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In this paper we present a new version of the derefinement algorithm developed 
by Plaza et al. (in Numerical Methodr in Engineering, Elsevier Science, 
Amsterdam, 1992, pp. 225-232; in Algorithms, Software, Architecture, Elsevier 
Science, Amsterdam, 1992, pp. 409-415; A. Plaza, PhD thesis, University of Las 
Palmas de Gran Canaria, 1993; Commun. Numer. Meth. Engng, 1994, 10, 
403-412).‘-4 The purpose is to achieve a better derefkment algorithm with a 
lesser degree of complexity. We present the theoretical study of this improved 
deretkment algorithm and of the inverse one for refinement. Firstly, our initial 
version of the derefinement algorithm is summarized. Then we present the 
refinement algorithm associated with the improved derefkrement one. Finally, 
automatic control of the sequences of irregular nested triangulations is shown by 
means of the resolution of an unsteady problem. In this problem the initial mesh 
has only nine nodes and a combination of refinements and derefhrements have 
been applied to approach both the circular domain and the initial solution. 
Copyright 0 1996 Civil-Comp Limited and Elsevier Science Limited 

1 INTRODUCTION 

It is well known that numerical grid generation and the 
ability to control automatically and adaptively discreti- 
zations in the numerical solution of partial differential 
equations is critical to the reliable application of 
numerical analysis techniques, especially by means of 
adaptive finite-element methods and multigrid algo- 
rithms. We can say that a good discretization of the 
domain in which a problem in differential equations 
must be solved is, at least, as important as the numerical 
formulation of that problem.516 On the other hand, we 
usually need efficient and robust algorithms to achieve 
a good discretization. This is particularly important in 
time-dependent problems, in which the changing of 
refined areas is required. 

Our algorithms1-4J~8 are based on the work of 
Rivara.9-12 In fact they can be seen as alternative 
versions of her algorithms. These algorithms build and 
manage automatically sequences of nested irregular 
discretizations of the domain. This automatic control 
is very important to applying practical multigrid 
procedures. 

In this paper, we introduce our first version of the 
derefinement algorithm. It can be found in detail in Refs 
l-4. Then we study briefly its complexity in the sense of 
number of operations by means of an upper bound for 
the worst case. Subsequently, and based on the previous 

study, we introduce a new vector in the data structure 
and some modifications in the algorithm to obtain a 
new improved version. Furthermore, as a derefinement 
algorithm can be understood as the inverse of a 
refinement algorithm, a new version of the derefine- 
ment algorithm naturally leads us to consider 
whether a new version of the refinement algorithm is 
possible. To start this study, the first version of the 
refine-ment algorithm developed by Ferragut,7’8 which is 
also a version of the 4-T algorithm of Rivara,97’o is 
analyzed. 

Finally, we compare in some detail our final version 
of the derefinement algorithm with the one proposed by 
Rivara. 

2 THE FORMER DEREFINEMEST ALGORITHM 

Regarding the derefinement algorithm we can distin- 
guish two aspects: the geometric problem and the 
algebraic problem. The former involves eliminating 
some nodes of the sequence in such a way that the 
nestedness of the sequence is assured. The latter consists 
of the renumbering of the equations that remain after 
derefhring the mesh geometrically. This renumbering, 
in our algorithm, works only with the number of 
equations; the global number of each node remains 
the same before and after derefining. The geometrical 
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problem of our derefinement algorithm can be 
summarized as follows: 

2.1 A scheme of the algorithm 

Let T = {q < r2 < . . . < 7,) be a sequence of nested 
triangular grids, where r1 represents the initial mesh 
and 7, the finest mesh in the sequence. Derefining the 
sequence means to obtain a new sequence: 

T’ = {q < T; < ... < &} 

following has been used: the absolute difference between 
the numerical solution at node N and the interpolated 
solution of the ends of its surrounding edge is checked. If 
this absolute difference is less than a constant - that 
can be fixed for each program run - the node N can be 
cancelled. Hence this imposed constant will be called 
epsilon. The relative difference can also be used for the 
same purpose. 

2.2 Conforming procedure 

where m 5 n. 
Our former version of the derefinement algorithm1-4 

works in the following manner: 

INPUT: Sequence T = {q < 7-2 < . . . < T,} 

Loop in levels of T; for j = n to 2, do: 
1. For each proper node of mesh 7, the derefinement 

condition is evaluated and the nodes and edges 
suitable to be eliminated are marked. 

