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Abstract-In order to find a map of wind velocities, this study tries to obtain an incompressible wind field 
that adjusts to an experimental one: also verifying the corresponding boundary conditions of physical interest. 
This problem has been solved by several authors using finite differences or standard finite element techniques. 
In this paper, this problem is solved by two different adaptive finite element methods. The first makes use 
of standard finite element techniques, using linear interpolation of a potential function. In the second, a 
direct computation of the velocity field is undertaken by means of a mixed finite element method. Several 
error indicators are proposed for both formulations together with an adaptive strategy. We have applied 
both methods to several typical test problems, as well as to realistic data corresponding to the Island of 
Fuerteventura, with satisfactory results from a numerical point of view. 

1. INTRODUCI’ION 

In the past, the Methods of Finite Differences and Fi- 
nite Elements have proved to be a useful tool for the 
computation of wind fields (see Adell et al., 1987; Ca- 
neill et al., 1984; Fraga et al., 1985; Sherman, 1978). 
Nevertheless, to achieve a good accuracy the analysis 
requires a mesh, taking into account the field distri- 
bution and singularities due to boundary conditions 
and geometry. 

In recent years there has been growing interest in 
assessing the reliability and quality of finite element 
solutions of problems arising in computational science 
and engineering. The use of a posteriori error estimates 
and error indicators has become an accepted tool for 
controlling such computational errors (see Babuska et 
al., 1983). 

A wind energy expert without a deep knowledge in 
numerical analysis can obtain reliable results using an 
adaptive finite element computer program as a “black 
box.” Besides that, good error indicators allow one to 
adapt the mesh automatically, in order to obtain the 
solution of a given problem with optimal computa- 
tional cost. Real time numerical simulation of wind 
fields is then possible. 

The purpose of this paper is to describe the nu- 
merical simulation of wind fields by an adaptive finite 
element method. First, the problem using a classical 
mathematical model is solved in such a way that a 
Lagrange multiplier is calculated first and the velocity 
field is obtained by derivation. However, the computed 
field thus obtained is discontinuous through the faces 
of the finite elements (lines in 2D) and does not satisfy 
the incompressibility condition point-wise. Alternately, 
a direct computation of velocities is presented, using 
mixed finite elements. In this approach the numerical 
solution satisfies the incompressibility condition ex- 
actly. 

For both models, standard and mixed finite ele- 
ments, we propose several error indicators in order to 
automatically control the error of the numerical ap- 
proximation. To improve the quality of numerical so- 
lutions we have adopted one of the most common 
techniques, that of h-refinement, which relies on sub- 
divisions of a given type of finite element. 

2. CLASSIC F.E.M. SOLUTION 

2.1 Mathematical model 
For a given bounded domain R C IWd (d = 2, 3), 

with boundary r = r, U r2, we look for a vectorial 
field u that adjusts, in a least square sense, to a wind 
field ~0 obtained from the interpolation of experimental 
measurements and verifying the following equations: 

div u = 0 in Q (1) 

u-n=0 on r, (2) 

where n is the vector, unitary and perpendicular to I’, , 
projecting from r. 

The cost function will be, 

J(u) = 4 
s 

(u - uo)‘P(u - llo), 
n 

P being a diagonal matrix. 
Then, the vectorial field u will be the solution of 

the problem: “Find II E 116 that verifies, 

J(u) = min J(v) 
“EK 

I 
(3) 

U6= {v;divv=O,v.nl,,=O} 

Equation (3) can be formulated as a saddle-point 
problem for the Lagrangian: 
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L(v, q) = J(v) + b q div v (4) 

More precisely, O-*(Q) being the space of square in- 
tegrable functions and W’(Q) the subspace of L*(Q) 
with square integrable first derivatives, we denote 

b,r,(B) = {(P E H’(B); (oIr* = 01 

W(div, B) = {v E (lL2(Q))d; div v E L*(n)} 

and finally, introducing the space of vector functions 
such that v-n = 0 on Fr in a meaningful way, say: 

b,r, (div, B) 

= v E W(div, Q); 
1 s v-n(D=Ov)(PEWo,r&Q) 

r I 

Wesearchthecouple(u,X)inWo,r,(div,Q)XL2(R) 
such that: 

