Smoothing and local refinement techniques for improving tetrahedral mesh quality

J.M. Escobar, R. Montenegro *, G. Montero, E. Rodríguez, J.M. González-Yuste
University Institute of Intelligent Systems and Numerical Applications in Engineering, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain.

Abstract

The improvement in the mesh quality without changing its connectivity is bounded. This bound is associated with the topology of the mesh and with the constraints imposed by the boundary of the domain. To solve this problem, we propose in this work to combine the tetrahedral mesh optimisation technique introduced in [1,2] with the local mesh refinement algorithm presented in [3]. The main idea consists in increasing the node number, and thus, the degrees of freedom, in the neighbourhood of the regions where the elements have poor quality. Then, we refine all the elements whose quality are below to a certain threshold. Once it is done, we initiate another stage of optimisation until the quality of the mesh reaches a limit.

Key words: Mesh smoothing, mesh untangling, mesh generation, adaptive refinement, nested meshes, 3-D finite element method.

1 Introduction

In fi nite element simulation the mesh quality is a crucial aspect for good numerical behaviour of the method. In a fi rst stage, some automatic 3-D mesh generator constructs meshes with poor quality and, in special cases, for example when node movement is required, inverted elements may appear. So, it is necessary to develop a procedure that optimises the pre-existing mesh. This process must be able to smooth and untangle the mesh.

[^0]There are two basic ways to improve the quality of a pre-existing mesh. The first, usually named mesh optimisation, consists in moving each node to a new position that improves the quality of the surrounding elements. This technique preserves the topology of the mesh, that is, it does not modify the connectivity of the nodes. The second one involves some changes in the node connections. For example, edge swapping is a well known technique included in this category. In this work we propose an hybrid method that combines both approaches.

In Section 2, we summarise an optimisation process which is also directly applicable to meshes with inverted elements, making a previous untangling procedure unnecessary [1,2]. This simultaneous procedure allows the number of iterations for reaching a prescribed quality to be reduced in relation to other strategies [4-7]. Nevertheless, the improvement in the mesh quality without changing its connectivity is bounded. In practice, we observe that both average and minimum quality tends to become steady to its respective bounds as the number of iteration increases. As result, once a suffi cient number of iterations has been done, the mesh quality will not improve signifi cantly and the process must then automatically stop.

In this work we propose to combine the above optimisation techniques with the mesh refi nement algorithm based on 8 -subtetrahedron subdivision [8-10] and presented in [3]. This last algorithm is summarised in Section 3. The main idea consists in increasing the node number, and thus, the degrees of freedom, in the neighbourhood of the regions where the elements have poor quality. Then, we refi ne all the elements whose quality are below to a certain threshold. Once it is done, we initiate another stage of optimisation until the quality of the mesh reaches a limit. The overall process can be repeated several times until the required quality is obtained or no additional improvement is got.

A promising field of study would combine the 3-D refi nement/derefi nement of nested meshes with node movement, where the ideas presented here could be introduced. Good recent results have been obtained in [11] and [12] using these techniques, for determining the shape and size of the elements in anisotropic problems.

To illustrate the effectiveness of our approach, we present in Section 4 several applications where it can be seen the validity of the proposed strategies. Finally, conclusions are presented in Section 5.

2 Mesh Optimisation with Improved Objective Functions

The most usual techniques to improve the quality of a valid mesh, that is, one that does not have inverted elements, are based upon local smoothing. In short, these techniques consist of fi nding the new positions that the mesh nodes must hold, in such a way that they optimise an objective function. Such a function is based on
a certain measurement of the quality [4] of the local submesh, $N(v)$, formed by the set of tetrahedra connected to the free node v. As it is a local optimisation process, we can not guarantee that the fi nal mesh is globally optimum. Nevertheless, after repeating this process several times for all the nodes of the current mesh, quite satisfactory results can be achieved. Usually, objective functions [5] are appropriate to improve the quality of a valid mesh, but they do not work properly when there are inverted elements. This is because they present singularities (barriers) when any tetrahedron of $N(v)$ changes the sign of its Jacobian. The barrier avoids the possible appearance of inverted elements in the optimisation process of a valid mesh. Nevertheless, the existence of barriers prevents these objective functions from working properly when the mesh is tangled. For example, if the free node is out of the feasible region (subset of \mathbb{R}^{3} where v could be placed, being $N(v)$ a valid submesh) the barrier avoids reaching the appropriate minimum. It can even happen that the feasible region does not exist, for example, when the fi xed boundary of the local submesh is tangled. In all these situations these objective functions are not well defi ned on all \mathbb{R}^{3} and, therefore, they are not suitable to improve the quality of the mesh.