2. Conformity of the new levelj is assured, decreasing 
the derefined area. 

It is worth noting that the derefinement condition is 
checked in a minimum number of nodes, by using 
derefinement vectors for nodes, edges and elements: only 
proper nodes are eligible in each mesh-level, and out 
of these, only those suitable to be cancelled are taken 
for evaluation. If one node cannot be eliminated no 
neighbouring nodes can be cancelled either. More 
details can be found in Refs 2-4. 

3. The following question is presented: 
3(a) If some proper node of q is eliminated, then: 
3(al) If some proper node of 5 stays, then: 

New nodal connections, and new families of 
edges and elements are defined for the level 7-t 
and for the derefined level of 5, ?F say. 

In the other case, 
3(a2) The current level j is deleted in the structure 

vectors. Genealogy vectors of 7-i are modified. 
End if. 
In the other case, 
3(b) All proper nodes of 5 must remain and level q is 

not modified. 
End if. 

Once the derefinement condition has been checked in 
all the eligible proper nodes of a particular mesh (inside 
the loop in levels), the conformity of the arising new 
level is assured. The conformity of all meshes in each 
sequence is assured by minimizing the derefinement 
area, that is, maintaining some nodes that otherwise and 
concerning the derefinement condition, could be elimi- 
nated. In fact, if a node P belongs to the longest edge of 
an element in which there is another node on any other 
edge, the node P must remain. 

The procedure assuring the conformity of the mesh q 
is summarized as follows: the concept of the Z/2-non- 
conforming triangle of Rivara is used:9 a triangle twill be 
called a l/2-non-conforming triangle if there exists at 
least one hanging non-conforming midpoint P over one 

4. The changes in the current level j are inherited by 
the following ones. 

5. A new sequence of nested meshes, Tj, is obtained, 
which is the new input for the next iteration of the 
loop in levels. 

of its sides. Point P 

point. For instance, 
l/2-non-conforming. 

will be called a l/2-non-conforming 

in Fig. 1 the shaded triangles are 

OUTPUT: Sequence T’ = {TV < 7; < . . . < oh} 

Reference 4 can be consulted for detail on the data 
structure. It can be noticed here that the additional 
necessary data for the application of the derefinement 
algorithm is equal to about the number of nodes in the 
domain, although for each level of mesh the global 
number of all edges and elements are kept sequentially. 
Therefore, an edge or an element appears as many times 
as levels of meshes it belongs to. Hence, we can say that 
the required memory is about the number of levels n, 
multiplied by the number of nodes, NN: O(nNN). As 
outlined in Ref. 2, this data structure can be optimized, 
but it is very convenient for an easy and efficient 
implementation of the multigrid method. 

(a) mesh 1 (b) mesh 2 (c) mesh 3 

(d) initial situation (e) 1 st step (1) 2nd step 

With regard to the derefinement condition, the Fig. 1. Conformity of the arising new level. 
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INPUT (3, 7-l, Derefinement Vectors) 
While Conformity must be assured: 

For each t E 5-i: 
If t is l/2-non-conforming: 

Local conformity of triangle t is assured. 
Assure conformity. 

End if. 
End for. 

End while. 
OUTPUT (3, qel, Derefinement Vectors) 

Local conformity is assured by changing, if necessary, 
the derefinement vector of the middle point node of the 
longest edge. But if there is a change in the derefinement 
vector of a node, conformity must be assured again by a 
new loop in the elements of the mesh q-1. 

An example of how the conformity of the arising new 
level was assured by this version of the algorithm can be 
seen in Fig. 1. There, the first line represents a sequence 
of three nested meshes in which the proper nodes are 
shown in white. The second line shows the evolution 
for the derefinement vectors, when the third level is 
derefined. In the second line of the figure, the white 
nodes mean the proper nodes of the third level that will 
stay according to the derefinement condition (Fig. Id) or 
conformity of the mesh (in Fig. le,f); the black nodes 
are inherited nodes in this level and these are marked 
because they are not suitable to be cancelled in order to 
assure the nestedness of the sequence of meshes. The 
shaded area is the non-conforming area at each step of 
this process. 