L(u, q) I L(u, X) I L(v, X) (5) 

for all q E lL*( 0) and for all v E Lt&,r,(div, B), which 
is characterized by 

$ L(u, X) = 0 and $ L(“, X) = 0 

in other words: 

~v’Pu+~Xdivv=~v’Pua (6) 

for all v E I-&, (div, Q), and 

s q div u = 0 (7) 
R 

forallqEL*(Q) 
Assuming that the Lagrange multiplier X is suffi- 

ciently regular, says X E W’ (fl), and taking into account 
eqns ( 1) and (2) we obtain: 

u=uO+P-‘9X in B (8) 

-?*(P-‘?A) = 9. ua in Q (9) 

(10) 

X = 0 on F2 (11) 

Standard finite element method applied to this 
problem allows us to calculate the function X, and from 
eqn (8) by derivation we get the velocity II. 

2.2 Interpolatedfield computation 
The field II,, in eqns (8), (9), and ( 10) is constructed 

by interpolation. Let k be the number of observation 
stations in Q, then uc, is given by: 

(12) 

where Uj is the measured velocity in j-th station, ~0 the 
interpolated velocity in a given point, and dj the dis- 
tance from j-th station to that point. In practical ap- 
plications, the values m = 1,2, and 3 have been chosen 
in order to analyze the behavior of this parameter. 

2.3 Adaptive strategy 
In the development of aposteriori error estimators, 

three main approaches may be distinguished: Namely, 
those based on residual, postprocessing, or interpola- 
tion techniques. The estimators here follow the first 
approach. 

This first approach began with the work of Babuska 
and Rheinboldt ( 1978) and is essentially based on an 
error equation involving the residual of the computed 
solution. For triangles of three nodes and linear inter- 
polation, these error indicators are 

+&li [&$‘~*dF]“* (13) 

where hi is the diameter of the Bi element having ri 

boundary; [[P-‘1 %]I means the jump of the flux 

associated with the numerical solution Xh through the 
boundary Fi; r is the residual corresponding to eqn 
(9). I( P-’ I] stands for a suitable matrix norm of P-’ . 

A second refinement indicator is: 

ti = hil?Xhl (14) 

which allows one to find efficiently the boundary layers 
that could appear. 

Once the error indicators are known, we refine the 
mesh according to the following strategy: Set t,,, = 
max ti and given the parameter y E [ 0, l] (usually y 
= 0.2), we subdivide all the triangles Q which have ti 
2 Yemax. 

To refine the mesh we have used the algorithm pro- 
posed by Rivara ( 1984, 1987 ) , which consist basically 
in the partition of a triangle by means of the intro- 
duction of three vertices at the mid points of the three 
sides and joining the new vertex located on the longest 
side with the opposite old vertex, and with the other 
two new vertices. Finally, an additional refinement is 
performed to assure the conformity of the mesh. Con- 
cerning the resolution of the algebraic system of equa- 
tions, an element-by-element (E.B.E.) conjugate gra- 
dient method with diagonal preconditioner has been 
applied, because of its proven efficiency in many kind 
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of problems (see Montero et al. 1990). We take the 
solution obtained with a mesh as an initial approxi- 
mation for the system of equations corresponding to 
the refined mesh. Furthermore, applying E.B.E. tech- 
niques we do not need to stock the global matrix. 

2.4 Applications 
In all the examples, the behaviors of indicators 1 

and 2 presented before, eqn ( 13) and ( 14) respectively, 
have been compared. Also, a qualitative difference has 
been shown between solutions obtained using different 
interpolations corresponding to the values m = 1, 2, 
and 3 in eqn ( 12). One step of refinement with a given 
parameter y has been made from an initial regular 
mesh in each example, so that we work with two meshes 
(first or initial MESH and second MESH). In the next 
section we show some results using meshes and veloc- 
ities-field solutions. 

2.4.1 Obstacle model test. lJn$ormjeld. Consider 
a wind field through a rectangular region with an ob- 
stacle in the middle zone, as shown in Fig. 1. The wind 
velocity is assumed in A, B, C, F, G, and H, and its 
value is 2 m set-‘, with horizontal direction. In this 
figure, the impermeable boundary r, is indicated. Fig- 
ures 2-5 show the second grid and the solution field 
obtained by applying Indicator 1 (Babuska indicator) 
and Indicator 2 (Gradient indicator) to the same initial 
mesh. 