To avoid this problem we can proceed as Freitag et al in [6,7], where an optimisation method consisting of two stages is proposed. In the first one, the possible inverted elements are untangled by an algorithm that maximises their negative Jacobian [7]; in the second, the resulting mesh from the first stage is smoothed using another objective function based on a quality metric of the tetrahedra of $N(v)$ [6]. One of these objective functions are presented in Section 2.1. After the untangling procedure, the mesh has a very poor quality because the technique has no motivation to create good-quality elements. As remarked in [6], it is not possible to apply a gradient-based algorithm to optimise the objective function because it is not continuous all over \mathbb{R}^{3}, making it necessary to use other non-standard approaches.

In Section 2.2 we propose an alternative to this procedure, such that the untangling and smoothing are carried out in the same stage. For this purpose, we use a suitable modifi cation of the objective function such that it is regular all over \mathbb{R}^{3}. When a feasible region exists, the minima of the original and modifi ed objective functions are very close and, when this region does not exist, the minimum of the modifi ed objective function is located in such a way that it tends to untangle $N(v)$. The latter occurs, for example, when the fi xed boundary of $N(v)$ is tangled. With this approach, we can use any standard and effi cient unconstrained optimisation method to fi nd the minimum of the modifi ed objective function, see for example [13].

In this work we have applied the proposed modifi cation to one objective function derived from an algebraic mesh quality metric studied in [4], but it would also be possible to apply it to other objective functions which have barriers like those presented in [5].

2.1 Objective Functions

Several tetrahedron shape measures [14] could be used to construct an objective function. Nevertheless those obtained by algebraic operations are specially indicated for our purpose because they can be computed very effi ciently. The above mentioned algebraic mesh quality metric and the corresponding objective function are shown in this Section.

Let T be a tetrahedral element in the physical space whose vertices are given by $\mathbf{x}_{k}=\left(x_{k}, y_{k}, z_{k}\right)^{T} \in \mathbb{R}^{3}, k=0,1,2,3$ and T_{R} be the reference tetrahedron with vertices $\mathbf{u}_{0}=(0,0,0)^{T}, \mathbf{u}_{1}=(1,0,0)^{T}, \mathbf{u}_{2}=(0,1,0)^{T}$ and $\mathbf{u}_{3}=(0,0,1)^{T}$. If we choose \mathbf{x}_{0} as the translation vector, the affi ne map that takes T_{R} to T is $\mathbf{x}=A \mathbf{u}+\mathbf{x}_{0}$, where A is the Jacobian matrix of the affi ne map referenced to node x_{0}, and expressed as $A=\left(\mathrm{x}_{1}-\mathrm{x}_{0}, \mathrm{x}_{2}-\mathrm{x}_{0}, \mathrm{x}_{3}-\mathrm{x}_{0}\right)$.

Let now T_{I} be an equilateral tetrahedron with all its edges of length one and vertices located at $\mathbf{v}_{0}=(0,0,0)^{T}, \mathbf{v}_{1}=(1,0,0)^{T}, \mathbf{v}_{2}=(1 / 2, \sqrt{3} / 2,0)^{T}, \mathbf{v}_{3}=$ $(1 / 2, \sqrt{3} / 6, \sqrt{2} / \sqrt{3})^{T}$. Let $\mathbf{v}=W \mathbf{u}$ be the linear map that takes T_{R} to T_{I}, being $W=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ its Jacobian matrix, referenced to node \mathbf{x}_{0}.