2.3 Efficiency and complexity of the algorithm 

The order of operations required by the derefinement 
algorithm has been estimated by two parameters: the 
number of nodes in the mesh, NN, and the number of 
levels of mesh in the sequence, n. We will give here an 
upper bound of the number of operations. 

If we follow the previous outline of the algorithm 
and if NNP(j) is the number of proper nodes of the 
level q, we have: Step 1 of the algorithm implies a 
complexity of O(NNP(j)); to assure the conformity 
O(NNNNP(j)); Steps 3(al) and 3(a2): O(NN); and 
finally, to inherit the changes by the following levels of 
mesh: O(nNN). 

If we think that the number of elements of the mesh 
3-i can be considered about the order of NN, this 
implies that assuring the conformity costs less than 
O(NNNNP(j)). 

Since 

2 NNZ’(j) 5 NN (1) 
j=2 

although Steps 1 and 2 depend upon n, their complexity 

can be computed by: 

O(nNNZ’(j)) = O(NN) 

O(nNNNNP(j)) = O(NN2) 
(2) 

Therefore our former version of the derefinement 
algorithm gets a complexity of the order: 

O(NN2 + NN + n2NN) = O(NN2 + n2NN) (3) 

However, the conformity can be assured at the same 
time that proper nodes are taken for evaluation of the 
derefinement condition. In this manner the loops in 
the elements of the previous level of mesh are avoided 
and this implies (except for a constant) as many 
operations as proper nodes in each level. That means 
that Steps 1 and 2 have a complexity of O(NN). 
Then, in this case, if we can assure that the number of 
levels is bounded, we have a linear complexity for the 
algorithm: O(NN). Actually, this analysis gives us an 
upper bound for the complexity of the algorithm; 
experience tells us that additional computation time 
required by the algorithm amounts to less than 1% of 
total execution time. 

3 THE NEW DEREFINEMENT PROCEDURE 

Let T = {q < 72 < . . . < 7,) be a sequence of nested 
triangular grids, where 71 represents the initial mesh 
and T,, the finest mesh in the sequence. Our goal is to 
obtain another sequence after derefining T, T’ say: 
T’ = (71 < T; < * * * -c T;} where m 5 n. 

The new derefinement algorithm can be shortly 
described in this form: 

INPUT: Sequence T = {TV < r2 < . . . < 7,) 
Loop in levels of T; for j = n to 2, do: 
1. For eachproper node of q the derefinement condition 

is evaluated and the nodes and edges suitable to be 
eliminated are pointed out. Conformity is assured 
in a new manner. 

2(a) If some proper node of q is eliminated, then: 
2(al) If some proper node of 5 stays, then: 

New nodal connections are defined for 
the new level j. Genealogy vectors are 
modified. 

In the other case: 
Z(a2) The current level j is deleted in the data 

structure. Genealogy vectors are modified. 
End if. 

In the other case: 
2(b) Level 5 is not modified. 
End if. 
3. The changes in the mesh are inherited by the 

following meshes. 
4. A new sequence of nested meshes Tj is obtained. 
OUTPUT: Sequence T’ = T2 = {TV < 74 < . . . < T;} 
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3.1 The new conforming procedure 

The way in which the conformity of the new level of 
mesh is assured enables us to achieve a better, less 
complex, algorithm. This is carried out by means of a 
new vector of neighbouring elements of grid-edges. 

In the new version of the derefinement algorithm, the 
conformity of the arising new sequence is assured at the 
same time as the derefinement condition is checked. This 
implies clear advantages with regard to the complexity 
of the new version of the algorithm. 

The procedure assuring the conformity of the mesh 7 
is summarized in the following. 

INPUT (q, 3-l, Derefinement Vectors) 
For each proper node N E q and if node N must 

remain for derefinement condition: let c be the 
surrounding edge of N, for each neighbouring element 
t E 7v1 of c do: 

If t is l/2-non-conforming: 
l The derefinement vector for the node P of its 

longest side is changed. 
l The derefinement vector for some nodes of t is 

changed as well. 
End if. 

End for. 
OUTPUT (7, q-t, Derefinement Vectors) 

The management of the derefinement vectors for 
the nodes of the same example shown in Fig. 1, using the 
new version of the algorithm, can be seen in Fig. 2. 