Obviously, we find a better solution of the velocities 
field by refining the mesh. Indicator 1 introduces fewer 
elements than the second one. 

2.4.2 Obstacle model test. Non-uniformjield. With 
the same geometry as the first example, a known wind 
velocity has been assumed at the points D and E with 
a value equal to 2.82 m set-’ and a wind direction of 
135” and -45” respectively. We have used several nu- 
merical strategies as in the first example. In this case, 
Figs. 6-9 show the corresponding results. Similar con- 
clusions are obtained here, but the refined mesh is non- 
uniform because of the turbulence of the observed field. 
Here several refinements allow one to get a better ap- 
proximation. 

2.4.3 Application in Curiadu de1 Rio, Jandia, Island 
of Furrteventura Finally, the numerical method al- 
ready described to a real-data case has been applied, 
concerning the measurement of the meteorological 
stations in the area of Caiiada de1 Rio in Fuerteventura 
island; see Fig. 10. Table 1 gives the values of mea- 
surements of different observations used in this study. 
We begin with a regular mesh and we perform two 
refinement steps according to Indicator 1, for different 
interpolations of the observed field (m = 1, 2, or 3). 
Figures 1 I - 12 show the results using a strategy with 
m = 1. In order to analyze the zones with greater wind 
power with in the studied domain, the modules of ve- 
locities of the solution field are presented, building the 
contours and their 3-dimensional representation (Fig. 
13) for the last refinement step (Mesh 3). 

The locations of the zones of greater wind power 
do not actually depend on the interpolation chosen, 
although the values of this power change noticeably. 

Fig. I. Obstacle model test. 

Fig. 7. Second mesh. Babuska indicator. 

Fig. 3. Second mesh solution. Babuska indicator. 

r 

Fig. 4. Second mesh. Gradient indicator 

Fig. 5. Second mesh solution. Gradient indicator. 
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Fig. 6. Second mesh. Babuska indicator. 
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Fig. 7. Second mesh solution. Babuska indicator. 

Fig. 8. Second mesh. Gradient indicator. 
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Fig. 9. Second mesh solution. Gradient indicator. 

On the other hand, the areas of greatest refinement are 
the same for the three cases. 

3. MIXED FINITE ELEMENT SOLUTION 

Following the work of Raviart and Thomas ( 1977 ) 
we consider the direct approximation of eqns (6) and 
(7): for any integer k 2 1, let Pk be the space of poly- 
nomes of degree k in Rd, and we define 

Fig. 10. Fuerteventura Island. Studied domain. 

Dk= {v=(v,,..., vd); vi(x) = 6$(x) + xi&(x) 

1 I i 5 d with ao, a,, . . . , ad E Pk_, } 

We denote Dk( 7) the restriction of Dk to an element 
7 of the triangulation T. Now, introducing the finite 
dimensional spaces 

X,, = {v E I&.,(div, 0); vl,E DL(T)V~ E T) 

M,, = {q E U_‘(Q); qlr E I-‘k-,b E T} 

The approximate problem is: 
“Find (u,, , A,) E Xr, X Mh such that 

~vtpuh+~Xhdivv=~v’PUo (15) 

for all v E X, 

s fj div n,, = 0 (16) 
R 

for all q E Mh .” 

Table 1. Observations data 

Station Module km h-’ Direction 

1 39.0 209.8” 
2 34.2 228.0” 
3 32.6 231.2” 
4 35.0 253.8” 
5 41.4 221.0” 
6 30.6 228.3” 
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Fig. I 1. Cafiada del Rio application. Third mesh. Fig. 12. Cariada del Rio application. Third mesh solution. 

‘23’ 4 

Fig. 13. Caiiada de1 Rio application. Modules of velocities in 3D. 
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We have the following properties for the discrete 
solution uh of eqns ( 15) and ( 16): 
?? continuity of the flows uh’ n through the inter-ele- 

ment boundaries, and 
?? div uh = 0, as a consequence of eqn ( 16). 