Therefore, the affi ne map that takes T_{I} to T is given by $\mathbf{x}=A W^{-1} \mathbf{v}+\mathbf{x}_{0}$, and its Jacobian matrix is $S=A W^{-1}$. This weighted matrix S is independent of the node chosen as reference; it is said to be node invariant [4,6]. We can use matrix norms, determinant or trace of S to construct algebraic quality measures of T. For example, the Frobenius norm of S, defi ned by $|S|=\sqrt{\operatorname{tr}\left(S^{T} S\right)}$, is specially indicated because it is easily computable. Thus, it is shown in [4] that $q=\frac{3 \sigma^{\frac{2}{3}}}{|S|^{2}}$ is an algebraic quality measure of T, where $\sigma=\operatorname{det}(S)$. The maximum value of these quality measures is the unity and it corresponds to equilateral tetrahedron. Besides, any flat tetrahedron has quality measure zero. We can derive an optimisation function from this quality measure. Thus, let $\mathbf{x}=(x, y, z)^{T}$ be the free node position of v, and let S_{m} be the weighted Jacobian matrix of the m-th tetrahedron of $N(v)$. We defi ne the objective function of \mathbf{x}, associated to an m-th tetrahedron as

$$
\begin{equation*}
\eta_{m}=\frac{\left|S_{m}\right|^{2}}{3 \sigma_{m}^{\frac{2}{3}}} \tag{1}
\end{equation*}
$$

Then, the corresponding objective function for $N(v)$ can be constructed by using the p-norm of $\left(\eta_{1}, \eta_{2}, \ldots, \eta_{M}\right)$ as

$$
\begin{equation*}
\left|K_{\eta}\right|_{p}(\mathbf{x})=\left[\sum_{m=1}^{M} \eta_{m}^{p}(\mathbf{x})\right]^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

where M is the number of tetrahedra in $N(v)$. The objective function $\left|K_{\eta}\right|_{1}$ was deduced and used in [15] for smoothing and adapting of 2-D meshes. The same
function was introduced in [16], for both 2 and 3-D mesh smoothing, as a result of a force-directed method. Finally, this function, among others, is studied and compared in [5]. We note that the cited authors only use this objective function for smoothing valid meshes.

Although this optimisation function is smooth in those points where $N(v)$ is a valid submesh, it becomes discontinuous when the volume of any tetrahedron of $N(v)$ goes to zero. It is due to the fact that η_{m} approaches infi nity when σ_{m} tends to zero and its numerator is bounded below. In fact, it is possible to prove that $\left|S_{m}\right|$ reaches its minimum, with strictly positive value, when v is placed in the geometric centre of the fi xed face of the m-th tetrahedron. The positions where v must be located to get $N(v)$ to be valid, i.e., the feasible region, is the interior of the polyhedral set P defi ned as $P=\bigcap_{m=1}^{M} H_{m}$, where H_{m} are the half-spaces defi ned by $\sigma_{m}(\mathbf{x}) \geqslant 0$. This set can occasionally be empty, for example, when the fi xed boundary of $N(v)$ is tangled. In this situation, function $\left|K_{\eta}\right|_{p}$ stops being useful as optimisation function. On the other hand, when the feasible region exists, that is int $P \neq \emptyset$, the objective function tends to infi nity as v approaches the boundary of P. Due to these singularities, a barrier is formed which avoids reaching the appropriate minimum by using gradient-based algorithms, when these start from a free node outside the feasible region. In other words, with these algorithms we can not optimise a tangled mesh $N(v)$ with the above objective function.

2.2 Modified Objective Functions

We propose a modifi cation in the previous objective function (2), so that the barrier associated with its singularities will be eliminated and the new function will be smooth all over \mathbb{R}^{3}. An essential requirement is that the minima of the original and modifi ed functions are nearly identical when int $P \neq \emptyset$. Our modifi cation consists of substituting σ in (2) by the positive and increasing function

$$
\begin{equation*}
h(\sigma)=\frac{1}{2}\left(\sigma+\sqrt{\sigma^{2}+4 \delta^{2}}\right) \tag{3}
\end{equation*}
$$

being the parameter $\delta=h(0)$. We represent in Figure 1 the function $h(\sigma)$. Thus, the new objective function here proposed is given by

$$
\begin{equation*}
\left|K_{\eta}^{*}\right|_{p}(\mathbf{x})=\left[\sum_{m=1}^{M}\left(\eta_{m}^{*}\right)^{p}(\mathbf{x})\right]^{\frac{1}{p}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{m}^{*}=\frac{\left|S_{m}\right|^{2}}{3 h^{\frac{2}{3}}\left(\sigma_{m}\right)} \tag{5}
\end{equation*}
$$

is the modifi ed objective function for the m-th tetrahedron.