The second line shows the evolution of the deretine- 
ment vectors, when the third level is derefined. The white 
nodes in the second line of the figure mean the proper 

nodes of the third level that will stay according to the 
derefinement condition. Shaded nodes mean proper 

nodes that will stay according to the conformity of the 

(a) mesh 1 (b) mesh 2 (c) mesh 3 

(d) one node remains (e) Conformity (f) other node 

Fig. 2. Conformity of the arising new level by means of the new 
version of the algorithm. 

mesh (in Fig. le,f); black nodes are inherited nodes in 

this level and these are marked because they are not 
suitable to be cancelled in order to assure the nestedness 
of the sequence of meshes. It is worth noting that in this 
new form, some proper nodes of each current level at 
derefining are not eligible for checking the derefinement 
condition. 

Finally, we remark that there are some differences 
between our derefinement procedure and the one 
proposed by Rivara. Briefly, we can say that, although 
the definitions of j-new node and j-new edge used by 
Rivara are equivalent to our definitions of proper node 

and internal edge, we neither use the molecular structure 
defined by Rivara nor need to distinguish if a particular 
node has been created as a consequence of the creation 
of another in some preceding level; our algorithm can 
be combined with the 2-T or 4-T refinement algorithms 
and in both cases the size of the derefinement area is 
determined by the physical problem, not by the 
algorithm itself. 

On the other hand, the derefinement algorithm of 
Rivara works at the same time as the refinement one, 
while our algorithms are independent modules that are 
fixed by the user choosing the particular adaptive 
strategy. Also, we have introduced a simple criterion 
for derefining and this derefinement condition shows 
how better the previous numerical solution was with 
respect to the solution over the derefinement mesh. 

4 ON THE REFINEMENT ALGORITHMS 

4.1 A scheme of our first algorithm 

Let T” = (71 < 72 < -** < 7,) be a sequence of nested 
triangular grids, where 71 represents the initial mesh 
and 7, the finest mesh in the sequence. To refine the 
sequence, or the level n, means to obtain a new sequence: 

T n+l 
={7~<72<“‘<7,<7,+,} 

The version of the refinement algorithm due to 
Ferragut7’8 works in the following manner: 

INPUT: Sequence T” = {q < 7-2 < . . . < 7,) 
For each t E r,,, do: 

1. The refinement condition is evaluated. 
2. If t must be refined, then: its edges are marked. 

Conformity of the new level n + 1 must be 
assured. 

End for. 
3. Conformity of the new level is assured, increasing 

the refined area. 
OUTPUT: Sequence T”+‘={-q < 7-2 < . . . < 7, < 7,+1} 

The way in which the conformity of the arising new 
level is assured is analogous to that in our former 
derefmement algorithm, see Section 2.2. Now, for each 
non-conforming element of the level n, one node must be 
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introduced in the middle of the largest edge and 
conformity must be assured again. This implies as 
many loops in elements of the level at refining as nodes 
introduced for conformity. 

4.2 A scheme based upon tbe new version 

This version is obtained by changing the way in which 
the conformity of the new level of mesh is assured. 

INPUT: Sequence T” = {TV < 72 < . - . < 7,) 

For each t E r,,, do: 
1. The refinement condition is evaluated. 
2. If t must be refined, then: 

2(a) 

2(b) 

Its edges are marked. Conformity must be 
assured. 
For each edge of t, F, say, do: 
While conformity must be assured: 

Assure local conformity of the neigh- 
bouring element of suitable edge F. 

End while. 
End for. 

End if. 
End for. 
OUTPUT: Sequence T”+’ = {q < r2 < . . . r, < T,+~ } 

It is worth noting here that the conformity can be 
assured at the same time as the elements of the level 7, 
are taken for the evaluation of the refinement condition. 
That means that this new version of the refinement 
algorithm can be understood as the inverse of the 
derefinement algorithm that is presented in this paper. 
However, this fact does not imply that this version of 
the refinement algorithm is better - in the sense of the 
required number of operations - than the previous 
one. Both algorithms show a similar computational 
behaviour. 

Note that when one element t must be refined the 
(local) conformity is assured taking the neighbouring 
element of each edge in which one node has been 
introduced. If this neighbouring element is non- 
conforming it can be made conforming by adding 
another node. This procedure ends when no further 
nodes are put. 

