumetric conductivity and 
the permittivity matrix, respectively 

 
(27) 

 
(28) 

 
Where A, B and C are dependent on geometry of the 

primal cell and eS~ stands for 
 

 
 

(29) 
 
 
 

C. Final global equation of the micromotor 

The local fundamental matrix can be derived by 
substituting in (20) the local constitutive (22) and (23) and 
Gauss Law (18) were U is expressed by means of (19), 
obtaining 

 
 

(30) 
 

where 
 
 

(31) 
 

 
 
For computational purposes it is convenient to proceed 

with one cell at time. To obtain the global fundamental 
matrix we must assemble all the local fundamental matrices 
on the reference cell, see Fig. 3. 
For a 2D, in case of triangular elements under the hypothesis 
of uniform field and using a dual mesh with barycentric 
subdivision, the resulting matrix for one element is 
symmetric. Moreover, this matrix is coincident with the 
element matrix obtained with Finite elements with affine 
approximation of the electric potential within of the triangle 
[4] and [10], so the resulting system of equations is 
coincident. 
To solve equation (30), first we applied the following 
boundary conditions, one travelling wave on upper side, 0 V 
in the lower side, and periodic boundary conditions on the 
left and right side, see Fig. 1. It has been developed a 
program in Scilab language for the matrix calculus and the 
resolution of the equation system. Gmsh program has been 
used as automatic 2D finite element grid generator and 
advanced visualization capabilities [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Simple primal-dual cell for assemble process. 
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V. RESULTS 
We have calculated the potential in the interface applying 

the Cell Method and the obtained analytical equations for 
five different values of the conductivity. The error between 
the results obtained using analytical equations and the Cell 
Method are neglected, as can be seen in Table II. Figure 4 
and 5 show the Cell Method results for a conductivity of 
1/(1800·106) [1/Ω]. Figure 4 represents the imaginary part 
and Fig. 5 the real part. 

Figure 6 represents the potential in the interface versus the 
conductivity. 

Typical maximum discrepancies are lower than 0.1%. 
We have also calculated the electric field in the interface. 

CM results and analytical solution results can be seen in 
Table III and in Fig. 7 for a conductivity of 1/(600·106) 
[1/Ω]. 

The error between the results obtained using analytical 
equations and the CM are neglected. 

CM convergence has been guaranteed with the refining of 
the meshes of the micromotor as can be seen in Table IV. 
The interfacial electrical voltage has been obtained for a 
conductivity of 1/(1800·106) [1/Ω]. 

 
TABLE II 

INTERFACE ELECTRICAL VOLTAGE 
 

Conductivity 
(1/Ω) Analytical CM Error 

(%) 
)( 61050/1 ⋅  21.6688 21.6947 -0.119 

)( 610100/1 ⋅  37.7909 37.7259 0.172 

)( 610200/1 ⋅  53.6311 53.5904 0.075 

)( 610600/1 ⋅  64.2738 64.2748 -0.001 

)( 6101800/1 ⋅  65.8906 65.9102 -0.029 

 
 
 
 
 
 
 
 
 
 
Fig. 4.  Graphical representation of imaginary voltage (Cell Method). 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Graphical representation of real voltage (Cell Method). 

 

Fig. 6.  Graphical representation of maximal voltage versus superficial 
electric conductivity. 

 
TABLE III 

ELECTRIC FIELD (V/m) IN THE STEADY STATE IN THE INTERFACE IN Z=0 
 

Conductivity 
(1/Ω) 

Analytical 
solution 
(V/m) 

CM 
(V/m) 

Error 
(%) 

)( 61050/1 ⋅  3094307 3102000 -0.248 

)( 610100/1 ⋅  5381641 5389700 -0.149 

)( 610200/1 ⋅  7658503 7665400 -0.090 

)( 610600/1 ⋅  9178278 9182800 -0.049 

)( 6101800/1 ⋅  9409100 9419900 -0.114 

 
 
 
 
 
 
 
 
 

 
Fig. 7.  Electric field for a superficial conductivity of 1/(600·106). 
 

TABLE IV 
EFFECT OF THE MESH IN THE CONVERGENCE 

 
Number 
of nodes 

Number of 
elements 

Analytical 
solution 

(V) 

Numeric 
solution 

(V) 

Error 
(%) 

2353 4704 65.89 65.91 0.030 
613 1224 65.89 66.02 0.197 
284 566 65.89 66.20 0.470 
170 338 65.89 66.40 0.774 

VI. CONCLUSION 
A mathematical model has been deduced for the induction 

electric lineal micromotor using the field equations in 
differential and finite form. An exact analytical equation has 
been found. Using this equation the potential and the 
electrical field has been determined. 
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Results have been compared and errors are neglected 
(lower than 0.1%). An analysis using CM and FEM has been 
carried out and the global matrices of both methods are 
equal. Hence, both results are coincident. 
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