To solve the mixed variational problem in eqns ( 15) 
and ( 16)) we use the multigrid method, see Hackbush 
( 1985), with the sequence of nested subspaces, cor- 
responding to the nested grids generated by the refine- 
ment algorithm. 

3.1 Adaptive strategy 
The mixed discrete system corresponding to eqns 

( 15) and ( 16), can be written in matrix form as: 
From the continuous eqns (6) and (7) and its dis- 

crete version, eqns ( 15 ) and ( 16 ), we obtain the fol- 
lowing a posteriori error estimation for the norm: Au + B’X = b (18) 

Bu = 0 (19) 

We have considered a smoother which could be 
written as the following Arrow-Hurwicz-Uzawa iter- 
ation (see Fortin and Glowinski, 1982): 

where r is given by 

r = uh - b - Pm’?& 

U 
“+I = u” 

- wS-‘(Ap” + B’X” - b) 

A”+’ = X” + p(Bu”+‘) 

The constant C depending on the P matrix can be 
evaluated easily and [ i$,] means the jump of Ah betWee 

elements through the sides T’ of the triangulation T. 
II . II 1,2,,, stands for a proper norm in a trace space. 

Using the error estimation, in eqn ( 17), we consider 
the error indicator associated to each element T; for 
the first order approximation (k = 1) we have: 

where A, = A + rB’B, S is an auxiliary operator and 
w, p are parameters; in our case wS-’ is the operator 
associated with a few steps of the diagonal precondi- 
tioned conjugated gradient method. 

1, = 

3 

C &[ Xi] lTleaS( 7’) 

i=l 

Concerning the system in eqns ( 18) and ( 19), the 
restriction and prolongation operator are the L2 - 
projection and injection, respectively, for the Lagrange 
Multiplier X, as we do not have any continuity re- 
quirement for this variable. For the velocities u we can 
construct easily the interpolation operator: when we 
split by its middle point a side of an element, the flow 
values of the two new sides are taken to be one half of 
the flow value of their “father”; the values through a 
new side interior to a triangle can also be calculated 
using the divergence theorem. The restriction operator 

where 

pi= 0 I 
112 if T;nr=O 

if 7; n r, # 0 
1 if T;nr2z0 

In order to define a refinement strategy, in practical 
computations, we have only considered the first term 
in nT. We refine an element according to the strategy 
defined in section 2.3, or, alternatively, by setting 

1 
n& = E ,Z t&, N being the actual number of elements, 

we refine the mesh according to the following strategy: 
(a) if 7, 2 nap, we refine by four elements, and (b) if 
%pt > 97 2 0.5 7lOPl we refine by two elements. With 
this kind of subdivision we intend to quickly reach a 
mesh with uniform error distribution which has been 
proven to be optimal. finite elements. 

Fig. 14. Canada del Rio application. Third mesh using mixed 
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Fig. 15. Catiada de1 Rio application. Third mesh solution 
using mixed finite elements. 

for the flows to pass from a fine grid to a coarser one 
is straightforward; we only have to sum up the flow 
values of the two “daughter” sides. For a more detailed 
analysis see Ferragut et al. ( 1990). 

3.3 New results 
Figures 14-16 show the results obtained for the 

same application solved in Section 2.4.3, but using the 
mixed finite element method. In this case we have taken 
the parameter m = 2 for the construction of the inter- 
polated field uo. 

4. CONCLUSIONS 

We have presented the development of two nu- 
merical methods for wind field adjustment, using a 
least square procedure, in order to fit the experimental 
measurements and to meet the incompressibility con- 
dition. The corresponding optimization problem is 
solved by looking for a saddle point of the associated 
Lagrangian function. 

The finite element approximation ofthe equivalent 
mixed variational formulation is very suitable as the 
approximate solution is divergence free. Furthermore, 
the performance of the adaptive method proposed ap- 
pears to be very satisfying both from a numerical point 
of view and that of computational efficiency. Finally, 
the result obtained in the real data Fuerteventura case 
has been accepted as reasonable and will be used as 
input data in a further energy resources estimation. 

Fig. 16. Canada de1 Rio Application. Modules of velocities in 3D using mixed finite elements. 
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