The behaviour of $h(\sigma)$ in function of δ parameter is such that, $\lim _{\delta \rightarrow 0} h(\sigma)=\sigma$, $\forall \sigma \geq 0$ and $\lim _{\delta \rightarrow 0} h(\sigma)=0, \forall \sigma \leq 0$. Thus, if int $P \neq \emptyset$, then $\forall \mathbf{x} \in$ int P we have $\sigma_{m}(\mathbf{x})>0$, for $m=1,2, \ldots, M$ and, as smaller values of δ are chosen, $h\left(\sigma_{m}\right)$ behaves very much as σ_{m}, so that, the original objective function and its corresponding modifi ed version are very close in the feasible region. Particularly, in the feasible region, as $\delta \rightarrow 0$, function $\left|K_{\eta}^{*}\right|_{p}$ converges pointwise to $\left|K_{\eta}\right|_{p}$. Besides, by considering that $\forall \sigma>0, \lim _{\delta \rightarrow 0} h^{\prime}(\sigma)=1$ and $\lim _{\delta \rightarrow 0} h^{(n)}(\sigma)=0$, for $n \geq 2$, it is easy to prove that the derivatives of this objective function verify the same property of convergence. As a result of these considerations, it may be concluded that the positions of v that minimise original and modifi ed objective functions are nearly identical when δ is small. Actually, the value of δ is selected in terms of point v under consideration, making it as small as possible and in such a way that the evaluation of the minimum of modifi ed functions does not present any computational problem. A complete discussion about the selection of δ may be found in [2]. Suppose that int $P=\emptyset$, then the original objective function, $\left|K_{\eta}\right|_{p}$, is not suitable

Fig. 1. Representation of function $h(\sigma)$.
for our purpose because it is not correctly defi ned. Nevertheless, modifi ed function is well defi ned and tends to solve the tangle. We can reason it from a qualitative point of view by considering that the dominant terms in $\left|K_{\eta}^{*}\right|_{p}$ are those associated to the tetrahedra with more negative values of σ and, therefore, the minimisation of these terms imply the increase of these values. It must be remarked that $h(\sigma)$ is an increasing function and $\left|K_{\eta}^{*}\right|_{p}$ tends to ∞ when the volume of any tetrahedron of $N(v)$ tends to $-\infty$, since $\lim _{\sigma \rightarrow-\infty} h(\sigma)=0$.

In conclusion, by using the modifi ed objective function, we can untangle the mesh and, at the same time, improve its quality. More details about this mesh optimisation procedure can be seen in reference [2].

3 Local Refinement Algorithm

In our refi nement/smoothing combination, we have used a version of the local refi nement algorithm [3] based on the 8 -subtetrahedron subdivision developed in [10]. Consider a triangulation M_{k} of the domain and a valid mesh M_{k}^{\prime} obtained from the optimisation of M_{k}. Our goal is to build a mesh M_{k+1} making a local refi nement of the lowest quality elements of M_{k}^{\prime}. Let q_{i} be a quality measure of tetrahedron $t_{i} \in M_{k}^{\prime}$, this tetrahedron must be refi ned if $q \leq q_{\theta}$, being $q_{\theta}=q_{\text {min }}+\left(1-q_{\text {min }}\right) \theta$, $q_{\text {min }}$ the minimum quality of the tetrahedra of M_{k}^{\prime} and $\theta \in[0,1]$ a refi nement parameter. In practice, we propose to choose small values of θ in order to refi ne a few elements of M_{k}^{\prime}, focusing the refi nement on those areas with poor quality elements. So, we shall obtain M_{k+1} from M_{k}^{\prime}, attending to the following fundamental considerations:
a) 8-subtetrahedron subdivision. A tetrahedron $t_{i} \in M_{k}^{\prime}$ is called of type I if $q_{i} \leq q_{\theta}$. Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Figure 1(a) shows; 6 new nodes are introduced and its faces are subdivided as proposed by Bank [17].