5 APPLICATIONS 

We present some test applications to show the behav- 
iour of the derefinement algorithm. We consider the 
convection-diffusion problem defined in a two- 
dimensional domain S& of boundary I? 

au ~+v47U-v.(kVu) =f 

where u = u(x, t) is the solution in a fluid element placed 
in x = xii + x2 j at time t; fluid velocity is given by 
v = v(x); we study the lineal model, k = k(x);f =f(x, t) 

are the external sources. We suppose boundary and 
initial conditions such that the existence and uniqueness 
of solution are assured. Some meshes and the respec- 
tive solutions in different time steps of the following 
unsteady convection-diffusion problem can be observed 
in Fig. 3. 

Let R be a circular domain centred at the point 
(0.5,0*5) of diameter a, with null Neumann condi- 
tions on its boundary I’. We study the problem with a 
rotating velocity field, with ~1~ = w(x2 - 0.5) and q = 
--+x1 - 0.5) such that V - v = 0 and tangent to I?. The 
maximum value of the velocity field is &/2 and it is 
taken in the boundary I- of R, and the minimum is taken 
in the centre of the domain. In the present application 
we have chosen w = 103. The value of the diffusion 
coefficient is k = 1. That is, a significance Peclet number 
for this problem is about 103. We suppose no external 
sources, f = 0. 

The initial solution is a given function that is 
automatically approximated in Fig. 3(a) using an 
adaptive strategy. This strategy combines four global 
refinement followed by a derefinement with E = 0.005, 
twice and enables us to get both a good approximation 
of the initial solution and of the geometry of the domain 
with a minimum number of nodes, 1573 in this case. 

We have used as error indicator vi = h?J Vuh 1 for an 
element Ri, where hi is the diameter of 0, and uh the 
linear numerical solution in the triangular element. If we 
denote by E,,, the maximum value of the error 
indicators, then, an element Q will be refined if and 

only if Vi 2 YE,,, where y is called the parameter of 
refinement. In this example we allow values of y between 
0.5 and 0.9. The exact value is automatically calculated 
using the following expression: 

y = min (max (O-5, NNINOPT), 0.9) 

where NN is the number of nodes in the current level of 
mesh and NOPT the optimum number of nodes fixed 
by the user. In this application we have considered 
NOPT = 2000 and E = 0.001 at derefining. 

It is worth noting that the number of nodes and their 
location in the mesh is automatically controlled by a 
small number of parameters and by the numerical 
solution. The value of these parameters is very important 
in solving a problem. Some quick trials may be needed 
before these parameters can be fixed by the user. 

To get the stationary solution (constant in this 
example), a total number of 1468 time steps have been 
calculated. The adaptive strategy was three refinements 
followed by a derefinement procedure with increment of 
time after each refinement or derefinement. The stability 
conditions obtained in Ref. 13 have been considered to 
evaluate the time increment after each refinement or 
derefinement. In each time step, one multigrid iteration 
is enough to solve the system of equations. 

Once the stationary state is reached, the derefinement 
algorithm reduces the sequence of nested meshes to 
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(cl 
Fig. 3. Evolution of the solution for an unsteady convection-diffusion problem: (a) initial solution, t = 0.0 s, 1573 nodes; (b) 240 
time steps, t = ONMM7 s, 2115 nodes; (c) 480 time steps, t = 0+00116s, 1923 nodes; (d) 720 time steps, t = 0.0021 s, 1873 nodes; 

(e) 960 time steps, t = 0.0035 s, 1383 nodes; (f) 1200 time steps, t = 0.0055 s, 449 nodes. 

just one coarse level and the program run stops 
automatically. 

6 CONCLUSIONS 

The study of the complexity of an algorithm is very 
useful in improving versions. In this paper this 
improvement is shown for a particular algorithm: a 
derefinement algorithm of two-dimensional nested grids. 

The use of a new vector of neighbouring elements of 
grid-edges reduces the algorithm complexity. Com- 
plexity is further reduced by simultaneous checking of 
both the derefinement condition and conformity of 
the arising new sequence. Our derefinement procedure 
departs significantly from the one proposed by Rivara, 
and features improve the computational behaviour of 
our former algorithm. 

This study will be very important in more difficult 
algorithms, for example, analogous ones to refine and 
derefine in three dimensions. There are already some 
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Fig. 3. Continued. 

papers, 14,” in this direction of research, but it is not yet 

clear whether they are simple generalizations of Rivara’s 

algorithms.‘* 
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