Once the type I tetrahedra subdivision is defi ned, we can fi nd neighbouring tetrahedra which may have $6,5, \ldots, 1$ or 0 new nodes introduced in their edges that must be taken into account in order to ensure the mesh conformity.
b) Tetrahedra with 6, 5 or 4 new nodes. Those tetrahedra are also considered as type I. Previously, the edges without new node must be marked.
c) Tetrahedra with 3 new nodes. In this case, we distinguish two situations:
c.1) If the 3 marked edges are not located on the same face, then we mark the others and the tetrahedron is introduced in the set of type I tetrahedra.

In the following cases, we shall not mark any edge, i.e., any new node will not be introduced in a tetrahedron for conformity. We shall subdivide them creating subtetrahedra which will be called transient subtetrahedra.
c.2) If the 3 marked edges are located on the same face of the tetrahedron, then 4 transient subtetrahedra are created as Figure 1(b) shows. The tetrahedra of M_{k}^{\prime} with these characteristics will be inserted in the set of type II tetrahedra.
d) Tetrahedra with 2 new nodes. Also here, we distinguish two situations:
d.1) If marked edges are not located on the same face, we construct 4 transient subtetrahedra. These tetrahedra are called type III.a; see Figure 1(c).
d.2) If the two marked edges are located on the same face, then 3 transient sub-
tetrahedra are generated as Figure 1(d) shows. The longest marked edge is fi xed as reference in order to take advantage in some cases of the properties of the bisection by the longest edge. These tetrahedra are called type III.b.
e) Tetrahedra with I new node. Two transient subtetrahedra will be created as we can see in Figure 1(e). This set of tetrahedra is called type IV.
f) Tetrahedra without new node. These tetrahedra of M_{k}^{\prime} are not divided and they will be inherit by the refi ned mesh M_{k+1}. We call them type V; see Figure 1(f).

Fig. 1 Subdivision classification related to the new nodes (empty circles)
We have used the following strategy to ensure the conformity of M_{k+1}. If any transient tetrahedron should be generated and it has a quality measure less than the established threshold for refi nement q, then the parent of this transient tetrahedron is introduced into the set of type I tetrahedra. In this way, the minimum quality of elements in the resulting mesh M_{k+1} can be improved.

4 Numerical Experiments

In order to show the effectiveness of the refi nement/smoothing combination, we consider the following test problem, which is not related to any concrete practical case. The selection of the domain is due to its strong geometrical singularity around a point. We start from an initial mesh M_{0} with 1364 nodes and 5387 tetrahedra. The mesh has been generated using our code studied in $[1,20]$ and it contains 43 inverted tetrahedra. This mesh generator is based on 2-D refi nement/derefi nement
techniques [19] and a version of the 3-D Delaunay triangulation [21]. Figure 2(a) shows a detail of the mesh with inverted and poor quality elements.

Figure 2(b) represents the mesh untangled and smoothed mesh M_{0}^{\prime} resulting from applying a number of steps of the optimisation process until the values of average and minimum quality tend to become steady to $q_{\text {avg }}=0.6714$ y $q_{\text {min }}=0.0925$, respectively. In this optimisation process we have not allowed any node movement over the lower boundary of the domain. In the mesh M_{0}^{\prime} we can observe elements with poor quality in the neighbourhood of the sharp surface. We remark that the quality of these elements can not be improved if we maintain the same topology of the mesh M_{0} during the optimisation process. So, we propose to proceed as follows.

In this experiment we have used a value of the refi nement parameter $\theta=0.01$, so that elements of M_{0}^{\prime} with a quality measure near to $q_{\min }=0.0925$ are subdivided by 8 -subtetrahedra and conformity of the mesh is assured. After this local refi nement step, it yields the mesh M_{1}, with 1438 nodes and 5758 tetrahedra, see Figure 3(a). Obviously, the quality of this refi ned mesh is less than the one before applying the refi nement process. In fact, we obtain $q_{v g}=0.6432$ and $q_{\text {min }}=0.0702$ for M_{1}.

Nevertheless, due to the increasing of the node number in the neighbourhood of the regions where elements of M_{0}^{\prime} have the worst quality, we can improve the value of minimum quality after applying the smoothing procedure over M_{1}. Then, we obtain the smoothed mesh M_{1}^{\prime} in which $q_{a v g}=0.6499$ and $q_{\text {min }}=0.1106$. Therefore, the value of $q_{\min }$ increases with respect to the corresponding value in M_{0}^{\prime}, but the value of $q_{\text {avg }}$ decreases. Actually, in most cases it is more suitable to increase the minimum quality, that is to improve the quality of distorted elements. Besides, the relative increase obtained in $q_{\text {min }}$ is superior than the relative decrease in $q_{\text {avg }}$. In Figure 3(b) it is shown a detail of the mesh M_{1}^{\prime} in which an improvement of quality near the sharp surface can be observed.

If we now repeat the refi nement/smoothing process starting from the mesh M_{1}, it results the mesh M_{2} after refi nement with 1475 nodes, 5925 tetrahedra, $q_{v g}=$ 0.6396 and $q_{\text {min }}=0.0924$. Once the smoothing procedure is applied over this mesh, we get the mesh M_{2}^{\prime} with $q_{\text {med }}=0.6464$ and $q_{\text {min }}=0.1214$.

This last result implies that in the step from M_{0} to M_{2}^{\prime} the minimum quality of M_{0} have been improved in a 31.2% with the introduction of a few new nodes. On the other hand, the average quality have only made worse in a 3.7%. The meshes M_{2} y M_{2}^{\prime} can been observed in Figures 4(a) and 4(b), respectively.

In this numerical experiment, 11 seconds of CPU time on an XEON were necessary to construct the initial mesh M_{0}. About mesh optimisation process, it has linear complexity in each step [2] and, in practice, it approximately took 30 seconds of CPU time to obtain the optimised meshes ($M_{0}^{\prime}, M_{1}^{\prime}$ and M_{2}^{\prime}) by applying 100 steps. Note that such a number of steps were necessary for mesh quality stabilisation due to the existence of an extreme geometrical singularity in the domain. The computa-

(g) $M_{0}:$ initial tangled mesh

Fig. 2. (a) M_{0} : initial mesh with 43 inverted tetrahedra and (b) M_{0}^{\prime} : resulting untangled mesh after applying the optimisation process over M_{0}.

Fig. 3. (a) M_{1} : resulting mesh after refining M_{0} and (b) M_{1}^{\prime} : mesh obtained after smoothing M_{1}.

Fig. 4. (a) M_{2} : resulting mesh after refining M_{1}^{\prime} and (b) M_{2}^{\prime} : mesh obtained after smoothing M_{2}.
tional cost to construct M_{1} and M_{2} from M_{0}^{\prime} and M_{1}^{\prime}, respectively, was only about 2 seconds for each refi nement procedure.

5 Conclusions

The combination of smoothing techniques and local refi nement algorithms is useful to improve the minimum quality of the elements of tetrahedral meshes with very poor quality. Besides, as the proposed strategy refi nes a few elements in each refi nement step, then the number of new nodes introduced in the initial mesh is much less than the total number. Obviously, we can repeat the refi nement/smoothing combination until the required quality is obtained or no additional improvement is got. The bound of quality is associated with the topology of the initial mesh and with the constrains imposed by the boundary of the domain.

Acknowledgements

This work has been partially supported by the MCYT of Spanish Government and FEDER, grant contract REN2001-0925-C03-02/CLI.

References

[1] Montenegro R, Montero G, Escobar JM, Rodr'ıguez E, Gonz'alez-Yuste JM. Tetrahedral Mesh Generation for Environmental Problems over Complex Terrains. Lecture Notes in Computer Science 2002;2329:335-344.
[2] Escobar JM, Rodr'ıguez E, Montenegro R, Montero G, Gonz'alez-Yuste JM. Simultaneous Untangling and Smoothing of Tetrahedral Meshes. Comp. Methods Appl. Mech. Engrg. 2003;192:2775-2787.
[3] Gonz'alez-Yuste JM, Montenegro R, Escobar JM, Montero G, Rodr' 1 guez E. An Object Oriented Method for Tetrahedral Mesh Refinement. Proceedings of the Third International Conference on Engineering Computational Technology, Praga 2002; 118.
[4] Knupp PM. Algebraic Mesh Quality Metrics. SIAM. J. Sci. Comput. 2001;23:193218.
[5] Knupp PM. Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part II-A Frame Work for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix. Int. J. Numer. Methods Engrg. 2000;48:1165-1185.
[6] Freitag LA, Knupp PM. Tetrahedral Mesh Improvement Via Optimization of the Element Condition Number. Int. J. Numer. Methods Engrg. 2002;53:1377-1391.
[7] Freitag LA, Plassmann P. Local Optimization-based Simplicial Mesh Untangling and Improvement. Int. J. Numer. Meth. Eng., 49, 109-125, 2000.
[8] Bornemann F, Erdmann B, Kornhuber R, Adaptive Multilevel Methods in Three Space Dimensions. Int. J. Numer. Methods Engrg. 1993;36:3187-3203.
[9] Liu A, Joe B. Quality Local Refinement of Tetrahedral Meshes Based on 8Subtetrahedron Subdivision. Mathematics of Comput. 1996;65(215):1183-1200.
[10] Lohner R, Baum JD. Adaptive h-Refinement on 3D Unstructured Grids for Transient Problems. Int. J. Num. Methods Fluids 1992;14:1407-1419.
[11] Pain CC, Umpleby AP, de Oliveira CRE, Goddard AJH. Tetrahedral Mesh Optimization for Steady-State and Transient Finite Element Calculations. Comput. Methods Appl. Mech. Engrg. 2001;190:3771-3796.
[12] Tam A, Ait-Ali-Yahia D, Robichaud MP, Moore A, Kozel V, Habashi WG. Anisotropic Mesh Adaptation for 3-D Flows on Structured and Unstructured Grids. Comput. Methods Appl. Mech. Engrg. 2000;189:1205-1230.
[13] Bazaraa MS, Sherali HD, Shetty CM. Nonlinear Programing: Theory and Algorithms. New York: John Wiley and Sons, Inc.; 1993.
[14] Dompierre J, Labb'e P, Guibault F, Camarero R. Proposal of Benchmarks for 3D Unstructured Tetrahedral Mesh Optimization. Proceedings of the 7th International Meshing Roundtable, Sandia National Laboratories 1998; 459-478.
[15] Bank RE, Smith RK. Mesh Smoothing Using a Posteriori Error Estimates. SIAM J. Numer. Anal. 1997;34:979-997.
[16] Djidjev HN. Force-Directed Methods for Smoothing Unstructured Triangular and Tetrahedral Meshes. Tech. Report, Department of Computer Science, Univ. of Warwick, Coventry, UK; 2000. Available from http://www.andrew.cmu.edu/user.
[17] Bank RE, Sherman AH, Weiser A. Refinement algorithms and data structures for regular local mesh refinement. In Scientific Computing IMACS, Amsterdam: NorthHolland 1983; 3-17.
[18] Rivara MC. A Grid Generator Based on 4-Triangles Conforming. Mesh-Refinement Algorithms. Int. J. Numer. Methods Engrg. 1987;24:1343-1354.
[19] Ferragut L, Montenegro R, Plaza A. Efficient Refinement/Derefinement Algorithm of Nested Meshes to Solve Evolution Problems. Comm. Numer. Methods Engrg. 1994;10:403-412.
[20] Montenegro R, Montero G, Escobar JM, Rodr'ıguez E. Efficient Strategies for Adaptive 3-D Mesh Generation over Complex Orography. Neural, Parallel \& Scientific Computation 2002;10(1):57-76.
[21] Escobar JM, Montenegro R. Several Aspects of Three-Dimensional Delaunay Triangulation. Adv. Engrg. Soft. 1996;27(1/2):27-39.

[^0]: * Corresponding author.

